专题7 函数的奇偶性和周期性(解析版)

合集下载

最经典总结-函数的奇偶性与周期性

最经典总结-函数的奇偶性与周期性

最经典总结-函数的奇偶性与周期性函数的奇偶性与周期性函数的奇偶性和周期性是数学中的重要概念,也是高考中常考的知识点。

了解函数的奇偶性和周期性可以帮助我们更好地理解和研究函数。

函数的奇偶性是指函数在定义域内是否满足奇偶性质。

对于一个函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x)成立,则称f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x)成立,则称f(x)为偶函数。

常见题型多以选择、填空题形式出现,且奇偶性多与抽象函数相结合。

函数的周期性是指函数的图像在平移一定距离后与原图像重合。

如果对于函数y=f(x),存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么称函数y=f(x)为周期函数,T为这个函数的周期。

如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。

应用简单函数的周期性占4~5分,中档题为主。

在研究函数的奇偶性和周期性时,需要注意以下三个易误点:应用函数的周期性时,应保证自变量在给定的区间内;判断函数的奇偶性,需要注意函数定义域是否关于原点对称;判断奇函数和偶函数时,需要对定义域内的每一个x,均有f(-x)=-f(x)或f(-x)=f(x),而不能说存在x使f(-x)=-f(x)或f(-x)=f(x)。

在实际运用中,可以活用周期性的三个常用结论:对于f(x)定义域内任一自变量的值x,如果函数f(x)为奇函数,则关于原点对称;如果函数f(x)为偶函数,则关于y轴对称。

此外,还可以利用奇、偶函数的三个性质:在奇、偶函数的定义中,f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式;奇函数的图像关于原点对称,偶函数的图像关于y轴对称,反之也成立;在函数的加、减、乘运算中,奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇。

综上所述,了解函数的奇偶性和周期性对于研究和应用函数具有重要意义。

函数的奇偶性和周期性(含解析)

函数的奇偶性和周期性(含解析)

函数奇偶性和周期性一、必备知识:1.奇、偶函数的概念 (1)偶函数:一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数. (2)奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数. 2.奇、偶函数的图象特征偶函数的图象关于 对称;奇函数的图象关于 对称. 3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于,即“定义域关于”是“一个函数具有奇偶性”的条件. 4.周期函数的概念 (1)周期、周期函数对于函数f (x ),如果存在一个 T ,使得当x 取定义域内的 值时,都有 ,那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个 的正数,那么这个最小正数就叫做f (x )的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f (x )为奇函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 ; (2)若函数f (x )为偶函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 . 6.奇、偶函数的“运算”(共同定义域上)奇±奇= ,偶±偶= ,奇×奇= ,偶×偶= ,奇×偶= . 7.函数的对称性如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a +x )=f (b -x ),那么函数的图象有对称轴x =a +b2;如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a -x )=-f (b +x ),那么函数的图象有对称中心⎝⎛⎭⎫a +b 2,0.8.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a ,0),B (b ,0)(a <b ),那么函数f (x )是周期函数,且周期T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b ,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |. 自查自纠:1.(1)f (-x )=f (x ) (2)f (-x )=-f (x ) 2.Y 轴 原点3.原点对称 原点对称 必要不充分4.(1)非零常数 每一个 f (x +T )=f (x ) (2)最小 5.(1)增(减)函数 (2)减(增)函数 6.奇 偶 偶 偶 奇二、题型训练题组一 1.函数()2lg 1()22x f x x -=--是_____________函数。

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性在高中数学课程中,我们学习了很多种函数,例如线性函数、二次函数、指数函数等等。

这些函数在实际应用中有着不同的特点,其中函数的奇偶性与周期性是我们经常遇到的两种特征。

在本文中,我将详细介绍函数的奇偶性与周期性,并探讨它们在实际问题中的应用。

首先,我们来了解函数的奇偶性。

一个函数被称为“奇函数”当且仅当对于任意的x值,有f(-x) = -f(x)。

也就是说,奇函数在关于坐标原点对称时,其函数值相等但符号相反。

一些常见的奇函数有正弦函数sin(x)和正切函数tan(x)等。

举个例子,我们考虑y = sin(x)这个函数。

我们可以发现,对于任意的x值,sin(-x) = -sin(x)。

因此,正弦函数是一个奇函数。

同样,tan(-x) = -tan(x),所以正切函数也是一个奇函数。

相反,一个函数被称为“偶函数”当且仅当对于任意的x值,有f(-x) = f(x)。

也就是说,偶函数在关于y轴对称时,其函数值相等。

一些常见的偶函数有余弦函数cos(x)和正切函数cot(x)等。

以余弦函数为例,我们可以发现,对于任意的x值,cos(-x) = cos(x)。

因此,余弦函数是一个偶函数。

同理,cot(-x) = cot(x),所以余切函数也是一个偶函数。

接下来,我们来了解函数的周期性。

一个函数被称为“周期函数”,当且仅当存在一个正数T,使得对于任意的x值有f(x+T) = f(x)。

也就是说,函数在经过一定的平移后,其函数值保持不变。

周期函数在实际问题中有着广泛的应用,例如在电力系统中,交流电的波形就是一种周期函数,媒体中播放的声音和图像也具有周期性。

我们常见的周期函数有正弦函数和余弦函数。

以正弦函数为例,我们可以观察到,对于任意的x值,sin(x+2π) = sin(x)。

因此,正弦函数的周期为2π。

同理,余弦函数的周期也为2π。

函数的奇偶性和周期性在实际问题中有着广泛的应用。

以奇偶性为例,我们在解决对称性问题时常常会用到奇函数和偶函数。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的重要概念,它描述了两个变量之间的关系。

在数学中,我们经常研究函数的性质,包括奇偶性与周期性。

函数的奇偶性和周期性是函数的基本特征,它们对于理解函数的行为和性质非常重要。

本文将深入探讨函数的奇偶性与周期性,并探讨它们之间的关系。

一、函数的奇偶性函数的奇偶性是指函数的图像是否关于原点对称。

如果一个函数的图像关于原点对称,那么它被称为偶函数;如果一个函数的图像关于原点旋转180度后仍然和原来的图像一样,那么它被称为奇函数。

奇偶性可以通过函数的定义式来判断。

假设有函数f(x),当满足以下条件时,函数f(x)是一个奇函数:1. f(x) = -f(-x) 对于定义域内的所有x成立。

假设有函数g(x),当满足以下条件时,函数g(x) 是一个偶函数:1. g(x) = g(-x) 对于定义域内的所有x成立。

函数的奇偶性有一些重要的特点:1. 偶函数和奇函数之间是互斥的,即一个函数不能既是奇函数又是偶函数。

2. 若函数f(x)是奇函数,则有f(0)=0。

3. 若函数g(x)是偶函数,则有g(0)=g(0)。

二、函数的周期性函数的周期性是指函数在自变量的某个区间内以一定规律重复自身。

一个函数的周期性可以通过函数的定义式来判断。

周期性常用于描述重复性的现象,比如正弦函数和余弦函数。

假设有函数h(x),当满足以下条件时,函数h(x) 是一个周期函数:1. h(x+T) = h(x) 对于定义域内的所有x成立,其中T称为函数的周期。

周期函数具有以下特点:1. 周期函数在每个周期内都有相同的性质和规律。

2. 周期函数在每个周期内有最小正周期,即最小的正数T,使得h(x+T) = h(x)。

3. 周期函数图像可以在一个周期内进行推广,描绘出函数的整体形态。

三、奇偶性与周期性的关系在某些情况下,函数的奇偶性与周期性之间存在一定的关系。

具体而言,周期函数可以分为奇周期函数和偶周期函数。

奇周期函数满足以下条件:1. 周期函数h(x)是奇函数;2. 周期T满足T/2是函数的一个周期。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的一种重要工具,用来描述两个变量之间的关系。

在实际问题中,我们通常会遇到一些特殊类型的函数,比如奇函数、偶函数以及周期函数。

本文将讨论函数的奇偶性与周期性,并探究它们在数学和实际应用中的作用。

一、奇函数和偶函数奇函数和偶函数是函数在自变量取相反数时所具有的性质。

具体来说,一个函数 f(x) 是奇函数,当且仅当对于任意的 x,有 f(-x) = -f(x)。

反之,若对于任意的 x 有 f(-x) = f(x),则函数 f(x) 是偶函数。

奇函数和偶函数的性质如下:1. 对于奇函数 f(x),如果 f(a) = b,则 f(-a) = -b。

2. 对于偶函数 f(x),如果 f(a) = b,则 f(-a) = b。

3. 奇函数关于原点对称,即图像关于原点旋转180度后与原图像重合。

4. 偶函数关于 y 轴对称,即图像关于 y 轴对称。

在实际应用中,奇函数和偶函数广泛存在。

例如,奇函数在描述电路中的交流信号的正负变化、对称图形的性质等方面有广泛的应用。

而偶函数则在描述偶对称的物理现象、对称图形的性质等方面发挥重要作用。

二、周期函数周期函数是指函数在自变量增加或减少一个周期后,函数值保持不变的函数。

常见的周期函数包括正弦函数、余弦函数等三角函数。

周期函数的性质如下:1. 周期性:如果函数 f(x) 是周期为 T 的周期函数,那么对于任意的x 和正整数 k,都有 f(x + kT) = f(x)。

2. 周期的计算:对于三角函数,周期 T 可以通过函数的周期公式推导得出,例如正弦函数的周期为2π。

周期函数在科学和工程领域有广泛的应用,在描述物体振动、电磁波传播等现象时发挥重要作用。

周期函数的性质使得我们能够更好地理解和分析这些周期性的现象。

三、函数的奇偶性与周期性的关系奇函数和偶函数可以看作是周期函数的特殊形式。

事实上,任何一个周期函数都可以表示为奇函数和偶函数的和。

具体来说,如果一个函数 f(x) 是奇函数或偶函数,并且具有周期 T,那么它也是一个周期函数。

函数的奇偶性与周期性知识点与经典例题

函数的奇偶性与周期性知识点与经典例题

函数的奇偶性与周期性知识点与经典例题函数的奇偶性与周期性知识点和经典试题本节知识点详解:1.函数的奇偶性奇偶性定义:如果对于函数f(x)的定义域内任意一个偶函数x,都有f(-x)=f(x),那么函数f(x)是偶函数。

如果对于函数f(x)的定义域内任意一个奇函数x,都有f(-x)=-f(x),那么函数f(x)是奇函数。

2.函数的周期性1) 周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期。

2) 最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。

重要结论:1.函数奇偶性的四个重要结论1) 如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.2) 如果函数f(x)是偶函数,那么f(x)=f(|x|)。

3) 奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性。

4) 奇函数的图像在对称的区间上单调性相同,偶函数在对称的区间上单调性相反。

5) 运算性质:①“奇+奇”是奇,“奇-奇”是奇,“XXX”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇。

2.函数周期性的三个常用结论对f(x)定义域内任一自变量的值x:1) 若f(x+a)=-f(x),则T=2a;2) 若f(x+a)=f(x),则T=2a;3) 若f(x+a)=-1/f(x),则T=2a.(a>0)3.函数对称性的三个常用结论1) 若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;2) 若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称;3) 若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)关于点(b,0)中心对称。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的重要概念,它描述了数值之间的关系。

在数学中,函数可以根据其性质进行分类,其中包括奇偶性和周期性。

本文将介绍函数的奇偶性与周期性,并探讨它们在数学中的应用。

一、函数的奇偶性函数的奇偶性描述的是函数图像关于原点的对称性。

具体来说,如果对于函数f(x),当x取正值时,有f(x) = f(-x),即函数的值对称,那么该函数被称为偶函数。

相反,如果对于函数f(x),当x取正值时,有f(x) = -f(-x),即函数的值关于原点对称,那么该函数被称为奇函数。

1. 偶函数的特点偶函数的特点在于其图像关于y轴对称。

举个例子,y = x^2就是一个典型的偶函数。

当x取正值时,x^2的值保持不变。

2. 奇函数的特点奇函数的特点在于其图像关于原点对称。

比如,y = x^3就是一个典型的奇函数。

当x取正值时,x^3的值和其相反数互为相反数。

函数的奇偶性在数学中有广泛的应用。

例如,在解方程时,可以通过判断方程中的函数是偶函数还是奇函数,来确定方程的解的性质。

奇函数的图像通过原点,因此只要找到正解即可,而偶函数的图像关于y轴对称,因此需要找到两个解。

二、函数的周期性函数的周期性描述的是函数图像在一个周期内的重复性。

具体来说,如果对于函数f(x),存在一个正数T,使得对于任意的x,有f(x+T) =f(x),那么该函数被称为周期函数,T被称为函数的周期。

1. 周期函数的特点周期函数的特点在于其图像在一个周期内重复出现。

一个常见的周期函数是正弦函数sin(x)。

对于任意的x,在一个周期2π内,sin(x)的值会不断重复。

周期函数在物理学、工程学等领域有广泛的应用。

例如,在分析电流、振动等周期性现象时,可以使用周期函数来描述这些现象的规律。

函数的奇偶性与周期性是数学中重要的性质,通过研究函数的奇偶性与周期性,可以更深入地理解函数的行为规律。

同时,掌握函数的奇偶性与周期性也有助于解决实际问题,提高数学建模的能力。

函数奇偶性与周期性概念

函数奇偶性与周期性概念

函数奇偶性与周期性概念函数是数学中一种重要的概念,描述了一种输入和输出之间的对应关系。

在函数的研究中,奇偶性和周期性是两个重要而有趣的特性。

本文将介绍函数的奇偶性和周期性,并讨论它们在数学中的应用。

一、奇偶性的定义和性质1. 奇函数:若对于函数f(x),对任意实数x,有f(-x)=-f(x),则称函数f(x)为奇函数。

换句话说,当自变量取相反数时,函数值也取相反数。

2. 偶函数:若对于函数f(x),对任意实数x,有f(-x)=f(x),则称函数f(x)为偶函数。

换句话说,当自变量取相反数时,函数值不变。

3. 奇偶函数的性质:a. 奇函数的特点在于,当函数的定义区间关于原点对称时,奇函数图像关于原点对称。

b. 偶函数的特点在于,无论是函数的定义区间如何,偶函数图像关于y轴对称。

c. 奇函数和偶函数的图像都具有完全的对称性,这是它们的一个重要性质。

二、周期性的定义和性质1. 周期函数:若存在正数T,对于函数f(x),对任意实数x,有f(x+T)=f(x),则称函数f(x)为周期函数。

周期T称为函数的周期,满足最小的正周期。

2. 周期函数的性质:a. 周期函数的图像在任意相邻两个周期内有重复的性质。

b. 周期函数的周期可以有多个,但存在最小的正周期。

c. 周期函数的定义区间一般为整个实数集,但也可以是部分实数集。

三、奇偶性和周期性在数学中的应用1. 奇函数和偶函数的应用:a. 奇函数和偶函数是函数的一种特殊性质,它们在各个数学分支和实际问题中都有广泛的应用。

b. 在对称性相关问题中,奇偶函数的性质可以简化计算过程,提供更简洁的解决方法。

c. 在优化问题中,奇函数的性质可以简化极值点的寻找过程。

2. 周期函数的应用:a. 周期函数广泛应用于信号处理、音乐理论、电路分析等领域。

b. 在物理学中,周期函数被用于描述波动现象,如光的干涉、声音的频率等。

c. 在经济学中,周期函数被用于描述经济指标的变化规律,如季节性波动等。

函数的奇偶性与周期性专题题型讲解与例题突破

函数的奇偶性与周期性专题题型讲解与例题突破

考纲解读 1.根据函数奇偶性定义和图象判断简单函数的奇偶性;2.根据函数奇偶性求函数值、求参数、解与函数有关的不等式;3.综合应用函数的周期性、奇偶性、单调性、求解抽象函数问题.[基础梳理]1.函数的奇偶性2.(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.[三基自测]1.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2答案:A2.函数f (x )=1-x1+x 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 答案:D3.下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x | 答案:D4.(2017·高考全国卷Ⅱ改编)已知函数f (x )是定义在R 上的奇函数,则f (0)=__________. 答案:05.(必修1·第一章复习参考题改编)函数f (x )=4x 2-kx -8为偶函数,则k 为________.[考点例题]考点一 函数奇偶性的判断|易错突破[例1] (1)(2018·肇庆模拟)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( )A .3B .2C .1D .0(2)定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则f (x )=2⊕x2-(x ⊗2)是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数[解析] (1)y =x cos x 是奇函数,y =lg x 2-2和y =x sin x 是偶函数,y =e x +x 2是非奇非偶函数,故选B.(2)因为2⊕x =4-x 2,x ⊗2=(x -2)2, 所以f (x )=4-x 22-(x -2)2=4-x 22-|2-x |,该函数的定义域是[-2,0)∪(0,2], ∴f (x )=4-x 2x ,且满足f (-x )=-f (x ).故函数f (x )是奇函数. [答案] (1)B (2)A [易错提醒]1.函数f (x )=lg(x +1)+lg(x -1)的奇偶性是( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既奇又偶函数解析:由⎩⎪⎨⎪⎧x +1>0x -1>0,知x >1,定义域不关于原点对称,故f (x )为非奇非偶函数.答案:C2.函数f (x )=x 2-1+1-x 2,则f (x )为( ) A .奇函数C .既是奇函数,又是偶函数D .非奇非偶函数解析:由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0,即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. 答案:C考点二 函数的周期性|方法突破[例2] (1)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数(2)已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2 018)=__________.(3)函数y =f (x )满足对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 016)+f (2 017)+f (2 018)的值为__________.[解析] (1)∵f (-x )=lg|sin(-x )|=lg|sin x |, ∴函数f (x )为偶函数.∵f (x +π)=lg|sin(x +π)|=lg|sin x |, ∴函数f (x )的周期为π.故选C. (2)∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. (3)∵函数y =f (x -1)的图象关于点(1,0)对称, ∴f (x )是R 上的奇函数,f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), 故f (x )的周期为4,∴f (2 017)=f (504×4+1)=f (1)=4,∴f (2 016)+f (2 018)=f (2 016)+f (2 016+2)=f (2 016)-f (2 016)=0, ∴f (2 016)+f (2 017)+f (2 018)=4. [答案] (1)C (2)-2 (3)4 1.求函数周期的方法 [方法提升](1)函数f (x )满足f (a +x )=-f (x ),则f (x )是周期为2a 的函数; (2)若f (x +a )=±1f (x )(a ≠0)恒成立,则T =2a ;(3)若f (x +a )=f (x -a ),则T =2a ; (4)若f (x +a )=1-f (x )1+f (x ),则T =4a .[母题变式]将本例(3)改为已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解析:由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2<2.5<3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. [答案] 2.5考点三 函数奇偶性、周期性应用|模型突破角度1 求函数解析式[例3] (1)函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.[解析] ∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1), ∴f (x )=--x -1. [答案] --x -1(2)f (x )、g (x )分别为R 上的奇函数和偶函数,且f (x )+g (x )=e x ,求f (x )和g (x )的解析式. [解析] ∵f (x )是R 上的奇函数,g (x )是偶函数, ∴由f (x )+g (x )=e x ,① 得f (-x )+g (-x )=e -x , 即-f (x )+g (x )=e -x .②由①+②得g (x )=e x +e -x 2,①-②得f (x )=e x -e -x 2.[模型解法]角度2 求参数值[例4] 若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k =________.[解析] 法一:∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x +k , ∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ). 由f (-x )+f (x )=0可得k 2=1,∴k =±1. 法二:f (x )为奇函数,∴f (-1)+f (1)=0, ∴k -21+2k+k -121+k 2=0,即k 2=1,∴k =±1.[答案] ±1 [模型解法]角度3 求函数值[例5] 已知f (x )=22x+1+sin x ,则f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)的值是__________.[解析] 因为f (x )-1=1-2x1+2x +sin x 是奇函数,所以f (-x )-1=-[f (x )-1]=1-f (x ),故f (-x )+f (x )=2,且f (0)=1,所以f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)=[f (-4)+f (4)]+[f (-3)+f (3)]+[f (-2)+f (2)]+[f (-1)+f (1)]+f (0)=2×4+1=9.[答案] 9[模型解法][高考类题]1.(2017·高考全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=__________.解析:依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.答案:122.(2015·高考全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )=-x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x ,解得a =1.答案:1[真题感悟]1.[考点一](2017·高考北京卷)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是偶函数,且在R 上是增函数 B .是奇函数,且在R 上是增函数 C .是偶函数,且在R 上是减函数 D .是奇函数,且在R 上是减函数解析:由f (-x )=⎝⎛⎭⎫13x-3x=-f (x ),知f (x )为奇函数,因为y =⎝⎛⎭⎫13x 在R 上是减函数,所以y =-⎝⎛⎭⎫13x 在R 上是增函数,又y =3x 在R 上是增函数,所以函数f (x )=3x -⎝⎛⎭⎫13x在R 上是增函数,故选B.答案:B2.[考点二、三](2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0D .2解析:由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.答案:D3.[考点一](2014·高考新课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,f (x )|g (x )|为奇函数,|f (x )|g (x )为偶函数,|f (x )g (x )|为偶函数,故选C.答案:C4.[考点三](2015·高考山东卷)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x =-2x +12x-a ,即1-a ·2x =-2x+a ,化简得a ·(1+2x)=1+2x,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.答案:C5.[考点二、三](2017·高考山东卷)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=__________.解析:∵f (x +4)=f (x -2),∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6.答案:6。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的重要概念,用于描述数值之间的关系。

函数的奇偶性与周期性是函数特性的一种表现形式。

在本文中,我们将探讨函数的奇偶性与周期性,并分析其在数学中的应用意义。

一、函数的奇偶性奇偶性是指函数在平面直角坐标系中关于原点的对称性质。

对于函数 f(x),若对于任意 x,都有 f(-x) = f(x),则称该函数为偶函数;若对于任意 x,都有 f(-x) = -f(x),则称该函数为奇函数。

1.1 奇函数的特点奇函数具有以下特点:- 在原点处对称,即图像关于原点对称;- 若 f(x) 是奇函数,那么其图像关于 y 轴的负半轴和正半轴对称。

1.2 偶函数的特点偶函数具有以下特点:- 在 y 轴上的值相等,即图像关于 y 轴对称;- 若 f(x) 是偶函数,那么其图像关于 x 轴对称。

二、函数的周期性周期性是指函数在一定区间内以某个常数为周期重复出现的性质,常用于描述周期性现象。

对于函数 f(x),若存在正数 T,使得对于任意x,都有 f(x+T) = f(x),则称 T 为函数 f(x) 的周期。

2.1 周期函数的特点周期函数具有以下特点:- 在每个周期内,函数的取值和性质相同;- 周期函数的图像在每个周期内重复出现。

三、奇偶函数的周期性奇偶函数的周期性与其奇偶性质有一定的联系,具体如下:3.1 偶函数的周期性若 f(x) 是一个周期为 T 的偶函数,则其满足以下性质:- 在一个周期内,函数的取值和性质相同;- 函数图像在每个周期内关于 y 轴对称。

3.2 奇函数的周期性若 f(x) 是一个周期为 T 的奇函数,则其满足以下性质:- 在一个周期内,函数的取值和性质相同;- 函数图像在每个周期内关于原点对称。

四、函数奇偶性与周期性的应用函数的奇偶性与周期性在数学中有广泛的应用,特别是在函数图像的分析和计算中。

4.1 奇偶性在函数图像中的应用通过判断一个函数的奇偶性,可以有效简化函数图像的分析过程。

高中数学函数的奇偶性与周期性应用题解析

高中数学函数的奇偶性与周期性应用题解析

高中数学函数的奇偶性与周期性应用题解析在高中数学中,函数的奇偶性与周期性是重要的概念,对于解题具有很大的指导作用。

本文将通过具体的题目举例,分析奇偶性与周期性的应用,帮助高中学生更好地理解和运用这些概念。

一、奇偶函数的性质与应用奇函数和偶函数是函数的一种特殊性质,它们在数学中有着重要的应用。

首先,我们来看一个例子:例题1:已知函数$f(x)=x^3-2x$,求证$f(x)$是奇函数。

解析:要证明$f(x)$是奇函数,需要证明对于任意的$x$,有$f(-x)=-f(x)$成立。

我们将$f(-x)$代入并化简,得到$f(-x)=(-x)^3-2(-x)=-x^3+2x$。

然后,我们将$-f(x)$化简,得到$-f(x)=-(x^3-2x)=-x^3+2x$。

可以看出,$f(-x)$和$-f(x)$的结果是相等的,因此$f(x)$是奇函数。

这个例题中,我们通过代入$x$和$-x$,并对函数进行化简,证明了函数$f(x)$是奇函数。

奇函数的一个重要性质是,当自变量$x$取正值和负值时,函数值的符号相反。

在解题中,我们可以利用奇函数的性质进行简化计算,例如可以通过奇偶性关系得到一些特殊点的函数值。

二、周期函数的性质与应用周期函数是指函数在一定区间内满足$f(x+T)=f(x)$的函数,其中$T$为函数的周期。

周期函数在数学中有着广泛的应用。

接下来,我们来看一个例子:例题2:已知函数$f(x)=\sin(2x)$,求证$f(x)$是周期函数,并求出它的最小正周期。

解析:要证明$f(x)$是周期函数,需要证明对于任意的$x$,有$f(x+T)=f(x)$成立。

我们将$f(x+T)$代入并化简,得到$f(x+T)=\sin(2(x+T))=\sin(2x+2T)$。

然后,我们将$f(x)$化简,得到$f(x)=\sin(2x)$。

要使得$f(x+T)=f(x)$成立,必须满足$\sin(2x+2T)=\sin(2x)$。

数学公式知识:函数的周期性与奇偶性的定义与性质分析

数学公式知识:函数的周期性与奇偶性的定义与性质分析

数学公式知识:函数的周期性与奇偶性的定义与性质分析函数的周期性与奇偶性是数学中非常基础的概念之一,在数学中具有重要作用。

在本篇文章中,我们将详细讨论函数的周期性和奇偶性的定义以及它们的性质。

一、周期性1.定义在数学中,周期性是指函数在一定区间内的取值在周期性地重复。

也就是说,如果对于函数f(x)来说,存在常数T>0,使得对于所有的x∈R都有f(x+T)=f(x),那么我们就称f(x)是周期函数,这个常数T就是函数的周期。

2.周期性质周期函数具有许多性质,下面我们来看一下它们的主要特点:(1)周期函数易于求解对于周期函数,只需要求出函数的周期T,就可以轻易求解出函数在整个数轴上的取值。

将周期T拆成若干个区间,在每个区间上求解f(x),然后复制到其他区间上,即可得到f(x)在整个数轴上的取值。

(2)周期函数的积分易于计算如果函数f(x)是可积的,并且它是周期函数,那么我们只需要在一个周期内计算它的积分,然后将积分值重复到整个数轴上即可。

这在具体计算中十分方便。

(3)函数的周期性对于图像的研究有很大作用对于周期函数,我们只需要研究周期内的图像特点即可。

周期性可以帮助我们更好地研究函数的变化趋势,从而更好地理解数学问题。

二、奇偶性1.定义在数学中,如果对于函数f(x)来说,对于所有的x∈R都有f(-x)=-f(x),那么我们就称f(x)是奇函数。

类似地,如果对于函数f(x)来说,对于所有的x∈R都有f(-x)=f(x),那么我们就称f(x)是偶函数。

也就是说,奇函数的图像关于原点(0,0)对称,而偶函数的图像关于y轴对称。

常见的函数有sin(x)是奇函数,cos(x)是偶函数。

2.奇偶性质奇偶性也有许多重要的性质,下面我们来看一下它们的主要特点:(1)一个函数可以是奇偶性一个函数同时具有奇偶性是不可能的,因为如果一个函数既是奇函数又是偶函数,那么对于所有的x∈R都有f(-x)=-f(-x),但是这是不成立的。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性在我们学习数学的旅程中,函数是一个非常重要的概念。

而函数的奇偶性和周期性,就像是函数世界中的两颗璀璨明珠,它们为我们理解和研究函数的性质提供了有力的工具。

首先,让我们来聊聊函数的奇偶性。

简单来说,奇偶性就是函数关于原点或者 y 轴的对称性质。

如果对于函数 f(x)定义域内的任意一个 x,都有 f(x) = f(x),那么这个函数就叫做偶函数。

这意味着偶函数的图像关于y 轴对称。

比如说,我们常见的二次函数 f(x) = x²就是一个偶函数。

当 x 取某个值时,x对应的函数值和 x 对应的函数值是相等的。

想象一下它的图像,就像一个开口向上或者向下的抛物线,非常漂亮地对称于 y 轴。

相反,如果对于函数 f(x)定义域内的任意一个 x,都有 f(x) = f(x),那么这个函数就叫做奇函数。

奇函数的图像关于原点对称。

一个典型的例子是 f(x) = x³。

当 x 取某个值时,x 对应的函数值是 x 对应函数值的相反数。

想象一下这个图像,就像一个旋转了 180 度之后和原来重合的图形,原点就是它的对称中心。

那么,怎么判断一个函数是奇函数还是偶函数呢?这就需要我们通过函数的表达式来进行分析。

一般来说,我们会将 x 代入函数表达式中,然后看得到的结果是与 f(x) 相等还是与 f(x) 相等。

但有时候,函数的表达式可能会比较复杂,这时候就需要我们灵活运用一些数学方法和技巧来进行判断。

接下来,我们再说说函数的周期性。

周期性可以理解为函数在一定的区间内重复出现的性质。

如果存在一个非零常数 T,使得对于函数 f(x)定义域内的任意 x,都有 f(x + T) = f(x),那么函数 f(x)就叫做周期函数,T 叫做这个函数的周期。

比如说,正弦函数 f(x) = sin x 就是一个周期函数,它的周期是2π。

这意味着,每隔2π 的距离,函数的图像就会重复出现一次。

周期函数在我们的生活和科学研究中有着广泛的应用。

函数的奇偶性与周期性知识点总结

函数的奇偶性与周期性知识点总结

函数的奇偶性与周期性知识点总结函数是数学中一个重要的概念,它描述了两个变量之间的关系。

在学习函数的过程中,我们会遇到一些特殊的函数类型,包括奇函数、偶函数和周期函数。

本文将对这些函数类型的特点进行总结,并介绍函数的奇偶性和周期性的相关知识点。

一、奇函数和偶函数1. 奇函数:奇函数是指满足以下性质的函数:对于任意实数x,若f(-x) = -f(x),则函数f(x)为奇函数。

奇函数以原点对称,图像在坐标系的左右两侧关于原点对称。

例如,f(x) = x^3 和 f(x) = sin(x) 都是奇函数。

2. 偶函数:偶函数是指满足以下性质的函数:对于任意实数x,若f(-x) = f(x),则函数f(x)为偶函数。

偶函数以y轴对称,图像在坐标系的左右两侧关于y轴对称。

例如,f(x) = x^2 和 f(x) = cos(x) 都是偶函数。

二、奇偶性的性质1. 奇函数的性质:(1)奇函数的图像关于原点对称,即若点(x, y)在图像上,则点(-x, -y)也在图像上。

(2)奇函数的定义域可以是全体实数,也可以是一部分实数。

(3)奇函数的一个性质是:奇函数与偶函数的乘积仍为奇函数。

2. 偶函数的性质:(1)偶函数的图像关于y轴对称,即若点(x, y)在图像上,则点(-x, y)也在图像上。

(2)偶函数的定义域可以是全体实数,也可以是一部分实数。

(3)偶函数的一个性质是:奇函数与偶函数的乘积仍为偶函数。

三、周期函数周期函数是指在一定范围内,函数值呈现重复的规律性变化。

具体来说,对于函数f(x),存在一个正数T,使得对于任意实数x,有f(x+T) = f(x)。

T称为函数的周期,一个周期内的函数值是相同的。

例如,f(x) = sin(x) 和 f(x) = cos(x) 都是周期函数。

周期函数的性质:1. 周期函数的图像以某个区间为一个完整的重复单位。

2. 周期函数的定义域可以是全体实数,也可以是一部分实数。

3. 周期函数的一个重要性质是:周期函数与周期函数的乘积仍为周期函数。

第06讲-函数的奇偶性与周期性(解析版)

第06讲-函数的奇偶性与周期性(解析版)

第06讲-函数的奇偶性与周期性一、考情分析1.结合具体函数,了解奇偶性的概念和几何意义;2.结合三角函数,了解周期性的概念和几何意义.二、知识梳理1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[微点提醒]1.(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.3.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).4.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称.三、 经典例题考点一 判断函数的奇偶性【例1-1】(1)f (x )=3-x 2+x 2-3; (2)f (x )=lg (1-x 2)|x -2|-2;(3)f (x )=⎩⎨⎧x 2+x ,x <0,-x 2+x ,x >0.【解析】 (1)由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎨⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=lg(1-x 2)-x .又∵f (-x )=lg[1-(-x )2]x =-lg(1-x 2)-x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数.【例1-2】(2020·枣庄市第三中学高二月考)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ) A .()()⋅f x g x 是偶函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是奇函数 D .()()f x g x ⋅是奇函数【答案】C 【分析】根据函数奇偶性的性质即可得到结论. 【详解】 解:()f x 是奇函数,()g x 是偶函数,()()f x f x ∴-=-,()()g x g x -=,()()()()f x g x f x g x --=-,故函数是奇函数,故A 错误, |()|()|()|()f x g x f x g x --=为偶函数,故B 错误, ()|()|()|()|f x g x f x g x --=-是奇函数,故C 正确. |()()||()()|f x g x f x g x --=为偶函数,故D 错误,故选:C .规律方法 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 考点二 函数的周期性及其应用【例2-1】 (1)(2020·南充一模)设f (x )是周期为4的奇函数,当0≤x ≤1时,f (x )=x (1+x ),则f ⎝ ⎛⎭⎪⎫-92=( ) A.-34B.-14C.14D.34(2)(2019·山东期末)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x[-3,0]时,f (x )=6-x ,则f (919)=________. 【解析】(1)∵f (x )是周期为4的奇函数, ∴f ⎝ ⎛⎭⎪⎫-92=-f ⎝ ⎛⎭⎪⎫92=-f ⎝ ⎛⎭⎪⎫12 又0≤x ≤1时,f (x )=x (1+x ) 故f ⎝ ⎛⎭⎪⎫-92=-f ⎝ ⎛⎭⎪⎫12=-12⎝ ⎛⎭⎪⎫1+12=-34.(2)∵f (x +4)=f (x -2),∴f [(x +2)+4]=f [(x +2)-2],即f (x +6)=f (x ), ∴f (919)=f (153×6+1)=f (1), 又f (x )在R 上是偶函数,∴f (1)=f (-1)=6-(-1)=6,即f (919)=6.规律方法 1.根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间.2.若f (x +a )=-f (x )(a 是常数,且a ≠0),则2a 为函数f (x )的一个周期.第(1)题法二是利用周期性构造一个特殊函数,优化了解题过程. 考点三 函数性质的综合运用【例3-1】(2020·四川省泸县第四中学高三三模(理))定义运算a b ad bc c d=-,则函数()1sin 21xf x x=的大致图象是( )A .B .C .D .【答案】A 【分析】图象题应用排除法比较简单,先根据函数()f x 为奇函数排除B 、D ;再根据函数的单调性排除选项C ,即可得到答案. 【详解】根据题意得,1()sin 2f x x x =-且函数()f x 为奇函数,排除B 、D ; (0)0f =;当0πx <<时,1()cos 2f x x '=-, 令()03f x x ππ'>⇒<<,令()003f x x π'<⇒<<,∴函数()f x 在(0,)π上是先递减再递增的,排除选项C ;故选:A .【例3-2】(2020·湖北省武汉二中高二期中)已知函数()y f x =是定义在R 上的奇函数,且在(,0]-∞单调递增.设0a >,当m n a +=时,恒有()()()f m f a f n +>,则m 的取值范围是( )A .(,0)a -B .(0,)+∞C .(,)a -+∞D .(,0)-∞【答案】B 【分析】结合奇函数的性质(0)0f =,函数为增函数,对m 分类讨论,即可求解. 【详解】因为函数()y f x =是定义在R 上的奇函数,且在(,0]-∞单调递增, 所以(0)0f =,()y f x =在R 上为增函数,由题意得,0m ≠,否则()()()f m f a f n +>不成立, 当0m >时,n a m a =-<,()()f n f a ∴<,且()0f m >, ()()()f n f a f m ∴<+,即0m >时,()()()f m f a f n +>恒成立, 当0m <时,n a m a =->,()()f n f a ∴>,且()0f m <,()()()f n f a f m ∴>+,故当0m <时,()()()f m f a f n +>不成立. 综上所述,(0,)m ∈+∞【例3-3】(2020·湖南省雅礼中学高三月考(理))定义在实数集R 上的偶函数()f x 满足(2)2f x +=(2021)f =____________.【答案】2+【分析】(2)2f x +=⇒22(2)4(2)()4()4f x f x f x f x ⎡⎤+-+=---⎣⎦,令2()()4()g x f x f x =-,则(2)()4g x g x +=--,进一步可得函数()g x 的周期为4,(2021)(45051)(1)2g g g =⨯+==-⇒2(2021)4(2021)2f f -=-,解方程即可.【详解】因为(2)2f x +=所以(2)2f x +-= 即22((2)2)4()()f x f x f x +-=-,即22(2)4(2)()4()4f x f x f x f x ⎡⎤+-+=---⎣⎦,令2()()4()g x f x f x =-,则(2)()4g x g x +=--, 所以(4)(2)4()g x g x g x +=-+-= 故函数()g x 的周期为4,所以(2021)(45051)(1)g g g =⨯+=,又因为()f x 是偶函数,则2()()4()g x f x f x =-为偶函数,又因为(1)(1)4g g =---,所以(1)2g =-,即2(2021)4(2021)2f f -=-,解得(2021)2f =±又(2)22f x +=≥,即(2021)2f ≥,即(2021)2f =+故答案为:2+规律方法 1.函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.2.本题充分利用偶函数的性质f (x )=f (|x |),避免了不必要的讨论,简化了解题过程.规律方法 周期性与奇偶性结合的问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[方法技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题:(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [易错防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.2.函数f (x )满足的关系f (a +x )=f (b -x )表明的是函数图象的对称性,函数f (x )满足的关系f (a +x )=f (b +x )(a ≠b )表明的是函数的周期性,在使用这两个关系时不要混淆.四、 课时作业1.函数2()f x x =+ ) A .是奇函数 B .是偶函数 C .是非奇非偶函数 D .既是奇函数又是偶函数 【答案】C函数的定义域为[0,+∞),不关于原点对称,所以函数f (x )是非奇非偶函数. 2.关于函数()sin f x x x =+,下列说法错误的是( ) A .()f x 是奇函数 B .()f x 是周期函数 C .()f x 有零点 D .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 【答案】B【解析】对于A ,函数()sin f x x x =+定义域为R ,且()()sin f x x x f x -=--=-, 则()f x 为奇函数,故A 正确;对于B ,若()f x 是周期函数,设其最小正周期为()0T T ≠,则f x Tf x ,即()sin sin x T x T x x +++=+,变形得,()sin sin T x T x ++=,对任意x ∈R 恒成立,令0x =,可得,sin 0T T +=,设()sin g x x x =+,而()1cos 0g x x '=+≥,()00g =,所以()sin 0g x x x =+=只有唯一的解0x =,故由sin 00T T T +=⇒=,由此可知它不是周期函数,故B 错误;对于C ,因为()00sin00f =+=,()f x 在,22ππ⎛⎫- ⎪⎝⎭上有零点,故C 正确;对于D ,由于()'1cos 0f x x =+≥,故()f x 在(),-∞+∞上单调递增,故D 正确. 3.下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( ) A .22y x =-+ B .2x y -= C .ln y x =D .1y x=【答案】D【解析】由基本函数的性质得:22y x =-+为偶函数,2xy -=为非奇非偶函数,ln y x =为非奇非偶函数,1y x=为奇函数,且在区间()0,∞+上单调递减. 4.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(2)2f =-,则满足2(2)2f x -≤-≤的x 的取值范围是( )A .[]22-,B .[]1,3C .[]1,1-D .[]0,4【解析】函数()f x 在(,)-∞+∞为奇函数.若(2)2f =-,满足2(2)2f x -≤-≤ 则:(2)(2)(2)f f x f ≤-≤- 函数()f x 在(,)-∞+∞单调递减 即:22204x x -≤-≤⇒≤≤5.已知函数()f x 为奇函数,且当0x >时, ()21f x x x=+,则()1f -= ( ) A .-2 B .0C .1D .2【答案】A【解析】因为()f x 是奇函数,所以(1)(1)(11)2f f -=-=-+=-,故选A.6.已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-2【答案】C【解析】由()()53f x f x +=-,得()()8f x f x +=,所以()f x 是周期为8的周期函数,当[)0,4x ∈时,()()2log 2f x x =+,所以()()()76696822f f f =⨯-=-,又()f x 是定义在R 上的偶函数所以()()222log 42f f -===.7.已知定义在R 上的函数()f x 满足:1(1)()f x f x +=,当(0,1]x ∈时,有()2-=xf x ,则()2log 9f 等于( ) A .1625B .98C .89D .2516【答案】B【解析】由()11(1)(2)2()(1)f x f x f x T f x f x +=⇒+==⇒=+, 则()()2229log 9log 94log 16f f f ⎛⎫=-= ⎪⎝⎭,()29log 1,016∈-,则()291log 0,116+∈,则2291(1log )916(log )16f f +=,即22289log 1log 91629111(log )9816(1l 29og )216f f ⎛⎫-+ ⎪⎝⎭====+; 故选:B8.已知函数()f x 的定义域为R 的奇函数,当[]0,1x ∈时, ()3f x x =,且x R ∀∈, ()()2f x f x =-,则()2017.5f = A .18- B .18C .0D .1【答案】B【解析】因为()()2f x f x =-,所以函数图像关于1x = 对称 因为()f x 的定义域为R 的奇函数,所以函数的周期为T=4 所以()()()2017.55044 1.5 1.5f f f =⨯+= 因为函数图像关于1x = 对称所以()()1.50.5f f ==18所以选B9.(多选)已知函数()2211x f x x-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数 B .()1f f x x ⎛⎫=-⎪⎝⎭C .()f x 在[]2,3上的最大值为35D .()()g x f x x =+在区间()1,0-上至少有一个零点 【答案】ABCD【解析】因为()2211x f x x-=+,所以其的定义域为R , A 选项,()22221()1()1()1----===+-+x x f x f x x x,所以函数()f x 为偶函数,故A 正确;B 选项,22221111()111⎛⎫- ⎪-⎛⎫⎝⎭===- ⎪+⎝⎭⎛⎫+ ⎪⎝⎭x x f f x x x x ,故B 正确; C 选项,因为()22212111-==-+++x f x x x,当[]2,3x ∈,21y x =+单调递增,所以()2211=-++f x x 单调递减,因此()()max 2321145==-+=-+f x f ,故C 正确; D 选项,因为()()g x f x x =+,所以()()1111-=--=-gf ,()()0001=+=g f , 即()1(0)0-⋅<g g ,由零点存在性定理可得:()()g x f x x =+在区间()1,0-上存在零点,故D 正确; 10.(多选)已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有()()()42f x f x f +=+成立,当[)0,2x ∈时,()21x f x =-,给出下列结论,其中正确的是( )A .()20f =B .点()4,0是函数()y f x =的图象的一个对称中心C .函数()y f x =在[]6,2--上单调递增D .函数()y f x =在[]6,6-上有3个零点【答案】AB【解析】在()()()42f x f x f +=+中,令2x =-,得()20f -=,又函数()y f x =是R 上的奇 函数,所以()0(2)2f f =-=-,()()4f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以()4,0也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[]6,2--上不具单调性,故C 不正确;函数()y f x =在[]6,6-上有7个零点,故D 不正确.11.(多选)已知函数()y f x =是定义在R 上的奇函数,对x R ∀∈都有(1)(1)f x f x -=+成立,当(0,1]x ∈且12x x ≠时,有2121()()0f x f x x x -<-.则下列说法正确的是( ) A .(1)0f =B .()f x 在[]22-,上有5个零点C .()20140=fD .直线1x =是函数()y f x =图象的一条对称【答案】ABC【解析】对x R ∀∈都有(1)(1)f x f x -=+成立,则()y f x =是以2为周期的周期函数. 当(0,1]x ∈且12x x ≠时,有2121()()0f x f x x x -<-,则()y f x =在(0,1]上单调递减. 由函数()f x 是定义在R 上的奇函数有(1)(1)=--f f ………①,又()f x 是以2为周期的周期函数,有(1)(1+2)(1)f f f -=-=…………②,所以①②可得(1)0f =,所以A 正确.由(1)0f =,则(1)0f -=,()f x 为奇函数,则(0)0f =,又()f x 是以2为周期的周期函数,则(2)(2)0f f -==.又()y f x =在(0,1]上单调递减且(1)0f =,则(0,1)x ∈时()0f x >.由()f x 为奇函数,所以则1()0x ∈-,时()0f x <. 根据()f x 是以2为周期的周期函数 ,则(2,1)x ∈--时()0f x >,(1,2)x ∈时()0f x <所以()f x 在[]22-,上有(2)(2)(0)(1)(1)0f f f f f -===-==,有5个零点,故B 正确由()f x 是以2为周期的周期函数有()()201400f f ==,故C 正确.由上可知,当(0,1)x ∈时()0f x >,(1,2)x ∈时()0f x <,则其图象不可能关于1x =对称,故D 不正确. 12.(多选)已知()f x 是定义在R 上的奇函数,且(1)f x +为偶函数,若(1)2f =,则( )A .(3)2f =-B .(2)() f x f x +=C .(5)2f =-D .(4)() f x f x +=【答案】AD【解析】因为()f x 是定义在R 上的奇函数,且(1)f x +为偶函数,故可得()()()(),11f x f x f x f x =--+=-+,则()()()()()422f x f x f x f x f x +=--=-+=--=,故D 选项正确;由上述推导可知()()()22f x f x f x =-+≠+,故B 错误;又因为()()()3112f f f =-=-=-,故A 选项正确.又因为()()5122f f ==≠-,故C 错误.故选:AD. 13.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(1)(1)f g +=___________.【答案】1【解析】∵32()()1f x g x x x -=++,∴(1)(1)1111f g ---=-++=,又∵()f x ,()g x 分别是定义在R上的偶函数和奇函数,∴(1)(1)f f =-,(1)(1)g g =--,∴(1)(1)(1)(1)f g f g ---=+,∴(1)(1)1f g +=.14.若函数()ln(f x x x =为偶函数,则a = .【答案】1【解析】由函数()ln(f x x x =为偶函数⇒函数()ln(g x x =为奇函数,(0)ln 01g a a ==⇒=.15.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1x f x e =-,则()2019f f =⎡⎤⎣⎦__________.【答案】31e e --【解析】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.16.定义在R 上的函数()f x 对任意x ∈R ,都有()()()121f x f x f x -+=+,()124f =,则()2020f =______. 【答案】35【解析】因为()()()121f x f x f x -+=+, 所以()()()()()()()()11121411211f x f x f x f x f x f x f x f x ---+++===-++++, 所以()f x 是周期为4的周期函数,故()()20204f f =,由已知可得()()()1234125f f f -==+, 所以()320205f =. 17.已知()f x 是定义域为R 的奇函数,满足()()11f x f x -=+.(1)证明:()()4f x f x +=;(2)若()12f =,求式子()()()()12350f f f f +++⋯+的值.【解析】(1)证明:根据题意,f x ()是定义域为R 的奇函数,则f x f x (-)=-(),又由f x ()满足11f x f x +()=(-),则2f x f x -+()=(),则有(2)f x f x +=-(),变形可得:4f x f x +()=(),即可得证明;(2)由(1)的结论,4f x f x +()=(),又由f x ()是定义域为R 的奇函数,则00f ()=, 则200312400f f f f f f ()=-()=,()=-()=-,()=()=, 则123420200f f f f ++++++()()()()=(-)=, 则有12350f f f f +++⋯+()()()() 1234124950122[]f f f f f f f f +++⨯+++=()()()()()()=()()=. 18.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明;(3)求不等式()1f x >的解集.【解析】(1)要使函数()f x 有意义.则20{20x x +>->, 解得22x -<<.故所求函数()f x 的定义域为()2,2-.(2)由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-. 且()()()()lg 2lg 2f x x x f x -=-+-+=-, 故()f x 为奇函数. (3)因为()f x 在定义域()2,2-内是增函数, 因为()1f x >,所以2102x x +>-,解得1811x >. 所以不等式()1f x >的解集是18,211⎛⎫ ⎪⎝⎭. 19.已知定义域为R 的函数2()2xx b f x a-=+是奇函数. (1)求a b ,的值;(2)用定义证明:()f x 在(),-∞∞上为减函数.【解析】()f x 为R 上的奇函数,()0(0)f f ∴-=-,1(0)01b f a-∴==+ 解得:1b =.又()()11f f -=-,11122122a a --∴=-++ 解得1a =.经检验1a =,1b =符合题意.()2证明:任取1x ,2x R ∈,且,则()()12121212122121x x x x f x f x ---=-++ ()()()()()()122112122112212121x x x x x x -+--+=++()()()21122222121x x x x -=++. 12x x <,21220x x ∴->,又()()1221210x x ++> ()()120f x f x ∴->,()f x ∴在(),-∞+∞上为减函数.20.已知函数24()(0,1)2x x a a f x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220x mf x +->恒成立,求实数m 的取值范围. 【解析】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=- 即:242422x x x x a a a a a a a a---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+, 211121x ∴-<-<+ ∴函数()f x 的值域为()1,1-.(3)由()220xmf x +-> 可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+.当[]1,2x ∈时,(21)(22)21x x x m +->- 令(2113)xt t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t=-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=, 103m ∴>, 故实数m 的取值范围为(10,3)+∞。

函数的奇偶性与周期性含解析

函数的奇偶性与周期性含解析

=________.2.(2016·南京模拟)设f (x )是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f (2 014)+f (2 015)=________.3.(2016·镇江模拟)函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为________________.4.(2016·扬州模拟)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=____________.5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________. 6.(2016·苏北四市一模)已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=log 2(2-x ),那么f (0)+f (2)的值为________.7.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f (ln t )+f (ln 1t)≤2f (1),那么t 的取值范围是________. 8.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.9.(2016·南京、盐城一模)已知f (x )是定义在[-2,2]上的奇函数,且当x ∈(0,2]时,f (x )=2x -1,又已知函数g (x )=x 2-2x +m .如果对于任意的x 1∈[-2,2],都存在x 2∈[-2,2],使得g (x 2)=f (x 1),那么实数m 的取值范围是____________.10.(2016·南京、淮安、盐城二模)已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1).若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为________.11.(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.12.已知定义在R 上的函数f (x )满足f (1)=1,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2 015)=________.13.若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则实数a 的值为________. 14.(2017·山东乳山一中月考)定义在(-∞,+∞)上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,下面是关于f (x )的判断:①f (x )的图象关于点P ⎝⎛⎭⎫12,0对称;②f (x )的图象关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (2)=f (0).其中正确的是________.(把你认为正确的序号都填上)答案精析1.0 2.3 3.(-1,0)∪(1,3) 4.12(e x -e -x ) 5.-1解析 因为f (-x )=-f (x ),所以f (x )是奇函数.当x ∈(0,1)时,-x ∈(-1,0),则f (x )=-f (-x )=-2-x -15. 因为f (x -2)=f (x +2),所以f (x )=f (x +4),所以f (x )是周期为4的周期函数.而4<log 220<5,所以f (log 220)=f (log 220-4)=-2-(log 220-4)-15=-242log 220-15=-1. 6.-2解析 因为函数f (x )是定义在R 上的奇函数,所以f (0)=0,且f (2)=-f (-2)=-log 24=-2,所以f (0)+f (2)=-2.7.[1e,e] 解析 f (ln t )+f (ln 1t )=f (ln t )+f (-ln t )=2f (ln t )=2f (|ln t |),因为f (ln t )+f (ln 1t)≤2f (1),所以f (|ln t |)≤f (1),所以|ln t |≤1,所以-1≤ln t ≤1,所以1e≤t ≤e. 8.-10解析 由题意知f (12)=b +43,f (32)=f (-12)=-12a +1,从而b +43=-12a +1,化简得3a +2b =-2.又f (-1)=f (1),所以-a +1=b +22, 所以⎩⎪⎨⎪⎧ b =-2a ,3a +2b =-2,解得⎩⎪⎨⎪⎧a =2,b =-4.所以a +3b =-10.9.[-5,-2]解析 由题意知,当x ∈[-2,2]时,f (x )的值域为[-3,3].因为对任意的x 1∈[-2,2],都存在x 2∈[-2,2],使得g (x 2)=f (x 1),所以此时g (x 2)的值域要包含[-3,3].又因为g (x )max =g (-2),g (x )min =g (1),所以g (1)≤-3且g (-2)≥3,解得-5≤m ≤-2.10.22-2解析 当1<x ≤2时,令x =t +1,则f (x )=f (t +1)=f (t )+f (1)=t 2+1=(x -1)2+1,由题意作出函数在[-2,2]上的图象,根据奇函数图象的对称性,若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,当且仅当直线y =kx 与区间(1,2]上的一段函数y =(x -1)2+1相切,联立方程⎩⎪⎨⎪⎧y =kx ,y =(x -1)2+1, 解得x 2-(k +2)x +2=0,令Δ=(k +2)2-8=0,解得k =±22-2,舍去负值,得k =22-2.11.1解析 f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,所以a =1.12.1解析 由f (x +2)=1f (x ), 得f (-1+2)=1f (-1), 即f (1)f (-1)=1,而f (1)=1,故f (-1)=1,又因为f (x +4)=1f (x +2)=f (x ), 所以f (2 015)=f (504×4-1)=f (-1)=1.13.-2解析 因为f (x )是奇函数,所以f (0)=0,当x >0时,-x <0,由f (-x )=-f (x ),得-(-x )2+a (-x )=-(x 2-2x ),则a =-2;当x <0时,-x >0,由f (-x )=-f (x ),得(-x )2-2(-x )=-(-x 2+ax ),得x 2+2x =x 2-ax ,则a =-2.所以a =-2.14.①②④解析 根据题意有f ⎝⎛⎭⎫x +12 =-f ⎝⎛⎭⎫x -12,结合偶函数的条件,可知f ⎝⎛⎭⎫12+x =-f ⎝⎛⎭⎫12-x ,所以函数图象关于点⎝⎛⎭⎫12,0对称,故①正确;式子还可以变形为f (x +2)=f (x )=f (-x ),故②正确;根据对称性,可知函数在[0,1]上是减函数,故③错;由②可知f (2)=f (0),故④正确.故答案为①②④.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题7 函数的奇偶性和周期性专题知识梳理1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=__0__.(4)若函数f(x)是偶函数,则有__f(|x|)=f(x)__.(5)奇函数在对称区间上的单调性__相同__,偶函数在对称区间上的单调性__相反__.3.周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.注1:函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.注2:函数周期性常用结论对f(x)定义域内任一自变量的值x,(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).考点探究考向1 判断函数的奇偶性【例】判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x2|x +3|-3; (4)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0)-x 2+x (x >0); (5)f (x )=x 2-|x -a |+2. 【解析】 (1)由⎩⎪⎨⎪⎧9-x 2≥0,x 2-9≥0,得x =±3.所以f (x )的定义域为{-3,3},此时f (x )=0.又f (3)+f (-3)=0,f (3)-f (-3)=0.即f (x )=±f (-x ).所以f (x )既是奇函数,又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 1+x ≥0,1+x ≠0,得-1<x ≤1.因为f (x )的定义域(-1,1]不关于原点对称.所以f (x )既不是奇函数,也不是偶函数.(3)由⎩⎨⎧4-x 2≥0,||x +3-3≠0,得-2≤x ≤2且x ≠0.所以f (x )的定义域为[2,0)(0,2]-,关于原点对称.此时,有f (x )=4-x 2()x +3-3=4-x2x ,所以f (x )=-f (-x ),所以f (x )是奇函数.(4)函数定义域为(-∞,0)∪(0,+∞).当x <0时,-x >0,则f (-x )=-(-x )2-x =-(x 2+x )=-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ).∴对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x ).故f (x )为奇函数.(5)函数f (x )的定义域为R .当a =0时,f (x )=f (-x ),∴f (x )是偶函数;当a ≠0时,f (a )=a 2+2,f (-a )=a 2-2|a |+2.f (a )≠f (-a ),且f (a )+f (-a )=2(a 2-|a |+2)=2(|a |-12)2+72≠0,∴f (x )是非奇非偶函数.综上,当a =0时,f (x )为偶函数;当a ≠0时,f (x )为非奇非偶函数. 题组训练1.下列函数中为偶函数的是________.①y =1x②y =lg|x | ③y =(x -1)2 ④y =2x【解析】 ①中的函数是奇函数;②中,函数y =lg |x|的定义域为{x|x≠0}且lg |-x|=lg |x|,∴函数y =lg |x |是偶函数; ③和④中的两个函数都是非奇非偶函数.故填写②.2.下面的定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是________. 【解析】根据奇函数和偶函数的定义,易得y =x 3,y =2sin x 为奇函数,y =2x 为非奇非偶函数,y =x 2+1为偶函数,故奇函数的个数是2.3.(易错题)试判断函数()f x=的奇偶性.1||10x x x+>++>对一切实数x恒成立,∴函数()f x的定义域为R关于原点对称.又()f x===,∴()()f x f x-====-,即()f x是奇函数.考向2 函数奇偶性与单调性的综合应用【例1】(1)若函数为偶函数,则______.(2)已知偶函数在∞单调递减,,若,则x的取值范围是______.【解析】(1)为偶函数,,,,,,,.故答案为1.(2)偶函数在∞单调递减,,不等式等价为,即,,解得,故答案为:.【例2】(1) 设函数f(x)=a·2x+a-22x+1(x∈R)为奇函数,求实数a的值;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.【解析】(1) 要使f(x)为奇函数,∵ x∈R,∴需f(x)+f(-x)=0.∵ f(x)=a -22x +1,∴ f(-x)=a -22-x +1=a -2x +12x +1.由⎝ ⎛⎭⎪⎫a -22x +1+⎝ ⎛⎭⎪⎫a -2x +12x +1=0,得2a -2(2x+1)2x+1=0,∴ a =1. (2) 由f(x)的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a<5. 由f(a -2)-f(4-a 2)<0,得f(a -2)<f(4-a 2). ∵ 函数f(x)是偶函数,∴ f(|a -2|)<f(|4-a 2|).由于f(x)在(0,1)上是增函数,∴ |a -2|<|4-a 2|,解得a<-3或a>-1且a≠2. 综上,实数a 的取值范围是3<a<5且a≠2. 题组训练1.设函数 为偶函数,则 ______ . 【解析】因为函数 , 要函数 为偶函数,有所以 对 成立, 因此 ,解得. 故答案为.2.已知 是奇函数,且 ,若 ,则 ______. 【解析】由题意, 是奇函数,且 , 所以 解得 所以 故答案为: .3.已知 是定义在R 上的偶函数,且在区间 ∞ 上单调递增,若实数a 满足 ,则a 的取值范围是______.【解析】 是定义在R 上的偶函数,且在区间 ∞ 上单调递增, 在区间 ∞ 上单调递减,则 ,等价为 , 即 , 则,即, 故答案为:4.若函数为奇函数,则的值为______.【解析】为奇函数,设,则,时,,,,,,,故答案为:1.5.设为奇函数,a为常数.求a的值;判断并证明函数在∞时的单调性;若对于区间上的每一个x值,不等式恒成立,求实数m取值范围.【解析】由条件得:,,化简得,因此,,当时,,不符合题意,因此经检验,时,是奇函数.判断函数在∞上为单调减函数;证明如下:设∞,,∞,,,,, 又,,,,又 ,,即 , 函数 在 ∞ 上为单调减函数;不等式为 恒成立, 在 上单调递减, 在 上单调递增, 在 上单调递减, 当 时取得最小值为 , .考向3 函数的奇偶性与周期性的综合应用【例1】定义在R 上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x +1.求f(x)在[-2,2]上的解析式.【解析】当-2<x <0时,0<-x <2,f(-x)=3-x 9-x +1=3x9x +1,又f(x)为奇函数,∴ f(x)=-f(-x)=-3x1+9x .当x =0时,由f(-0)=-f(0)⇒f(0)=0,∵ f(x)有最小正周期4,∴ f(-2)=f(-2+4)=f(2)⇒f(-2)=f(2)=0.综上,f(x)=⎩⎪⎨⎪⎧3x9x+1,0<x <2,0,x ∈{-2,0,2},-3x 9x+1,-2<x <0.【例2】(2019·江苏卷)设 , 是定义在R 上的两个周期函数, 的周期为4, 的周期为2,且 是奇函数 当 时, ,其中 若在区间 上,关于x 的方程 有8个不同的实数根,则k 的取值范围是______. 【解析】作出函数 与 的图象如图,由图可知,函数与仅有2个实数根;要使关于x的方程有8个不同的实数根,则,与,的图象有2个不同交点,由到直线的距离为1,得,解得,两点,连线的斜率,.即k的取值范围为故答案为:题组训练1.若是周期为2的奇函数,当时,,则______.【解析】是周期为2的奇函数,可得,,则,由当时,,可得,则.故答案为:.2.奇函数的周期为4,且,,则的值为________.【解析】函数 是奇函数,则 , 由 , 知 , , 又 的周期为4,所以 . 故答案为 .3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.【解析】∵f (x )为奇函数并且f (x -4)=-f (x ).∴f (x -4)=-f (4-x )=-f (x ),即f (4-x )=f (x ),且f (x -8)=-f (x -4)=f (x ),即y =f (x )的图象关于x =2对称,并且是周期为8的周期函数.∵f (x )在[0,2]上是增函数,∴f (x )在[-2,2]上是增函数, 在[2,6]上为减函数,据此可画出y =f (x )的图象,其图象也关于x =-6对称,∴x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-8.4.(拔高题)设函数f (x )的定义域关于原点对称,且满足:① f (x 1-x 2)=1221()()1()()f x f x f x f x +- (x 1≠x 2);② 存在正常数a ,使得f (a )=1.求证:(1) f (x )是奇函数; (2) f (x )是周期为4a 的周期函数. 【解析】(1)令x =x 1-x 2,则f (-x )=f (x 2-x 1)=2112()()1()()f x f x f x f x +=-2121()()1()()f x f x f x f x +=-=-f (x 1-x 2)=-f (x ),∴f (x )为奇函数.(2) ∵f (x +a )=f [x -(-a )]=()()1()()f x f a f a f x -+=--()11()f x f x -+=--1-2()1f x +,∴f (x +2a )=1-2()1f x a =++1-2211()1f x =-++1-()1()f x f x +==-1()f x ,∴f(x+4a)=-1()(2)f xf x a=+.∴f(x)是周期为4a的周期函数.。

相关文档
最新文档