高三数学(理科)一轮复习§14.2 坐标系与参数方程(作业)

合集下载

2019届高三数学一轮复习目录(理科)

2019届高三数学一轮复习目录(理科)

2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧x =ρcos θy =ρsin θ,或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ<π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ (0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2 过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)考点一 极坐标与直角坐标的互化[例1] (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6化成直角坐标;(2)把点M 的直角坐标(-3,-1)化成极坐标. 解:(1)∵x =-5cos π6=-52 3,y =-5sin π6=-52,∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-52 3,-52.(2)ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33. ∵点M 在第三象限,ρ>0,∴最小正角θ=7π6. 因此,点M 的极坐标是⎝ ⎛⎭⎪⎫2,7π6[方法引航] (1)在由点的直角坐标化为极坐标时,肯定要留意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,肯定要留意变量的范围.要留意转化的等价性.1.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,43π C.⎝ ⎛⎭⎪⎫2,-π3 D.⎝ ⎛⎭⎪⎫2,-43π 解析:选C.由于点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3. 2.若点P 的极坐标为⎝ ⎛⎭⎪⎫2,π3,则P 到x 轴的距离为________.解析:y =ρsin θ=2×sin π3= 3. 3考点二 直角坐标方程与极坐标方程的互化及应用[例2] 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.解:(1)∵ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1.∴12x +32y =1.即曲线C 的直角坐标方程为x +3y -2=0.令y =0,则x =2;令x =0,则y =233. ∴M (2,0),N ⎝⎛⎭⎪⎫0,233. ∴M 的极坐标为(2,0),N 的极坐标为⎝ ⎛⎭⎪⎫233,π2.(2)∵M ,N 连线的中点P 的直角坐标为⎝ ⎛⎭⎪⎫1,33,∴P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ).[例3] 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1. (1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解:(1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,OA =OD cos ⎝ ⎛⎭⎪⎫π4-θ或OA =OD cos ⎝ ⎛⎭⎪⎫θ-π4,所以圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4.(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0,又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫22,22满足直线l 的方程,∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.[方法引航] 直角坐标方程与极坐标方程的互化,关键要把握好互化公式,争辩极坐标系下图形的性质,可转化为我们生疏的直角坐标系的情境.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)由于x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.[高考真题体验]1.(2022·高考全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x =t cos αy =t sin α,(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153.2.(2021·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t ,消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x-10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.3.(2021·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32= t 2+12,故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).课时规范训练1.已知圆O 1和圆O 2的极坐标方程为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4,由于ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.2.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y 24=1.(2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,求实数a 的值.解:由ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y -2)2=4, 由直线ρsin θ=a ,得直线的直角坐标方程为y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝ ⎛⎭⎪⎫33a ,a .又∵B 在x 2+y 2-4y =0上, ∴⎝ ⎛⎭⎪⎫33a 2+a 2-4a =0, 解得a =3(a =0舍).4.从极点O 作直线与另始终线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12. (1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,求|RP |的最小值.解:(1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12. ∵ρ0cos θ=4,∴ρ=3cos θ,即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x ,即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭⎪⎫322,知P 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形(图略)易得|RP |的最小值为1.第2课时 参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到一般方程.(2)假如知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入一般方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t )y =g (t ),就是曲线的参数方程.2.常见曲线的参数方程和一般方程点的轨迹 一般方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧ x =x 0+t cos αy =y 0+t sin α,(t 为参数) 圆x 2+y 2=r 2 ⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数) 双曲线 x 2a -y 2b 2=1,(a >0,b >0)⎩⎨⎧x =a sec φy =b tan φ,(φ为参数) 抛物线 y 2=2px (p >0)⎩⎨⎧x =2pt 2,y =2pt(t 为参数)考点一 参数方程与一般方程的互化及应用命题点1.求参数方程2.消参数化为一般方程[例1] (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:(1)圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)求直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos αy =3sin α,(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α,消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[方法引航] 1.由一般方程求参数方程,要依据参数的意义建立关系.2.由参数方程得到一般方程的思路是消参,消去参数的方法要视状况而定,一般有三种状况:(1)利用解方程的技巧求出参数的表达式,然后代入消去参数,或直接利用加减消元法消参; (2)利用三角恒等式消去参数,一般是将参数方程中的两个方程分别变形,使得一个方程一边只含有sin θ,另一个方程一边只含有cos θ,两个方程分别平方后两式左右相加消去参数; (3)依据参数方程本身的结构特征,选用一些机敏的方法从整体上消去参数.,将参数方程化为一般方程时,要留意防止变量x 和y 取值范围的扩大或缩小,必需依据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.1.若将本例(1)改为:圆上的任一点P 与圆心的连线的旋转角为参数θ,求圆的参数方程.解:圆心为⎝ ⎛⎭⎪⎫12,0,r =12.设P (x ,y ),则x =12+12cos θ, y =12sin θ(0≤θ≤2π) ∴圆的参数方程为 ⎩⎪⎨⎪⎧x =12+12cos θ,y =12sin θ.2.若将本例(2)的曲线变为⎩⎨⎧x =3cos αy =4sin α,其余不变,求交点个数.解:⎩⎪⎨⎪⎧x =3cos αy =4sin α,即⎩⎪⎨⎪⎧x3=cos α,y 4=sin α.∴x 29+y 216=1.而直线x +y -1=0,过点(1,0),点在椭圆x 29+y 216=1内,故直线与曲线有两个交点. 考点二 极坐标方程与参数方程的综合应用命题点1.直线与圆的方程应用2.直线与椭圆的方程应用[例2] (1)(2022·高考全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. ①说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:①消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2.所以C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. ②曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.(2)(2022·高考全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.①写出C 1的一般方程和C 2的直角坐标方程;②设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:①C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.②由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2sin ⎝ ⎛⎭⎪⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.[方法引航] 对于曲线方程为极坐标方程或参数方程时,一般都化为平面直角坐标系中的一般方程f (x ,y )=0再应用.假如直接应用,要明确极坐标(ρ,θ)及参数的意义.1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程.得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎪⎨⎪⎧t 1+t 2=32,t 1·t 2= 4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.2.(2021·甘肃三校联考)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数),在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(1,2),求|P A |+|PB |的最小值. 解:(1)由ρ=6sin θ得ρ2=6ρsin θ,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9. 所以圆C 的直角坐标方程为x 2+(y -3)2=9.(2)将l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α-sin α)t -7=0. 由已知得Δ=(2cos α-2sin α)2+4×7>0,所以可设t 1,t 2是上述方程的两根,则⎩⎪⎨⎪⎧t 1+t 2=-2(cos α-sin α),t 1·t 2=-7.由题意得直线l 过点(1,2),结合t 的几何意义得 |P A |+|PB |=|t 1|+|t 2|=|t 1-t 2| =(t 1+t 2)2-4t 1t 2=4(cos α-sin α)2+28 =32-4sin 2α≥32-4=27.所以|P A |+|PB |的最小值为27.[高考真题体验]1.(2021·高考课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.2.(2022·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 点的坐标.解:(1)C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.3.(2022·高考课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.4.(2021·高考课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). 故M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2αy =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.课时规范训练1.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时, |AB |取得最大值,最大值为4.2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1. 所以⎩⎪⎨⎪⎧b 2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.3.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试推断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcos θ+ρsinθ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 由于圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.4.在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B . (1)若α=π3,求线段AB 的中点M 的坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解:(1)将曲线C 的参数方程化为一般方程为x 24+y 2=1. 当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0, 设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|P A |·|PB |=|t 1t 2|=12cos 2α+4sin 2α, |OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0,故tan α=54.所以直线l 的斜率为54.。

高考数学(理)一轮复习课件:坐标系与参数方程-2参数方程

高考数学(理)一轮复习课件:坐标系与参数方程-2参数方程

π
当α= 4 时,射线l与C1交点A1的横坐标为x=
2 2
,与
C2交点B1的横坐标为x′=3
10 10 .
π
当α=- 4 时,射线l与C1,C2的两个交点A2,B2分别
与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形. 故四边形A1A2B2B1的面积为 (2x′+2x)2 (x′-x)=25.
(2)由(1)知xy==t12+2t
① ②
由①得t=x-2 1,代入②得y=(x-2 1)2,∴(x-1)2-4y=0.
[答案] (1)1 (2)(x-1)2-4y=0
[规律总结] 化参数方程为普通方程,关键是消去参
数建立关于x,y的二元方程F(x,y)=0,常用方法有代入
消元法,加减消元法,恒等式法,方法的选取是由方程
=0.
由题意可得圆心C(-1,0),则圆心到直线x+y+3=
0的距离即为圆的半径,故r=
2= 2
2 ,所以圆的方程为
(x+1)2+y2=2.
高考测点典例研习
参数方程与普通方程的互化
例1 [教材改编]已知某曲线C的参数方程为
x=1+2t y=at2
(其中t是参数,a∈R),点M(5,4)在该曲线
点.当α=0时,这两个交点间的距离为2,当α=
π 2
时,这
两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当α=
π 4
时,l与C1,C2的交点分别为A1,B1.当α
=-
π 4
时,l与C1
,C2的交点分别为A2,B2求四边形
A1A2B2B1的面积.
[思路点拨] (1)将参数方程化成普通方程; (2)求出A1B1A2B2点的坐标结合图形求四边形的面 积.

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

课时作业72 参数方程[基础达标]1.[2021·某某省示X 高中名校高三联考]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆.(1)求曲线C 1的极坐标方程和C 2的直角坐标方程;(2)已知射线θ=π3(ρ≥0)分别与曲线C 1,C 2交于点A ,B (点B 异于坐标原点O ),求线段AB 的长.2.[2021·黄冈中学,华师附中等八校第一次联考]在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2ρcos θ+8.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,且|AB |=42,求直线l 的倾斜角.3.[2021·某某省七校联合体高三第一次联考试题]在平面直角坐标系xOy 中,已知曲线C 1:x +y =1与曲线C 2:⎩⎪⎨⎪⎧x =2+2cos φy =2sin φ(φ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 1,C 2的极坐标方程;(2)在极坐标系中,已知l :θ=α(ρ>0)与C 1,C 2的公共点分别为A ,B ,α∈⎝ ⎛⎭⎪⎫0,π2,当|OB ||OA |=4时,求α的值.4.[2021·某某市高三年级摸底考试]在极坐标系中,圆C:ρ=4cosθ.以极点O为原点,极轴为x轴的正半轴建立直角坐标系xOy,直线l经过点M(-1,-33)且倾斜角为α.(1)求圆C的直角坐标方程和直线l的参数方程;(2)已知直线l与圆C交于A,B两点,满足A为MB的中点,求α.5.[2020·全国卷Ⅱ]已知曲线C 1,C 2的参数方程分别为C 1:⎩⎪⎨⎪⎧x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.6.[2021·某某市高三年级摸底测试卷]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数),在同一平面直角坐标系中,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=y得到曲线C 1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(1)求曲线C 的普通方程和曲线C 1的极坐标方程;(2)若射线OA :θ=β(ρ>0)与曲线C 1交于点A ,射线OB :θ=β+π2(ρ>0)与曲线C 1交于点B ,求1|OA |2+1|OB |2的值.[能力挑战]7.[2021·某某省豫北名校高三质量考评]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos φy =y 0+t sin φ(t 为参数,φ∈[0,π)).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ.(1)求圆C 的直角坐标标准方程;(2)设点P (x 0,y 0),圆心C (2x 0,2y 0),若直线l 与圆C 交于M ,N 两点,求|PM ||PN |+|PN ||PM |的最大值.课时作业721.解析:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),消去参数φ得x 24+y 2=1,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 24+y 2=1得曲线C 1的极坐标方程为ρ2=4cos 2θ+4sin 2θ=41+3sin 2θ.由曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆,可得其极坐标方程为ρ=27sin θ,从而得C 2的直角坐标方程为x 2+y 2-27y =0.(2)将θ=π3(ρ≥0)代入ρ=27sin θ得ρB =27sin π3=21,将θ=π3(ρ≥0)代入ρ2=4cos 2θ+4sin 2θ得ρA =4cos 2π3+4sin 2π3=41313, 故|AB |=ρB -ρA =1321-41313.2.解析:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数),所以当α=π2时,直线l 的普通方程为x =2,当α≠π2时,直线l 的普通方程为y -3=tan α(x -2),即y =x tan α+3-2tan α.因为ρ2=x 2+y 2,ρcos θ=x ,ρ2=2ρcos θ+8,所以x 2+y 2=2x +8. 所以曲线C 的直角坐标方程为x 2+y 2-2x -8=0.(2)解法一 曲线C 的直角坐标方程为x 2+y 2-2x -8=0, 将直线l 的参数方程代入曲线C 的直角坐标方程整理,得t 2+(23sin α+2cos α)t -5=0.因为Δ=(23sin α+2cos α)2+20>0,所以可设该方程的两个根分别为t 1,t 2,则t 1+t 2=-(23sin α+2cos α),所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=[-(23sin α+2cos α)]2+20=42.整理得(3sin α+2cos α)2=3,故2sin ⎝ ⎛⎭⎪⎫α+π6=± 3.因为0≤α<π,所以α+π6=π3或α+π6=2π3,解得α=π6或α=π2,综上所述,直线l 的倾斜角为π6或π2.解法二 直线l 与曲线C 交于A ,B 两点,且|AB |=42,曲线C 为圆:(x -1)2+y 2=9,故圆心C (1,0)到直线l 的距离d =9-(22)2=1.①当α=π2时,直线l 的普通方程为x =2,符合题意.②当α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线l 的方程为x tan α-y +3-2tan α=0,所以d =|tan α-0+3-2tan α|1+tan 2α=1,整理得|3-tan α|=1+tan 2α,解得α=π6. 综上所述,直线l 的倾斜角为π6或π2.3.解析:(1)由x =ρcos θ,y =ρsin θ,可得曲线C 1的极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.曲线C 2的普通方程为(x -2)2+y 2=4,即x 2+y 2-4x =0, 又x =ρcos θ,y =ρsin θ,所以曲线C 2的极坐标方程为ρ=4cos θ. (2)由(1)知|OA |=ρA =1cos α+sin α,|OB |=ρB =4cos α,∴|OB ||OA |=4cos α(cos α+sin α)=2(1+cos2α+sin2α)=2+22sin ⎝ ⎛⎭⎪⎫2α+π4.∵|OB ||OA |=4,∴2+22sin ⎝ ⎛⎭⎪⎫2α+π4=4,sin ⎝ ⎛⎭⎪⎫2α+π4=22.由0<α<π2,知π4<2α+π4<5π4,∴2α+π4=3π4,∴α=π4.4.解析:(1)由圆C :ρ=4cos θ可得ρ2=4ρcos θ, 因为ρ2=x 2+y 2,x =ρcos θ,所以x 2+y 2=4x ,即(x -2)2+y 2=4,故圆C 的直角坐标方程为(x -2)2+y 2=4. 直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =-33+t sin α(t 为参数,0≤α<π).(2)设A ,B 对应的参数分别为t A ,t B ,将直线l 的参数方程代入C 的直角坐标方程并整理,得t 2-6t (3sin α+cos α)+32=0,Δ=36(3sin α+cos α)2-4×32>0 ①,所以t A +t B =6(3sin α+cos α),t A ·t B =32.又A 为MB 的中点,所以t B =2t A ,因此t A =2(3sin α+cos α)=4sin ⎝ ⎛⎭⎪⎫α+π6,t B =8sin ⎝⎛⎭⎪⎫α+π6,所以t A ·t B=32sin 2⎝ ⎛⎭⎪⎫α+π6=32,即sin 2⎝ ⎛⎭⎪⎫α+π6=1.因为0≤α<π,所以π6≤α+π6<7π6,从而α+π6=π2,即α=π3,又α=π3满足①式,所以所求α=π3.5.解析:(1)C 1的普通方程为x +y =4(0≤x ≤4).由C 2的参数方程得x 2=t 2+1t 2+2,y 2=t 2+1t 2-2,所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4.(2)由⎩⎪⎨⎪⎧x +y =4,x 2-y 2=4得⎩⎪⎨⎪⎧x =52,y =32,所以P 的直角坐标为⎝ ⎛⎭⎪⎫52,32.设所求圆的圆心的直角坐标为(x 0,0),由题意得x 20=⎝⎛⎭⎪⎫x 0-522+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.6.解析:(1)将曲线C 的参数方程⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数)消去参数,得x 2+y 2=4,所以曲线C 的普通方程为x 2+y 2=4.曲线C 经过伸缩变换得到曲线C 1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x ′=4cos αy ′=2sin α,得x ′2+4y ′2=16,将x ′=ρcos θ,y ′=ρsin θ,代入上式得曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=16. (2)将θ=β(ρ>0)代入ρ2cos 2θ+4ρ2sin 2θ=16,得1ρ2=cos 2β16+sin 2β4,即1|OA |2=cos 2β16+sin 2β4,同理1|OB |2=cos 2⎝ ⎛⎭⎪⎫β+π216+sin 2⎝ ⎛⎭⎪⎫β+π24=sin 2β16+cos 2β4,所以1|OA |2+1|OB |2=116+14=516.7.解析:(1)圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ=4cos θ+43sin θ,所以ρ2=43ρsin θ+4ρcos θ.因为ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y , 所以x 2+y 2-4x -43y =0,所以圆C 的直角坐标标准方程为(x -2)2+(y -23)2=16.(2)由(1)知圆C 的圆心的直角坐标为(2,23),则⎩⎪⎨⎪⎧2x 0=22y 0=23,所以⎩⎪⎨⎪⎧x 0=1y 0=3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos φy =3+t sin φ(t 为参数,φ∈[0,π)).将直线l 的参数方程代入(x -2)2+(y -23)2=16,得t 2-(23sin φ+2cos φ)t -12=0.设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=23sin φ+2cos φ,t 1t 2=-12.故|PM ||PN |+|PN ||PM |=|PM |2+|PN |2|PM |·|PN |=|t 1|2+|t 2|2|t 1||t 2|=(t 1+t 2)2-2t 1t 2|t 1t 2|=112[23sin φ+2cos φ)2+24]=112⎣⎢⎡⎦⎥⎤4sin ⎝⎛⎭⎪⎫φ+π62+2,因此,当φ=π3时,|PM ||PN |+|PN ||PM |取得最大值,最大值为103.。

近年高考数学一轮复习坐标系与参数方程第一节坐标系作业本理(2021年整理)

近年高考数学一轮复习坐标系与参数方程第一节坐标系作业本理(2021年整理)

(北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理的全部内容。

第一节坐标系A组基础题组1。

在极坐标系中,圆ρ=2cos θ的半径为( )A. B。

1 C。

2 D.42.在极坐标系中,点到直线ρcos θ-ρsin θ-1=0的距离等于( )A.B。

C。

D。

23。

(2017北京海淀零模,4)在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线的方程分别为()A。

θ=0(ρ∈R)和ρcos θ=2B.θ=(ρ∈R)和ρcos θ=2C.θ=(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=14.已知点M的极坐标为,则将点M的极坐标化成直角坐标为( )A。

B。

C. D.5.在极坐标系中,曲线ρ=2cos θ是()A.过极点的直线B。

半径为2的圆C.关于极点对称的图形D。

关于极轴对称的图形6。

(2017北京海淀二模,9)在极坐标系中,极点到直线ρcos θ=1的距离为.7.在极坐标系中,直线ρsin θ=3被圆ρ=4sin θ截得的弦长为.8。

(2017北京顺义二模,12)在极坐标系中,圆ρ=-2cos θ的圆心C到直线2ρcos θ+ρsin θ—2=0的距离等于。

9。

在极坐标系中,设ρ>0,0≤θ〈2π,则曲线ρ=2与曲线ρsin θ=2交点的极坐标为.10.在极坐标系中,圆C的极坐标方程为ρ2-4ρcos—1=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则在直角坐标系中,圆心C的坐标是。

高考理科数学一轮复习专题训练:选修4-4坐标系与参数方程(含详细答案解析)

高考理科数学一轮复习专题训练:选修4-4坐标系与参数方程(含详细答案解析)

第16单元 选修4-4 坐标系与参数方程(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线11x ty =+=-+⎧⎪⎨⎪⎩的斜率为( )A .1B .1- CD.【答案】C【解析】由11x ty =+=-+⎧⎪⎨⎪⎩,可得1y =,斜率k C .2.点A 的极坐标为,则A 的直角坐标为( )ABCD【答案】D【解析】 设点(),A x y ,根据直角坐标与极坐标之间的互化公式,52sin 16y π==,即点A的坐标为(),故选D . 3.在极坐标系中,方程sin ρθ=表示的曲线是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】方程sin ρθ=,可化简为2sin ρρθ=,即22x y y +=. 整理得2211y 24x ⎛⎫+-= ⎪⎝⎭,表示圆心为10,2⎛⎫⎪⎝⎭,半径为12的圆.故选B .4.参数方程()sin cos22x y ααα⎧=+⎪⎨⎪=⎩为参数的普通方程为( ) A .221y x -=B .221x y -=C .(221y x x -=D .(221x y x -=【答案】C【解析】由题意可知:21sin x α=+,2222sin 1y y x α=+⇒-=,且y ⎡⎣,据此可得普通方程为(221y x x -=≤.故选C .5.点M 的直角坐标是(-,则点M 的极坐标为( )A .2,3π⎛⎫⎪⎝⎭B .2,3π⎛⎫- ⎪⎝⎭C .22,3π⎛⎫⎪⎝⎭D .()π2,2π3k k ⎛⎫+∈ ⎪⎝⎭Z【答案】C【解析】由于222x y ρ=+,得24ρ=,2ρ=,由cos x ρθ=,得1cos 2θ=-,结合点在第二象限,可得23θπ=,则点M 的坐标为22,3π⎛⎫⎪⎝⎭,故选C . 6.与极坐标2,6π⎛⎫- ⎪⎝⎭表示的不是同一点的极坐标是( )A .72,6π⎛⎫⎪⎝⎭B .72,6π⎛⎫- ⎪⎝⎭C .112,6π⎛⎫-- ⎪⎝⎭D .132,6π⎛⎫- ⎪⎝⎭【答案】B【解析】点2,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点()1-,而点72,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点(),所以点2,6π⎛⎫- ⎪⎝⎭和点72,6π⎛⎫- ⎪⎝⎭表示不同的点,故选B .7.点P 的直线坐标为(),则它的极坐标可以是( )A .26π⎛⎫⎪⎝⎭,B .26π⎛⎫- ⎪⎝⎭, C .526π⎛⎫⎪⎝⎭,D .526π⎛⎫- ⎪⎝⎭, 【答案】C【解析】2ρ==,tan θ=,因为点在第二象限,故取526k θπ=π+,k ∈Z ,故选C . 8.圆半径是1,圆心的极坐标是()1,π,则这个圆的极坐标方程是( ) A .cos ρα=- B .sin ρα= C .2cos ρα=- D .2sin ρα=【答案】C【解析】极坐标方程化为直角坐标方程可得圆心坐标为()1,0-, 则圆的标准方程为:()2211x y ++=,即2220x y x ++=,化为极坐标方程即:22cos 0ρρθ+=,整理可得:2cos ρα=-.故选C .9.若曲线21x ty t =-=-+⎧⎨⎩(t 为参数)与曲线ρ=B ,C 两点,则BC 的值为( )A B C D 【答案】C【解析】曲线21x ty t =-=-+⎧⎨⎩的普通方程为10x y +-=,曲线ρ=228x y +=,圆心O 到直线的距离为d ==又r =BC ==C . 10.已知曲线C 的参数方程为4cos 2sin x y θθ==⎧⎨⎩(θ为参数),则该曲线离心率为( )A B .34C D .12【答案】A【解析】由题得曲线C 的普通方程为221164x y +=,所以曲线C 是椭圆,4a =,c =所以椭圆的离心率为e A . 11.在极坐标系中,设圆:4cos C ρθ=与直线():4l θρπ=∈R 交于A ,B 两点,则以线段AB 为直径的圆的极坐标方程为( )A .22sin 4ρθπ⎛⎫=+ ⎪⎝⎭B .22sin 4ρθπ⎛⎫=- ⎪⎝⎭C .22cos 4ρθπ⎛⎫=+ ⎪⎝⎭D .22cos 4ρθπ⎛⎫=-- ⎪⎝⎭【答案】A【解析】以极点为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,则由题意,得圆C 的直角坐标方程2240x y x +-=,直线的直角坐标方程y x =. 由2240x y x y x+-==⎧⎨⎩,解得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩,所以()00A ,,()22B ,, 从而以AB 为直径的圆的直角坐标方程为()()22112x y -+-=, 即2222x y x y +=+.将其化为极坐标方程为()22cos sin 0ρρθθ-+=,即()2cos sin 22sin 4ρθθθπ⎛⎫=+=+ ⎪⎝⎭,故选A .12.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线:2cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠【答案】C【解析】()2222:2cos 211C x y x x y ρθ=⇒+=⇒-+=,所以223141k k k +<⇒<-+,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在直角坐标系中,点()21-,到直线2:x tl y t=-⎧⎨=⎩(t 为参数)的距离是__________.【答案】22【解析】直线一般方程为20x y +-=,利用点到直线距离公式122d -=2.14.极坐标方程()cos sin 10ρθθ+-=化为直角坐标方程是_______. 【答案】10x y +-=【解析】极坐标方程即()cos sin 10ρθθ+-=,则直角坐标方程是10x y +-=.15.在极坐标系中,直线()cos sin 0a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.【答案】1+【解析】圆2cos ρθ=,转化成22cos ρρθ=,用222x y ρ=+,cos x ρθ=,sin y ρθ=,转化成直角坐标方程为()2211x y -+=, 把直线()cos sin a ρθθ+=的方程转化成直角坐标方程为0x y a +-=, 由于直线和圆相切,∴利用圆心到直线的距离等于半径,1=,解得1a =±0a >,则负值舍去,故1a =1+16上,求点P 到直线3424x y -=的最大距离是________.【解析】设点P 的坐标为()4cos 3sin θθ,, 则点P 到直线3424x y -=的时,d 取得最大值为三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在极坐标系下,已知曲线1C :cos sin ρθθ+=和曲线2C :(sin )4ρθπ-(1)求曲线1C 和曲线2C 的直角坐标方程;(2)当()0θ∈π,时,求曲线1C 和曲线2C 公共点的一个极坐标.【答案】(1)1C :220x y x y +--=,2C :10x y -+=;(2)1,2π⎛⎫⎪⎝⎭. 【解析】(1)圆O :cos sin ρθθ+=,即2cos sin ρρθρθ+=, 曲线1C 的直角坐标方程为22x y x y ++=,即220x y x y --+=, 曲线2C:sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos 1ρθρθ-=,则曲线2C 的直角坐标方程为:1y x -=,即10x y -+=. (2)由22010x y x y x y ⎧-⎨-+⎩+-==,得0x y ⎧⎨⎩==1,则曲线1C 和曲线2C 公共点的一个极坐标为1,2π⎛⎫⎪⎝⎭.18.(12分)已知曲线1C 的极坐标方程是1ρ=,在以极点O 为原点,极轴为x 轴的正半轴的平面 直角坐标系中,将曲线1C 所有点的横坐标伸长为原来的3倍,得到曲线2C . (1)求曲线2C 的参数方程; (2)直线l 过点()1,0M ,倾斜角为,与曲线2C 交于A 、B 两点,求 【答案】(1)3cos sin x y θθ==⎧⎨⎩,(θ为参数);(2)85.【解析】(1)曲线1C 的直角坐标方程为221x y +=,曲线2C 的直角坐标方程为∴曲线2C 的参数方程为3cos sin x y θθ==⎧⎨⎩,(θ为参数).(2)设l 的参数方程为代入曲线2C 的方程19.(12分)在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28sin 150ρρθ-+=. (1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程; (2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.【答案】(1)1C :3cos sin x y ϕϕ==⎧⎨⎩(ϕ为参数),2C :()2241x y +-=;(2)1.【解析】(1)曲线1C 的参数方程为3cos sin x y ϕϕ==⎧⎨⎩,(ϕ为参数), 2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()3cos ,sin P ϕϕ,则2PC ==.当1sin 2ϕ=-时,2PC = 又因为21PQ PC ≤+,当且仅当P ,Q ,2C 三点共线,且2C 在线段PQ 上时,等号成立.所以max 1PQ =.20.(12分)在平面直角坐标系xoy 中,已知曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线1C 的普通方程;(2)极坐标方程为2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 与1C 交P ,Q 两点,求线段PQ 的长.【答案】(1)()2214x y -+=;(2)2.【解析】(1)曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),可得1cos 2x θ-=,sin 2yθ=.因为22sin cos 1θθ+=,可得()2214x y -+=, 即曲线1C 的普通方程:()2214x y -+=.(2)将2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 化为普通方程可得:2sin cos 2cos sin 33ρθρθππ+=y =,因为直线l 与1C 交P ,Q 两点,曲线1C 的圆心()10,,半径2r =, 圆心到直线l的距d =所以线段PQ的长2==.21.(12分)在直角坐标系xOy 中,直线l的参数方程为221x y =-=-+⎧⎪⎪⎨⎪⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2232cos 1ρθ=+.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于M ,N 两点,求MON △的面积.【答案】(1)2213y x +=;(2)34. 【解析】(1)因为()222232cos 132cos 1ρρθθ=⇒+=+, 所以曲线C 的直角坐标方程为2213y x +=.(2)将直线l的参数方程21x y ==-+⎧⎪⎪⎨⎪⎪⎩(t 为参数)代入曲线C 的直角坐标方程,得250t +=,设M ,N 两点对应的参数分别为1t ,2t,则12t t +=,125t t ⋅=, 于是MN =, 直线l 的普通方程为10x y +-=,则原点O 到直线l的距离d ==,所以1324MON S MN d =⋅=△. 22.(12分)在直角坐标系xOy 中.直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4θρπ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【答案】(1)1C :cos 2ρθ=-,2C :22cos 4sin 40ρρθρθ--+=;(2)12.【解析】(1)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ=故12ρρ-=,即MN =由于2C 的半径为1,所以2C MN △是直角三角形,其面积为12.第16单元 选修4-4 坐标系与参数方程(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数相切,则b =( ) A .4-或6 B .6-或4 C .1-或9 D .9-或1【答案】A【解析】把直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数的参数方程分别化为普通方程得:直线4330x y +-=;圆()229x y b +-=.∵此直线与该圆相切,∴22033343b +-=+,解得4b =-或6.故选A .2.椭圆的参数方程为5cos 3sin x y θθ=⎧⎨⎩=()θ为参数,则它的两个焦点坐标是( ) A .()4, 0± B .()0,4± C .()5, 0± D .()0,3±【答案】A【解析】消去参数可得椭圆的标准方程221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为()4, 0±,故选A .3.直线的参数方程为=31+3x ty t=⎧⎪⎨⎪⎩()t 为参数,则直线l 的倾斜角大小为( )A .6πB .3πC .23π D .56π 【答案】C310x y +-=, 所以直线的斜率3k =-,从而得到其倾斜角为23π,故选C . 4.在平面直角坐标系xOy 中,曲线C 的参数方程为1cos sin x y αα=+=⎧⎨⎩()α为参数.若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为( ) A .sin ρθ= B .2sin ρθ= C .cos ρθ= D .2cos ρθ=【答案】D【解析】由1cos sin x y αα=+=⎧⎨⎩()α为参数得曲线C 普通方程为()2211x y -+=, 又由cos sin x y ρθρθ=⎧⎨⎩=,可得曲线C 的极坐标方程为2cos ρθ=,故选D . 5.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .()0θρ=∈R 和cos 2ρθ=B .()2πθρ=∈R 和cos 2ρθ=C .()0θρ=∈R 和cos 1ρθ=D .()2πθρ=∈R 和cos 1ρθ=【答案】B【解析】如图所示,在极坐标系中,圆2cos ρθ=是以()10,为圆心,1为半径的圆 故圆的两条切线方程分别为()2πθρ=∈R ,cos 2ρθ=,故选B .6.已知M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,则M 点关于直线2θπ=的对称点坐标为( )A .2,6π⎛⎫⎪⎝⎭B .2,6π⎛⎫- ⎪⎝⎭C .2,6π⎛⎫- ⎪⎝⎭D .112,6π⎛⎫- ⎪⎝⎭【答案】A【解析】M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,即为52,6π⎛⎫⎪⎝⎭,∴M 点关于直线2θπ=的对称点坐标为2,6π⎛⎫⎪⎝⎭,故选A . 7.在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y αα==+⎧⎨⎩()α为参数,在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为( )A .0B .1C .2D .3【答案】C【解析】()221:11C x y +-=,2:10C x y -+=,圆心()10,1C 到直线2C 的距离22011011d -+==+,∴两曲线相交,有2个交点.故选C .8.若曲线C 的参数方程为2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数,则曲线C ( )A .表示直线B .表示线段C .表示圆D .表示半个圆【答案】D【解析】将参数方程2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数消去参数θ可得()2214x y +-=.又,22θππ⎡⎤∈-⎢⎥⎣⎦,∴02cos 2x θ≤=≤.∴曲线C 表示圆()2214x y +-=的右半部分.故选D .9.已知M 为曲线3sin :cos x C y θθ=+⎧⎨=⎩()θ为参数上的动点,设O 为原点,则OM 的最大值是( ) A .1 B .2 C .3 D .4【答案】D【解析】从曲线C 的参数方程中消去θ,则有()2231x y -+=,故曲线C 为圆,而3OC =, 故OM 的最大值为3314r +=+=,故选D .10.已知在平面直角坐标系xOy 中,曲线C 的参数方程为4cos sin x y αα==⎧⎨⎩()α为参数,M 是曲线C 上的动点.以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为2sin cos 20ρθρθ+=,则点M 到T 的距离的最大值为( )A .1345+B .245+C .445+D .65【答案】B【解析】由曲线的极坐标方程为2sin cos 20ρθρθ+=, 可得曲线T 的直角坐标方程为2200y x +-=,由曲线C 的参数方程4cos sin x y αα==⎧⎨⎩,设曲线上点M 的坐标为()4cos sin αα,,由点到直线的距离公式可得()20sin 204cos 2sin 2055d αθαα+-+-当()sin 1αθ+=-时,d 20202455+=+B .11.在平面直角坐标系xOy 中,曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,以射线Ox 为极轴建立极坐标系,直线l 的极坐标方程是cos sin 30ρθρθ--=,则直线l 与曲线C 相交所得的弦AB 的长为( ) A .810B .10 C .10 D .85【答案】C【解析】曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,化为普通方程为:22x 4y +=,表示圆心为(0)0,,半径为2的圆.直线l 的极坐标方程是cos sin 30ρθρθ--=,化为直角坐标方程即为30x y --=.圆心到直线的距离为362d ==. 直线与曲线相交所得的弦的长为264102⎛⎫- ⎪ ⎪⎝⎭C .12.已知点(),P x y 在曲线2cos sin x y θθ=-+=⎧⎨⎩[)(),2θθ∈ππ为参数,且上,则点P 到直线21x ty t =+=--⎧⎨⎩()t 为参数的距离的取值范围是( ) A .3232,22⎡⎤-⎢⎥⎢⎥⎣⎦B .32321,122⎡⎤--+⎢⎥⎢⎥⎣⎦ C .(2,22⎤⎦D .322,12⎛⎤+ ⎥ ⎥⎝⎦【答案】D【解析】直线21x ty t =+=--⎧⎨⎩()t 为参数的普通方程为10x y +-=,点P 到直线距离为2sin 332sin 2cos sin 144222θθθθπ⎛⎫π⎛⎫+--+ ⎪ ⎪-++-⎝⎭⎝⎭==, 因为[),2θππ∈,所以2sin 1,42θ⎡⎫π⎛⎫+∈-⎪⎢ ⎪⎪⎝⎭⎢⎣⎭,因此取值范围是322,12⎛⎤+ ⎥ ⎥⎝⎦,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在极坐标系中,点23π⎛⎫⎪⎝⎭,与圆4cos ρθ=的圆心的距离为_________.【答案】2【解析】由题得点P 的坐标为()1,3,∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,∴()2224x y -+=. ∴圆心的坐标为20(,),∴点P 到圆心的距离为()()2221032-+-=,故答案为2.14.若点()3,P m 在以F 为焦点的抛物线244x t y t ==⎧⎨⎩()t 为参数上,则PF 等于_________.【答案】4【解析】抛物线244x t y t==⎧⎨⎩()t 为参数可化为24y x =,∵点()3,P m 在以F 为焦点的抛物线244x t y t==⎧⎨⎩,()t 为参数上,∴24312m =⨯=,∴()323P ,, ∵()10F ,,∴()222234PF =+=,故答案为.15.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位. 已知直线极坐标方程为()4θρπ=∈R ,它与曲线23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数相交于两点A 、B , 则AB =__________. 【答案】2 【解析】∵4ρ=π,利用cos x ρθ==,sin y ρθ==进行化简, ∴0x y -=,23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数,相消去α可得圆的方程为()()22229x y -++=得到圆心()22-,,半径为3,圆心()22-,到直线0x y -=的距离222d ==,∴2222982AB r d =-=-=,∴线段AB 的长为2,故答案为2.16.在平面直角坐标系xOy 中,已知抛物线24 4x ty t⎧=⎪⎨⎪⎩=()t 为参数的焦点为F ,动点P 在抛物线上. 以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,动点Q 在圆()8cos 150ρρθ-+=上, 则PF PQ +的最小值为__________. 【答案】4【解析】∵抛物线的参数方程为24 4x ty t ⎧=⎪⎨⎪⎩=()t 为参数, ∴抛物线的普通方程为24y x =,则()1,0F ,∵动点Q 在圆()8cos 150ρρθ-+=上,∴圆的标准方程为()2241x y -+= 过点P 作PA 垂直于抛物线的准线,垂足为A ,如图所示:∴PF PQ PA PQ +=+,分析可得:当P 为抛物线的顶点时,PA PQ +取得最小值, 其最小值为4.故答案为4.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. 已知曲线C 的极坐标方程为4cos ρθ=,直线l 的参数方程为1cos 63sin6x t y t π⎧=+⎪⎪⎨π⎪=-⎪⎩()t 为参数.(1)求曲线C 的直角坐标方程;(2)若点P 在曲线C 上,且P 到直线l 的距离为1,求满足这样条件的点P 的个数.【答案】(1)()2224x y -+=;(2)3个. 【解析】(1)由4cos ρθ=得24cos ρρθ=,故曲线C 的直角坐标方程为:224x y x +=,即()2224x y -+=. (2)由直线l 的参数方程消去参数t 得()331y x +=-,即340x y --=. 因为圆心()20C ,到直线的距离为2304113d -⋅-==+,d 恰为圆C 半径的12,所以满足这样条件的点P 的个数为3个.18.(12分)在平面直角坐标系xoy 中,倾斜角为2ααπ⎛⎫≠ ⎪⎝⎭的直线l 的参数方程为1cos sin x t y t αα=+=⎧⎨⎩()t 为参数.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:l 2cos 4sin 0ρθθ-=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点()10P ,,若点M 的极坐标为12π⎛⎫⎪⎝⎭,,直线l 经过点M 且与曲线C 相交于A ,B 两点, 设线段AB 的中点为Q ,求PQ 的值.【答案】(1)():tan 1l y x α=-,2:4C x y =;(2)32 【解析】(1)消去直线l 的参数方程1cos sin x t y t αα=+=⎧⎨⎩中的参数t ,得到直线l 的普通方程为()tan 1y x α=-,把曲线C 的极坐标方程:l 2cos 4sin 0ρθθ-=左右两边同时乘以ρ, 得到22cos 4sin 0ρθρθ-=,利用公式cos sin x y ρθρθ==⎧⎨⎩代入,化简出曲线C 的直角坐标方程24x y =.(2)点M 的直角坐标为()01,,将点M 的直角坐标为()01,代入直线():tan 1l y x α=-中, 得tan 1α=-,即:10l x y +-=,联立方程组2104x y x y +-=⎧⎨=⎩,得AB 中点坐标为()23Q -,,从而PQ =.19.(12分)已知曲线C 的参数方程为3cos 2sin x y θθ==⎧⎨⎩()θ为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩得到曲线'C .(1)求'C 的普通方程;(2)若点A 在曲线'C 上,点()30B ,,当点A 在曲线'C 上运动时,求AB 中点P 的轨迹方程. 【答案】(1)221x y +=;(2)223124x y ⎛⎫-+= ⎪⎝⎭.【解析】(1)将3cos 2sin x y θθ==⎧⎨⎩代入1'31'2x x y y⎧=⎪⎪⎨⎪=⎪⎩,得'C 的参数方程为cos sin x y θθ==⎧⎨⎩,∴曲线'C 的普通方程为221x y +=. (2)设()P x y ,,()00A x y ,,又()30B ,,且AB 中点为P ,∴00232x x y y =-=⎧⎨⎩,又点A 在曲线'C 上,∴代入'C 的普通方程2201x y +=得()()222321x y -+=, ∴动点P 的轨迹方程为223124x y ⎛⎫-+= ⎪⎝⎭.20.(12分)在直角坐标系xOy 中,曲线1C 的参数方程为2sin x y αα==⎧⎪⎨⎪⎩()α为参数.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线22:4cos 2sin 40C ρρθρθ+-+=. (1)写出曲线1C ,2C 的普通方程;(2)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于A ,B 两点,求AB .【答案】(1)2211204:x y C +=,()()222:211C x y ++-=;(2.【解析】(1)222225cos cos sin 122sin 25y x y αααα=⎛⎫⇒+=+= ⎪ ⎧⎪⎨⎪⎩⎪=⎝⎭⎝⎭,即曲线1C 的普通方程为221204x y +=,∵222x y ρ=+,cos x ρθ=,sin y ρθ=,曲线2C 的方程可化为224240x y x y ++-+=, 即()()222:211C x y ++-=.(2)曲线1C 左焦点为()40-,直线的倾斜角为4απ=,2sin cos αα==,∴直线l 的参数方程为2422x y ⎧⎪⎪⎨=-+=⎪⎪⎩()t 为参数将其代入曲线2C 整理可得23240t t -+=,∴()2324420∆=--⨯=>.设A ,B 对应的参数分别为1t ,2t ,则∴1232t t +=124t t =. ∴()()22121212432442AB t t t t t t =-=+-=-⨯21.(12分)在平面直角坐标系xOy 中,曲线1C 过点()1P a ,,其参数方程为221x a y =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,,以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3cos 0ρθθρ+-=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求已知曲线1C 和曲线2C 交于A ,B 两点,且3PA PB =,求实数a 的值. 【答案】(1)1:10C x y a --+=,22:3C y x =;(2)1348a =或712. 【解析】(1)1C 的参数方程221x a y =+=+⎧⎪⎪⎨⎪⎪⎩,消参得普通方程为10x y a --+=, 2C 的极坐标方程化为222cos 3cos 0ρθρθρ+-=即23y x =.(2)将曲线的参数方程标准化为221x a t y t =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,代入曲线22:3C y x = 得22260t t a -+-=,由()()2241260a ∆=--⨯->,得14a >, 设A ,B 对应的参数为1t ,2t ,由题意得123t t =即123t t =或123t t =-,当123t t =时,1212123226t t t t t t a ⎧=+==-⎪⎨⎪⎩,解得131448a =>,当123t t =-时,1212123226t t t t t t a=⎧-+==-⎪⎨⎪⎩解得712a =,综上:1348a =或712. 22.(12分)在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα==⎧⎪⎨⎪⎩[]()0αα∈π为参数,,,以原点为极点,以x 轴非负半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程;(2)设直线10:l θθ=(0θ为任意锐角)、20:2l θθπ=+分别与曲线C 交于A ,B 两点,试求AOB △面积的最小值.【答案】(1)[]()2221203cos 4sin ρθθθ=∈π+,;(2)127. 【解析】(1)由22cos sin 1αα+=,将曲线C 的参数方程2cos 3sin x y αα==⎧⎪⎨⎪⎩,消参得()221043x y y +=≥,又cos x ρθ=,sin y ρθ=,所以2222cos sin 143ρθρθ+=,化简整理得曲线的极坐标方程为[]()2221203cos 4sin ρθθθ=∈π+,.① (2)将0θθ=代入①式得,22220123cos 4sin A OA ρθθ==+,同理222222000012123sin 4cos 3cos 4sin 22B OB ρθθθθ===ππ+⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,于是22220000223cos 4sin 3sin 4cos 117121212A B θθθθρρ+++=+=,由于2271111212A B A B ρρρρ⎛⎫=+≥⋅ ⎪⎝⎭(当且仅当A B ρρ=时取“=”), 故247A B ρρ⋅≥,11227AOB A B S ρρ=⋅≥△.。

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

高考数学一轮复习选考部分坐标系与参数方程学案理

高考数学一轮复习选考部分坐标系与参数方程学案理

坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x λ>0,y ′=μ·yμ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ). 一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0.4.简单曲线的极坐标方程曲线极坐标方程圆心为极点,半径为r 的圆 ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos θ⎝⎛⎭⎪⎫-π2≤θ≤π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin θ(0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin θ=a (0<θ<π)1.若点P 的直角坐标为(3,-3),则点P 的极坐标为______.解析:因为点P (3,-3)在第四象限,与原点的距离为23,且OP 与x 轴所成的角为-π6,所以点P 的极坐标为⎝⎛⎭⎪⎫23,-π6.答案:⎝⎛⎭⎪⎫23,-π62.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ, 得ρ2=5ρcos θ-53ρsin θ, 化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝ ⎛⎭⎪⎫5,5π3.答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)3.在极坐标系中A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3两点间的距离为________.解析:法一:(数形结合)在极坐标系中,A ,B 两点如图所示,|AB |=|OA |+|OB |=6.法二:∵A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3的直角坐标为A (1,-3),B (-2,23).∴|AB |=-2-12+23+32=6.答案:64.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π3(θ∈R)的距离是________.解析:设圆心到直线θ=π3(θ∈R)的距离为d ,因为圆的半径为2, d =2·sin π6=1.答案:1考点一 平面直角坐标系下图形的伸缩变换基础送分型考点——自主练透[考什么·怎么考]高考对平面直角坐标系下图形的伸缩变换要求较低,极少考查,属于基础题. 1.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.2.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得曲线C ′的焦点坐标.解:设曲线C ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程, 可见仍是双曲线,则焦点(-5,0),(5,0)为所求.3.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax a >0,Y =by b >0,求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by 得⎩⎪⎨⎪⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.[怎样快解·准解]伸缩变换公式应用时的2个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(x ′,y ′),再利用伸缩变换公式⎩⎪⎨⎪⎧x ′=ax a >0,y ′=byb >0建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (x ′,y ′)=0,再利用换元法确定伸缩变换公式.考点二 极坐标与直角坐标的互化重点保分型考点——师生共研极坐标与直角坐标的互化是解决极坐标问题的基础,是高考常考内容之一,既有单独考查,也有与参数方程等内容的综合考查,题型为解答题,难度适中.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. [思维路径](1)由ρ=cos θ+sin θ及公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,可将等式两边同乘以ρ,得ρ2=ρcos θ+ρsin θ,从而可化为直角坐标方程.将ρsin ⎝ ⎛⎭⎪⎫θ-π4=22利用两角差的正弦公式展开,可得ρsin θ-ρcos θ=1,从而可化为直角坐标方程.(2)可先求出直线l 与圆O 的公共点,然后将该公共点化为极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎪⎫1,π2即为所求.[解题师说]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定方法由tan θ确定角θ时,应根据点P 所在象限取最小正角.在这里要注意:当x ≠0时,θ角才能由tan θ=yx按上述方法确定.当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[冲关演练]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎪⎫θ+π4=22.考点三 曲线的极坐标方程的应用重点保分型考点——师生共研曲线极坐标方程的应用是每年高考的重点,主要涉及线段长度、平面图形的面积以及最值等问题,难度适中.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.[思维路径](1)可先求点P 在极坐标系中的轨迹方程,然后再化为直角坐标方程.设P (ρ,θ),则M 点的可设为(ρ1,θ),利用|OM |·|OP |=16及相关点可求.(2)由于点O 和点A 都是定点,故△AOB 面积的大小取决于B 点的位置,可设B 点的极坐标为(ρB ,α),然后利用面积公式S =12|OA |·ρB ·sin∠AOB 求解即可.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.[解题师说]1.方法要熟求简单曲线的极坐标方程的方法(1)设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用三角函数及正、余弦定理求解|OM |与θ的关系.(2)先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.2.技巧要会用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.[冲关演练](2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.1.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即(x -3)2=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.2.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,所以圆C 的半径|PC |= 22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,求M ,N 的最小距离.解:因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,即M ,N分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.4.(2016·全国卷Ⅰ)在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.5.(2018·洛阳模拟)在直角坐标系xOy 中,圆C 的方程为x 2+(y -2)2=4.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ⎝⎛⎭⎪⎫θ+π6=53,射 线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4, 得圆C 的极坐标方程为ρ=4sin θ.(2)设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ=4sin θ,θ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ⎝⎛⎭⎪⎫θ+π6=53,θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=ρ2-ρ1=3.6.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233.所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R).7.(2018·福建质检)在直角坐标系xOy 中,曲线C 1的普通方程为(x -2)2+y 2=4,在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:θ=π6(ρ>0),A (2,0).(1)把C 1的普通方程化为极坐标方程;(2)设C 3分别交C 1,C 2于点P ,Q ,求△APQ 的面积. 解:(1)因为C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,所以C 1的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ. (2)依题意,设点P ,Q 的极坐标分别为⎝ ⎛⎭⎪⎫ρ1,π6,⎝ ⎛⎭⎪⎫ρ2,π6.将θ=π6代入ρ=4cos θ,得ρ1=23,将θ=π6代入ρ=2sin θ,得ρ2=1,所以|PQ |=|ρ1-ρ2|=23-1.依题意,点A (2,0)到曲线θ=π6(ρ>0)的距离d =|OA |sin π6=1,所以S △APQ =12|PQ |·d =12×(23-1)×1=3-12.8.(2018·贵州适应性考试)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程; (2)过原点且倾斜角为α⎝⎛⎭⎪⎫π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.解:(1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ, 两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y .(2)射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, ∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α. ∵π6<α≤π4, ∴|OA |·|OB |的取值范围是⎝ ⎛⎦⎥⎤433,4.第二节参数方程1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =gt ,并且对于t的每一个允许值,由方程组⎩⎪⎨⎪⎧x =ft ,y =gt所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a 1cos θ,y =b tan θ(θ为参数).1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=02.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.解析:由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)得,x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.答案:1853.曲线C的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)4.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为________________________________________________________________________.解析:将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t 代入x 2+y 24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0, 解得t 1=0,t 2=-167,所以|AB |=|t 1-t 2|=167.答案:167考点一 参数方程与普通方程的互化 基础送分型考点——自主练透[考什么·怎么考]参数方程与普通方程的互化是每年高考的热点内容,常与极坐标、直线与圆锥曲线的位置关系综合考查,属于基础题.1.将下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).解:(1)∵⎝ ⎛⎭⎪⎫1t 2+⎝ ⎛⎭⎪⎫1tt 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t,∴x ≠0.当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0, ∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3).2.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).3.求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α,得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[怎样快解·准解]将参数方程化为普通方程的方法将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参.如sin 2θ+cos 2θ=1等.[注意] 将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如第1题.考点二 参数方程的应用重点保分型考点——师生共研参数方程的应用是每年高考的热点,主要涉及直线与圆、圆锥曲线的参数方程以及直线与圆、圆锥曲线位置关系的应用,难度适中,属于中档题.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.[解题师说]1.方法要熟(1)解决直线与圆、圆锥曲线的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆、圆锥曲线的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(3)直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的繁琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.(4)圆、圆锥曲线的参数方程突出了其工具性作用,应用时,把圆、圆锥曲线上的点的坐标设为参数方程的形式,将问题转化为三角函数问题,利用三角函数知识解决问题.2.结论要记根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0; (3)|M 0M 1||M 0M 2|=|t 1t 2|.[冲关演练]1.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值. 解:(1)由曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ (θ为参数),可得曲线C 的普通方程是x 2-y2=1.当α=π3时,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0, 得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫92,332.(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0,则|PA |·|PB |=|t 1t 2|=⎪⎪⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪81+tan 2α1-tan 2α,由已知得tan α=2,故|PA |·|PB |=403.2.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎪⎫2,π2,设点P 的坐标为(-5+2cos t,3+2sin t ), 则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=⎪⎪⎪⎪⎪⎪-6+2cos ⎝ ⎛⎭⎪⎫t +π42.所以d min =42=22,又|AB |=2 2.所以△PAB 面积的最小值是S =12×22×22=4.考点三 极坐标、参数方程的综合应用重点保分型考点——师生共研极坐标与参数方程的综合应用是每年的必考内容,主要涉及极坐标方程与直角坐标方程的互化及应用、参数方程与直角坐标方程的互化及应用,难度适中.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为⎝ ⎛⎭⎪⎫23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数).(1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值.解:(1)由x =ρcos θ,y =ρsin θ, 可得点P 的直角坐标为(3,3),由⎩⎨⎧x =2cos α,y =-3+2sin α,得x 2+(y +3)2=4,∴曲线C 的直角坐标方程为x 2+(y +3)2=4. (2)直线l 的普通方程为x +2y +1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数),设Q (2cos α,-3+2sin α),则M ⎝ ⎛⎭⎪⎫32+cos α,sin α, 故点M 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32+cos α+2sin α+112+22=⎪⎪⎪⎪⎪⎪5sin α+φ+525≥-5+525=52-1⎝⎛⎭⎪⎫tan φ=12, ∴点M 到直线l 的距离的最小值为52-1. [解题师说]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[冲关演练]1.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t ,得l 1的普通方程l 1:y =k (x -2), 消去参数m ,得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k x -2,y =1kx +2.消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2cos 2θ-sin 2θ=4,ρcos θ+sin θ-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.2.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t(t为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=-2 2. (1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-22,得22(ρcos θ-ρsin θ)=-22, 化成直角坐标方程,得22(x -y )=-22, 即直线l 的方程为x -y +4=0. 依题意,设P (2cos t,2sin t ), 则点P 到直线l 的距离d =|2cos t -2sin t +4|2=⎪⎪⎪⎪⎪⎪22cos ⎝⎛⎭⎪⎫t +π4+42=22+2cos ⎝⎛⎭⎪⎫t +π4.当cos ⎝⎛⎭⎪⎫t +π4=-1时,d min =22-2.故点P 到直线l 的距离的最小值为22-2. (2)∵曲线C 上的所有点均在直线l 的右下方, ∴对∀t ∈R ,有a cos t -2sin t +4>0恒成立, 即a 2+4cos(t +φ)>-4⎝ ⎛⎭⎪⎫其中tan φ=2a 恒成立,∴a 2+4<4, 又a >0,∴0<a <2 3. 故a 的取值范围为(0,23).1.已知P为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)由(1)知点M 的直角坐标为⎝⎛⎭⎪⎫π6,3π6,A (1,0).故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).2.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,将曲线C 1的参数方程代入曲线C 2的直角坐标方程,化简得2t 2-22t +1-4a =0. ∴Δ=(-22)2-4×2(1-4a )>0,即a >0,t 1+t 2=2,t 1·t 2=1-4a2. 根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a 2,解得a =136,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94,符合题意.综上,实数a =136或a =94.3.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积. 解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t(t 为参数)得C 1的普通方程为(x -4)2+(y -5)2=9,由ρ=2sin θ,得ρ2=2ρsin θ, 将x 2+y 2=ρ2,y =ρsin θ代入上式, 得C 2的直角坐标方程为x 2+(y -1)2=1.(2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),则kC 1C 2=5-14-0=1,∴直线C 1C 2的方程为x -y +1=0, ∴点O 到直线C 1C 2的距离d =12=22, 又|AB |=|C 1C 2|-1-3=4-02+5-12-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.4.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎪⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.解:(1)由⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=22⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2cos θ+2sin θ, 得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2. 所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)法一:设曲线C 上的点P (1+2cos α,1+2sin α), 则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2sin α+cos α-2|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-22.当sin ⎝⎛⎭⎪⎫α+π4=-1时,d max =2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 法二:设与直线l 平行的直线l ′:x +y +b =0, 当直线l ′与圆C 相切时,|1+1+b |2=2,解得b =0或b =-4(舍去), 所以直线l ′的方程为x +y =0.因为直线l 与直线l ′的距离d =|0+4|2=2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 5.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cosθ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.6.已知直线L的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ. (1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值.解:(1)由⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),得L 的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0, 由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4, 所以曲线C 的直角坐标方程为x 2+y 24=1.(2)由(1),知直线L 的普通方程为2x +y -6=0, 设曲线C 上任意一点P (cos α,2sin α), 则点P 到直线L 的距离d =|2cos α+2sin α-6|5.由题意得|PA |=d sinπ3=415⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫α+π4-315,所以当sin ⎝⎛⎭⎪⎫α+π4=-1时,|PA |取得最大值,最大值为4153+215.7.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.解:(1)由ρ=2,得ρ2=4,所以曲线C 1的直角坐标方程为x 2+y 2=4. 故由题意可得曲线C 2的直角坐标方程为x 24+y 2=1.所以曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(2)设四边形ABCD 的周长为l ,点A (2cos θ,sin θ), 则l =8cos θ+4sin θ=45sin(θ+φ),⎝⎛⎭⎪⎫其中sin φ=25,cos φ=15 所以当θ+φ=2k π+π2(k ∈Z)时,l 取得最大值,最大值为45,此时θ=2k π+π2-φ(k ∈Z),所以2cos θ=2sin φ=45,sin θ=cos φ=15,此时A ⎝ ⎛⎭⎪⎫45,15.所以直线l 1的普通方程为x -4y =0.8.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值. 解:(1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4,∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4, 即ρ=4sin θ. 由ρ=23,得sin θ=32, ∵θ∈⎝⎛⎭⎪⎫π2,π,∴θ=2π3.(2)易知直线l 的普通方程为x +3y -43=0,∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0. 又射线OA 的极坐标方程为θ=2π3(ρ≥0),联立⎩⎪⎨⎪⎧θ=2π3ρ≥0,ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎫43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.。

2014届高三数学一轮复习导学案:坐标系与参数方程

2014届高三数学一轮复习导学案:坐标系与参数方程

4、 在平面直角坐标系 xoy 中,直线 l 的参数方程为
x t 1 ( t 为参数),曲线 y 2t
x 2 tan 2 C 的参数方程为 ( 为参数),试求直线 l 与曲线 C 的普通方程, y 2 tan
并求出它们的公共点的坐标.
3
课外作业——坐标系与参数方程
1、 已知圆的极坐标方程为: 2________.
2、已知曲线 C 的极坐标方程为 4sin ,以极点为原点,极轴为 x 轴的非负
1 x t, 2 半轴建立平面直角坐标系,直线 l 的参数方程为 (t 为参数), y 3 t 1 2
x 2、在平面直角坐标系 xOy 中,圆 C 的参数方程为 y 2 r cos , 2 ( 为参 2 r sin 2
数 , r 0) ,以 O 为极点 , x 轴正半轴为极轴建立极坐标系 ,直线 l 的极坐标方 程为 sin(

4
) 1, 若圆 C 上的点到直线 l 的最大距离为 3 ,则 r =_______.
4
5
1

4
) 2 ,直线与曲线 C 2 交
于 A, B 两点。 (1)求曲线 C 2 的普通方程; (2)求线段 AB 的长。
3、已知极坐标系的极点在直角坐标系的原点,极轴与 x 轴的正半轴重合.曲线
C 的极坐标方程为 2 cos 2 3 2 sin 2 3 ,直线 l 的参数方程为
3、在平面直角坐标 xOy 中,已知圆 C1 : x 2 y 2 4 ,圆 C2 : ( x 2)2 y 2 4 . (1)在以 O 为极点,x 轴正半轴为极轴的极坐标系中,分别求圆 C1 , C2 的极 坐标方程及这两个圆的交点的极坐标; (2)求圆 C1与C2 的公共弦的参数方程.

福建省2019届高三数学理一轮复习典型题专项训练:坐标系与参数方程(附答案)

福建省2019届高三数学理一轮复习典型题专项训练:坐标系与参数方程(附答案)

福建省2019届高三数学一轮复习典型题专项训练坐标系与参数方程1、(2018全国I 卷高考题)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.⑴求2C 的直角坐标方程;⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.2、(2017全国I 卷高考题)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,,(θ为参数),直线l 的参数方程为41x a t y t =+⎧⎨=-⎩,,(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a .3、(福州市2018届高三上学期期末)在直角坐标系xOy 中,曲线cos ,:sin x t C y αα=⎧⎨=⎩(α为参数,0t >).在以O 为极点,x 轴正半轴为极轴的极坐标系中,直线:cos 24l πρθ⎛⎫-= ⎪⎝⎭.(1)若l 与曲线C 没有公共点,求t 的取值范围; (2)若曲线C 上存在点到l 距离的最大值为1622+,求t 的值.4、(龙岩市2018届高三2月学质量检查)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2sin()306πρθ+-=,曲线C 的参数方程是2cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(Ⅰ)求直线l 和曲线C 的普通方程;(Ⅱ)直线l 与x 轴交于点P ,与曲线C 交于A ,B 两点,求PA PB +.5、(龙岩市2018届高三4月教学质量检查)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为011cos 122=++θρρ.(1)求圆C 的直角坐标方程;(2)设)0,1(P ,直线l 的参数方程是⎩⎨⎧=+=ααsin cos 1t y t x (t 为参数),已知l 与圆C 交于B A ,两点,且||43||PB PA =,求l 的普通方程. 6、(宁德市2018届高三第二次(5月)质量检查)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2(4cos )4r ρρθ-=-,曲线2C 的参数方程为43cos ,3sin x r y r θθ⎧=+⎪⎨=⎪⎩(θ为参数).(1)求曲线1C 的直角坐标方程和曲线2C 的极坐标方程;(2)当r 变化时,设1,C 2C 的交点M 的轨迹为3C .若过原点O ,倾斜角为3π的直线l 与曲线3C 交于点,A B ,求OA OB -的值.7、(莆田市2018届高三下学期第二次质量测试(5月))在直角坐标系xOy 中,曲线1C 过点(0,1)P -,其参数方程为⎩⎨⎧+-==t y t x 31,(t 为参数).以坐标原点O 为极点,轴的非负半轴为极轴,建立极坐标系, 曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若曲线1C 与2C 相交于,A B 两点,求11PA PB+的值.8、(泉州市2018届高三下学期质量检查(3月))在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩ (t 为参数,0απ<≤ ).在以O 为极点,x 轴正半轴为极轴的极坐标中,曲线C :=4cos ρθ . (1)当4πα=时,求C 与l 的交点的极坐标;(2)直线l 与曲线C 交于A ,B 两点,且两点对应的参数1t ,2t 互为相反数,求AB 的值.9、(三明市2018届高三5月质量检查)在平面直角坐标系xOy 中,直线l 的参数方程为13,1x t y t⎧=-⎪⎨=+⎪⎩(t为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2cos ρθ=. (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,P Q 两点,求POQ ∠.10、(厦门市2018届高三上学期期末质检)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,sin ,x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,,A B 为C 上两点,且OA OB ⊥,设射线:OA θα=,其中02πα<<.(1)求曲线C 的极坐标方程; (2)求OA OB ⋅的最小值.11、(厦门市2018届高三下学期第一次质量检查(3月))在立角坐标系xOy 中,直线l 的参数方程为23cos ,1sin ,x t y t αα⎧=-+⎪⎨=-+⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()221sin 8ρθ+=.(1)若曲线C 上一点Q 的极坐标为0,2πρ⎛⎫ ⎪⎝⎭,且l 过点Q ,求l 的普通方程和C 的直角坐标方程;(2)设点()23,1P --,l 与C 的交点为,A B ,求11PA PB+的最大值.12、(厦门外国语学校2018届高三下学期第一次考试)在平面直角坐标系xoy 中,圆C 的参数方程为52cos 32sin x t y t⎧=-+⎪⎨=+⎪⎩,(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为cos()24πρθ+=-,,A B 两点的极坐标分别为.(2,),(2,)2A B ππ(1)求圆C 的普通方程和直线l 的直角坐标方程; (2)点P 是圆C 上任一点,求PAB ∆面积的最小值.13、(永春一中等四校2018届高三上学期第一次联考)平面直角坐标系xOy 中,曲线221:(2)1C x y -+=,曲线2C 的参数方程为3cos ,sin ,x y αα=⎧⎨=⎩(α为参数).在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为()6πθρ=∈R .(Ⅰ)求1C 的极坐标方程及2C 的普通方程;(Ⅱ)l 与1C 相切于点A ,在第三象限内与2C 交于点Q ,求1C AQ ∆的面积.14、(漳州市2018届高三1月调研)在平面直角坐标系xOy 中,曲线C的参数方程是(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为= 2.(Ⅰ)求曲线C 的普通方程与直线l 的直角坐标方程;(Ⅱ)已知直线l 与曲线C 交于A ,B 两点,与x 轴交于点P ,求|P A |·|PB |.15、(漳州市2018届高三5月质量检查)在直角坐标系xOy 下,曲线1C 的参数方程为cos ,1sin ,x y ϕϕ=⎧⎨=+⎩(ϕ为参数),曲线2C 的参数方程为⎩⎨⎧==,sin ,cos ααt y t x (t 为参数,且0t ≥,2π0<<α).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线3C 的极坐标方程为θρcos 2r =,常数0>r ,曲线2C 与曲线1C ,3C 的异于O 的交点分别为A ,B . (1)求曲线1C 和曲线2C 的极坐标方程; (2)若||||OB OA +的最大值为6,求r 的值.16、(政和一中、周宁一中2018届高三上学期11月联考)在平面直角坐标系中,椭圆C 的参数方程为⎩⎨⎧==ααsin 3cos 2x y (α为参数),已知以坐标原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(Ⅰ)把椭圆C 的参数方程化为极坐标方程; (Ⅱ)设A ,B 分别为椭圆C 上的两点,且OA ⊥OB ,求2211OBOA+的值.17、(莆田第一中学2018届高三第四次月考)在平面直角坐标系xOy 中,已知曲线1:1C x y +=与曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数,[)0,2ϕπ∈).以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系.(1)写出曲线12,C C 的极坐标方程;(2)在极坐标系中,已知点A 是射线():0l θαρ=≥与1C 的公共点,点B 是l 与2C 的公共点,当α在区间0,2π⎡⎤⎢⎥⎣⎦上变化时,求OB OA 的最大值.18、(成都市2018届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是4cos ρθ=,直线l 的极坐标方程是2sin 14ρθπ⎛⎫+= ⎪⎝⎭,点,2Q ρπ⎛⎫⎪⎝⎭在直线l 上.以极点为坐标原点O ,极轴为x 轴的正半轴,建立平面直角坐标系xOy ,且两坐标系取相同的单位长度. (I )求曲线C 及直线l 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于不同的两点,A B ,求QA QB +的值.19、(达州市2017届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的参数方程为22222x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的极坐标方程为4ρ=. (1)若l 的参数方程中的2t =-时,得到M 点,求M 的极坐标和曲线C 直角坐标方程; (2)若点(0,2)P ,l 和曲线C 交于,A B 两点,求11PA PB+.20、(德阳市2018届高三二诊考试)在平面直角坐标系xOy 中,直线l :22x ty t=+⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C :2sin ρθ=. (1)求直线l 的极坐标方程及曲线C 的直角坐标方程;(2) 记射线0,02πθαρα⎛⎫=≥<<⎪⎝⎭与直线l 和曲线C 的交点分别为点M 和点N (异于点O ),求ON OM的最大值.参考答案:1、(1)由22cos 30ρρθ+-=可得:22230x y x ++-=,化为22(1)4x y ++=.(2)1C 与2C 有且仅有三个公共点,说明直线2(0)y kx k =+<与圆2C 相切,圆2C 圆心为(1,0)-,半径为2,则2221k k -+=+,解得43k =-,故1C 的方程为423y x =-+.2、(1)1a =-时,直线l 的方程为430x y +-=.曲线C 的标准方程是2219x y +=,联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得:30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则C 与l 交点坐标是()30,和21242525⎛⎫- ⎪⎝⎭,(2)直线l 一般式方程是440x y a +--=.设曲线C 上点()3cos sin p θθ,. 则P 到l 距离()5sin 43cos 4sin 41717aad θϕθθ+--+--==,其中3tan 4ϕ=. 依题意得:17max d =,解得16a =-或8a =3、解:(1)因为直线l 的极坐标方程为cos 24πρθ⎛⎫-= ⎪⎝⎭,即cos sin 2ρθρθ+=,所以直线l 的直角坐标方程为2x y +=; 因为cos ,sin x t y αα=⎧⎨=⎩(α参数,0t >)所以曲线C 的普通方程为2221x y t+=,由2222,1,x y x y t+=⎧⎪⎨+=⎪⎩消去x 得,()2221440t y y t +-+-=,所以()()22016414t t ∆-+-<=, 解得 03t <<,故t 的取值范围为()0,3.(2)由(1)知直线l 的直角坐标方程为20x y +-=, 故曲线C 上的点()cos ,sin t αα到l 的距离cos sin 22t d αα+-=,故d 的最大值为2122t ++由题设得21216222t ++=+, 解得2t =±.又因为0t >,所以2t =. 4、解:(Ⅰ)2sin()306πρθ+-=,化为3sin cos 30ρθρθ+-=, 即l 的普通方程为330x y +-=,2cos 2sin x y ϕϕ=⎧⎨=⎩消去ϕ,得C 的普通方程为224x y +=. (Ⅱ)在330x y +-=中令0y =得(3,0)P ,∵33k =-,∴倾斜角56πα=,∴l 的参数方程可设为53cos 650sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩即33212x t y t⎧=-⎪⎪⎨⎪=⎪⎩,代入224x y +=得23350t t -+=,70∆=>,∴方程有两解,1233t t +=,1250t t =>,∴1t ,2t 同号, 12PA PB t t +=+1233t t =+=.5、解:(Ⅰ)将222cos ,sin ,x y x y ρθρθρ===+ 代入圆C 的极坐标方程212cos 110ρρθ++=, 得2212110x y x +++=,化为圆的标准方程为22(6)25x y ++=. (Ⅱ)将直线l 的参数方程1cos ,sin x t y t αα=+⎧⎨=⎩(t 为参数)代入圆C 的直角坐标方程22(6)25x y ++=中,化简得214cos 240t t α++=, 设,A B 两点所对应的参数分别为12,t t ,由韦达定理知121214cos ,24t t t t α+=-=① ∴12,t t 同号 又∵3||||4PA PB =, ∴1234t t =② 由①②可知12=32=42t t ⎧⎪⎨⎪⎩或12=32=42t t ⎧-⎪⎨-⎪⎩∴14cos 72α-=或72-解得2cos 2α=±,∴tan 1k α==±, ∴l 的普通方程为(1)y x =±-.6、解法一:(1)由1C :2(4cos )4r ρρθ-=-, 得224cos 4r ρρθ-+=,即222440x y x r +-+-=, ………………………………………………………2分 曲线2C 化为一般方程为:222(4)3x y r -+=,即2228163x y x r +-+=,………4分 化为极坐标方程为:228cos 1630r ρρθ-+-=.………………………………5分(2)由224cos 4r ρρθ-+=及228cos 1630r ρρθ-+-=,消去2r ,得曲线3C 的极坐标方程为22cos 20()ρρθρ--=∈R . …………………………………………………7分将θπ=3代入曲线3C 的极坐标方程,可得220ρρ--=,…………………8分 故121ρρ+=,1220ρρ=-<,…………………………………………………9分 故121OA OB ρρ-=+=.…………………………………………………10分(或由220ρρ--=得0)1)(2(=+-ρρ得1,221-==ρρ,…………………9分 故211-=-=OA OB …………………………………………………10分) 解法二:(1)同解法一;(2)由22244x y x r +-+=及2228163x y x r +-+=,消去2r ,得曲线3C 的直角坐标方程为2222x y x +-=. ………………………………………………………………7分设直线l 的参数方程为1,232x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),………………………………8分与2222x y x +-=联立得2213244t t t +-=,即220t t --=,………………………………………………………………9分 故121t t +=,1220t t =-<,∴121OA OB t t -=+=.……………………………………………………10分 (或由220t t --=得,,0)1)(2(=+-t t 得1,221-==t t ,∴211-=-=OA OB .……………………………………………………10分)7、解:(1)由,(13,x t t y t =⎧⎪⎨=-+⎪⎩为参数),可得1C 的普通方程为310x y --=,…………………………2分 又2C 的极坐标方程为2cos 4cos 0ρθθρ+-=,即222cos 4cos 0ρθρθρ+-=,……………………………………3分 所以2C 的直角坐标方程为24y x =. ………………………………5分(2) 1C 的参数方程可化为1,2(31,2x t t y t ⎧=⎪⎪⎨⎪=-+⎪⎩为参数),……………6分 代入2C 得:234(23)40t t -++=,……………………………7分 设,A B 对应的直线1C 的参数分别为1t ,2t ,124(23)3t t ++=,1243t t =,所以10t >,20t >,…………………8分 所以1212121111t t PA PB t t t t ++=+=4(23)32343+==+.………………10分 8、解法一:(Ⅰ)由4cos ρθ=,可得24cos ρρθ=, 所以224x y x +=,即2240x y x +-=,\当π4α=时,直线l 的参数方程21,221,2x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),化为直角坐标方程为y x =,联立22,40,y x x y x =⎧⎨+-=⎩解得交点为(0,0)或(2,2), 化为极坐标为(0,0),π(22,)4(2)由已知直线恒过定点(1,1)P ,又021=+t t ,由参数方程的几何意义知P 是线段AB 的中点,曲线C 是以(2,0)C 为圆心,半径r 2=的圆,且||2PC =,由垂径定理知:22||2r ||24222AB PC =-=-=.解法二:(1)依题意可知,直线l 的极坐标方程为π(R)4θρ=∈, 当0ρ>时,联立π,44cos θρθ,⎧=⎪⎨⎪=⎩解得交点π(22,)4, 当0ρ=时,经检验(0,0)满足两方程, 当0ρ<时,无交点;综上,曲线C 与直线l 的点极坐标为(0,0),π(22,)4.(2)把直线l 的参数方程代入曲线C ,得22(sin cos )20t t αα+--=, 可知120t t +=,122t t ⋅=-,所以2121212||()422AB t t t t t t =-=+-=.9、解法一:(1)由13,1,x t y t ⎧=-⎪⎨=+⎪⎩得l 的普通方程为313x y +=+, …………1分又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩, 所以l 的极坐标方程为()cos 3sin 13ρθθ+=+. .. 3分(或π2sin()136ρθ+=+)由2cos ρθ=得22cos ρρθ=,即222x y x +=, .......................... 4分所以C 的直角坐标方程为2220xy x +-=. ............................... 5分(2)设,P Q 的极坐标分别为()()1122,,,ρθρθ,则12POQ θθ∠=- ............ 6分由()cos 3sin 13,2cos ,ρθθρθ⎧+=+⎪⎨=⎪⎩消去ρ得()2cos cos 3sin 13θθθ+=+, .. 7分 化为cos23sin 23θθ+=,即π3sin 262θ⎛⎫+= ⎪⎝⎭, ...................... 8分因为π02θ⎛⎫∈ ⎪⎝⎭,,即ππ7π2+666θ⎛⎫∈ ⎪⎝⎭,,所以ππ263θ+=,或π2π263θ+=, . 9分 即12π,12π,4θθ⎧=⎪⎪⎨⎪=⎪⎩或12π,4π,12θθ⎧=⎪⎪⎨⎪=⎪⎩所以12π=6POQ θθ∠=-. ........................ 10分 解法二: (1)同解法一 ……………………………5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆. 6分将l 的参数方程化为标准形式31,2112x t y t ⎧'=-⎪⎪⎨⎪'=+⎪⎩(其中t '为参数),代入C 的直角坐标方程为2220x y x +-=得,2231311210222t t t ⎛⎫⎛⎫⎛⎫'''-++--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理得,20t t ''+=,解得0t '=或1t '=-. ............................... 8分 设,P Q 对应的参数分别为12,t t '' ,则121PQ t t ''=-=.所以π3PCQ ∠=, ... 9分 又因为O 是圆C 上的点,所以π26PCQ POQ ∠∠== ........................ 10分 解法三: (1)同解法一. ……………………………5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆.6分又由①得l 的普通方程为()3130x y +-+=, .......................... 7分则点C 到直线l 的距离为32d =, ...................................... 8分所以2211PQ d =-=,所以PCQ △是等边三角形,所以π3PCQ ∠=, .... 9分 又因为O 是圆C 上的点,所以π26PCQ POQ ∠∠== 10分10、解:(1)将1C 的方程化为直角坐标方程为2212x y ⎛⎫+= ⎪⎝⎭,即2212x y +=.将cos x ρθ=,sin y ρθ=代入可得()()22cos sin 12ρθρθ+=化简得2221sin ρθ=+(2)根据题意:射线OB 的极坐标方程为2πθα=+或2πθα=-.1221sin OA ρα==+,222221cos 1sin 2OB ρπαα===+⎛⎫+± ⎪⎝⎭ 则1222221sin 1cos OA OB ρραα⋅=⋅=⋅++()()2221sin 1cos αα=+⋅+22241sin 1cos 32αα≥=+++,当且仅当22sin cos αα=,即4πα=时,取得最小值43. 故OA OB ⋅的最小值为43. 11、(1)把0,2Q πρ⎛⎫ ⎪⎝⎭代入曲线C 可得2,2Q π⎛⎫⎪⎝⎭化为直角坐标为()0,2Q ,又l 过点()23,1P --,得直线l 的普通方程为322y x =+; ()221sin 8ρθ+=可化为()22sin 8ρρθ+=.由222,sin x y y ρρθ=+=可得()2228x y y ++=, 即曲线C 的直角坐标方程为2228x y +=.(2)把直线l 的参数方程代入曲线C 的直角坐标方程得,()()22cos 232sin 18t t αα-+-=,化简得()()22sin 14sin 3cos 60t t ααα+-++=,①()()224sin 3cos 24sin 1ααα⎡⎤∆=-+-+⎣⎦可得()1212224sin 3cos 6,0sin 1sin 1t t t tαααα++==>++,故1t 与2t 同号12121212121111t t t t PA PB t t t t t t +++=+==4sin 3cos 4sin 633ααπα+⎛⎫==+ ⎪⎝⎭, 所以6πα=时,4sin 33πα⎛⎫+ ⎪⎝⎭有最大值43. 此时方程①的340∆=>,故11PA PB +有最大值43. 12、解: (1)由52cos 32sin x ty t⎧=-+⎪⎨=+⎪⎩消去参数t ,得22(5)(3)2x y ++-=,所以圆C 的普通方程为22(5)(3)2x y ++-=.……………………………………2分 由cos()24πρθ+=-,得22cos sin 222ρθρθ-=-,换成直角坐标系为20x y -+=, 所以直线l 的直角坐标方程为20x y -+=……………………………5分 (2)(2,),(2,)2A B ππ 化为直角坐标为(0,2),(2,0)A B -在直线l 上,并且22AB =,设P 点的坐标为(52cos ,32sin )t t -++,则P 点到直线l 的距离为62cos(52cos 32sin 2422t t t d π-++-+--+==,…8分min 22d ∴=,所经PAB ∆面积的最小值是1222242S =⋅⋅=…………………10分13、解法1:(Ⅰ)把cos ,sin ,x y ρθρθ=⎧⎨=⎩代入22(2)1x y -+=,得03cos 42=+-θρρ,所以曲线1C 的极坐标方程为03cos 42=+-θρρ.由曲线2C 的参数方程)(,sin ,cos 3为参数ααα⎩⎨⎧==y x ,消去α,得曲线2C 的普通方程为1922=+y x . …………5分(Ⅱ)联立24cos 30,,6ρρθπθ⎧-+=⎪⎨=⎪⎩得点A 的极坐标为)6,3(π, 曲线2C 的极坐标方程为9sin 9cos 2222=+θρθρ,联立2222cos 9sin 9,,6ρθρθπθ⎧+=⎪⎨=⎪⎩可得32=ρ, 可得3321-==ρρ,,点Q 的极坐标为)6,3(π-所以32=AQ ,而点1C 到直线AQ 的距离为1sin 16d OC π=⋅=,所以AQ C 2∆的面积为321=⋅=d AQ S . …………10分 解法2:(Ⅰ)同解法1.(Ⅱ)将直线l 的极坐标方程化为直角坐标方程可得x y 33=, 联立⎪⎩⎪⎨⎧==++-x y y x x 333422得点A 的坐标为)23,23(, 联立⎪⎪⎩⎪⎪⎨⎧==+xy y x 331922,可得点Q 的坐标为)23,23(--, 所以32)2323()232322=+++=(AQ , 点)0,2(2C 到直线33:=y l 的距离为1)3(3032322=+⨯-⨯=d ,.所以AQ C 2∆的面积为321=⋅=d AQ S . …………10分 14、解:(Ⅰ)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2cos α,y =2sin α(α为参数)⎩⎪⎨⎪⎧x -1=2cos α,y =2sin α(α为参数), 两式平方相加,得曲线C 的普通方程为(x -1)2+y 2=4;(3分)由直线l 的极坐标方程可得ρcos θcos π4-ρsi n θsi n π4=2ρcos θ-ρsi n θ=2,(4分)即直线l 的直角坐标方程为x -y -2=0.(5分)(Ⅱ)由题意可得P(2,0),则直线l 的参数方程为⎩⎨⎧x =2+22t ,y =22t(t 为参数).(6分)设A ,B 两点对应的参数分别为t 1,t 2,则|PA|·|PB|=|t 1|·|t 2|,将⎩⎨⎧x =2+22t ,y =22t(t 为参数)代入(x -1)2+y 2=4,得t 2+2t -3=0,(8分)则Δ>0,由韦达定理可得t 1·t 2=-3,(9分) 所以|PA|·|PB|=|-3|=3.(10分)15、解:(1)由cos ,1sin ,x y ϕϕ=⎧⎨=+⎩得1)1(22=-+y x ,即0222=-+y y x ,所以0sin 22=-θρρ,所以曲线1C 的极坐标方程为θρsin 2=. ··········································································· 3分 曲线2C 的极坐标方程为αθ=. ··························································································· 5分 (2)由条件,有αsin 2||=OA ,αcos 2||r OB =, ·················································· 6分 所以||||OB OA +22sin 2cos 21sin()r r αααβ=+=++,其中tan 0r β=>,π(0,)2β∈. ·························································································· 8分因为)2,0(πα∈,所以π(,)2αβββ+∈+,所以当π2αβ+=时,2max 12|)||(|r OB OA +=+. ··················································· 9分因为||||OB OA +的最大值为6,所以6122=+r , 又0>r ,所以22=r . 10分16、解:(Ⅰ)∵椭圆C 的参数方程为⎩⎨⎧==ααsin 3cos 2x y (α为参数),∴椭圆C 普通方程为=1, ∴=1.(Ⅱ)由(Ⅰ)得=,设A(ρ1,θ1),B (ρ2,θ2), 则2211OBOA+==+=+==127. ∴2211OBOA+的值是127. 17、解:(1)曲线1C 的极坐标方程为()cos sin 1ρθθ+=,即2sin 42πρθ⎛⎫+= ⎪⎝⎭. 曲线2C 的普通方程为()2224x y -+=,即2240x y x +-=,所以曲线2C 的极坐标方程为4cos ρθ=. ……………………4分(2) 由(1)知1,4cos cos sin A B OA OB ρρθθθ====+,()()4cos cos sin 21cos2sin2222sin 24OBOA παααααα⎛⎫∴=+=++=++ ⎪⎝⎭¡­ 由02πα≤≤知52+444πππα≤≤,当242ππα+=, 即8πα=时,OB OA有最大值222+.¡­………………………10分18、19、(1)3(2,)4M π,曲线C 的直角坐标方程:2216x y += ……………5分(2)由2222()(2)1622t t ++=得222120t t +-=,121222, 12t t t t +=-⋅=- 21212(22)4(12) ||||1114|||| ||126t t PA PB t t --⋅-++===⋅……………10分20、解:(1)由题意得直线l 的普通方程为:4x y +=, 所以其极坐标方程为:4sin cos ρθθ=+.由2sin ρθ=得:22sin ρρθ=,所以222x y y +=, 所以曲线C 的直角坐标方程为:2220x y y +-=. (2)由题意2sin ON α=,4sin cos OM αα=+,所以2sin sin cos 2ONOM ααα+=21sin 2444πα⎛⎫=-+ ⎪⎝⎭, 由于02πα<<,所以当38πα=时,ON OM取得最大值:214+.。

高考数学一轮复习 坐标系与参数方程(选考内容)课件

高考数学一轮复习 坐标系与参数方程(选考内容)课件

由韦达定理得t1+t2= 8
-4(coαs +2sinα) 3sin2α+1
,
t1·t2= - 3s in2α +1 .
返回目录
由已知|AM|:|MB|=1:2,
即|t1|:|t2|=1:2.
∵M在已知1 曲线外,∴M外分弦AB. ∴t1:t2=- 2 ,
∴∴t2-=3-2sti1n8,2tα1++t12=-=t1,3t12·(tc23=so-iα2sn2+αt212s+=1i-nα2(2)t1+t2)2,
xOM叫做点M的 极角 ,记为θ,有序数对 (ρ,θ) ,
叫做点M的极坐标,记作 (ρ,θ)
.
返回目录
二、圆锥曲线的参数方程
1.椭圆
x2 a2
y2 + b2
=1
(a>b>0)的参数方程
{ x=acosθ
(θ为参数)
为 y=bsinθ
.
2.双曲线
x2 a2
-
y2 b2
=1
(a>0,b>0)的参数方程
【评析】应熟记常见圆的极坐标方程.
返回目录
*对应演练*
求过点A(2,0)与极轴夹角为
π 6
的直线方程.
因为过A(2,0)与极轴夹角为π 的直线有两条,设为
6
l1,l2,过点O作l1,l2的垂线,垂足为点B1,B2,所以B1为(1,
5 3
π),B2为(1,
π 3
),因此两直线的方程分别为
ρ·cos(θ- π5 )=1,ρ·cos(θ- )=1π .
代入方程y2=4x,整理得t2sin2α+4(sinα-cosα)·t-8=0.①

高三数学理一轮复习典型题专项训练:坐标系与参数方程

高三数学理一轮复习典型题专项训练:坐标系与参数方程

湖北省2019届高三数学一轮复习典型题专项训练坐标系与参数方程1、(2018全国I 卷高考题)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.⑴求2C 的直角坐标方程;⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.2、(2017全国I 卷高考题)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,,(θ为参数),直线l 的参数方程为41x a t y t =+⎧⎨=-⎩,,(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a .3、(湖北省2018届高三4月调研考试)在直角坐标系中,曲线,曲线为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程;(2)已知射线与曲线分别交于点(异于原点),当时,求的取值范围.4、(湖北八校2018届高三第一次联考(12月))已知曲线1C 的极坐标方程为22cos sin θρθ=,2C 的参数方程为222222x ty t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将曲线1C 与2C 的方程化为直角坐标系下的普通方程;(2)若1C 与2C 相交于A B 、两点,求AB .5、(华师一附中、黄冈中学等八校2018届高三第二次联考)已知直线l 的参数方程为2222x t y a t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数,a R ∈),曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)分别将直线l 的参数方程和曲线C 的极坐标方程化为直角坐标方程; (2)若直线l 经过点(0,1),求直线l 被曲线C 截得线段的长.6、(黄冈、黄石等八市2018届高三3月联考)在直角坐标系xOy 中,曲线C 1参数方程为212232x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 2的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数), 以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线的极坐标方程;(2)若射线()0ρ>分别交于两点, 求的最大值.7、(黄冈中学2018届高三5月二模)已知平面直角坐标系中,曲线C 的参数方程为15cos ()25sin x y ααα⎧=+⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系. (1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长. 8、(荆州市2018届高三第一次质量检查) 在直角坐标系xOy 中,曲线C 的参数方程为sin cos sin cos x y αααα=+⎧⎨=-⎩(α为参数).(1)求曲线C 的普通方程;(2)在以O 为极点,x 正半轴为极轴的极坐标系中,直线l 方程为π12sin()042ρθ-+=,已知直线l 与曲线C 相交于A 、B 两点,求|AB |.9、(荆州中学2018届高三5月模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. 曲线1C 的极坐标方程为4sin ρθ=,M 为曲线1C 上异于极点的动点,点P 在射线OM 上,且,25,OP OM 成等比数列. (Ⅰ)求点P 的轨迹2C 的直角坐标方程;(Ⅱ)已知(0,3)A ,B 是曲线2C 上的一点且横坐标为2,直线AB 与1C 交于,D E 两点,试求AD AE -的值.10、(湖北省七市(州)教科研协作体2018届高三3月联考)已知曲线C 的参数方程为2cos 2sin x y θθ=⎧⎪⎨=⎪⎩ (θ为参数).以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线l 的极坐标方程为6sin 2cos =-θ)θρ(. (1)求曲线C 和直线l 的普通方程;(2)设P 为曲线C 上任意一点,求点P 到直线l 的距离的最值.11、(天门、仙桃、潜江2018届高三上学期期末联考) 已知动点P 、Q 都在曲线2cos :(2sin x tC t y t =⎧⎨=⎩为参数)上,对应参数分别为t α=与2t α=(02απ<<),M 为PQ 的中点. (Ⅰ) 求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.12、(武汉市2018届高三毕业生二月调研)在直角坐标系xOy 中,曲线C 的参数方程为4cos {2sin x y θθ==(θ为参数),直线l 的参数方程为3{223x t y t =+=-(t 为参数),直线l 与曲线C 交于,A B 两点.(1)求||AB 的值;(2)若F 为曲线C 的左焦点,求FA FB ⋅的值.13、(武汉市2018届高三毕业生四月调研测试)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈). (1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值.14、(钟祥一中2018届高三五月适应性考试(一))在平面直角坐标系中,已知直线l 的参数方程为⎩⎨⎧=+=ty tm x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=12,点F 的极坐标为(22,π),且F 在直线l 上. (1)若直线l 与曲线C 交于A 、B 两点,求|FA|•|FB|的值; (2)求曲线C 内接矩形周长的最大值.15、(武汉市2017届高三毕业生二月调研考) 以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的方程为2sin 33πρθ⎛⎫-=- ⎪⎝⎭,C 的极坐标方程为4cos 2sin .ρθθ=+ (1)求直线l 和C 的普通方程;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的长.16、(武汉市武昌区2017届高三1月调研)在直角坐标系xoy 中,曲线C 的参数方程为cos 2sin x a ty t =⎧⎨=⎩(t 为参数,0a > )以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为cos 224πρθ⎛⎫+=- ⎪⎝⎭. (Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值; (Ⅱ)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.17、(襄阳市2017届高三1月调研)在直角坐标系xoy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求12,C C 的极坐标方程; (2))若直线3C 的极坐标方程为()4R πρρ=∈,设2C 与3C 的交点为M,N 求2MNC ∆的面积.18、在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 2(4sin x a a y a =+⎧⎨=⎩为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为()6R πθρ=∈.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.19、在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为3cos sin 30ρθρθ+-=,C 的极坐标方程为4sin()6πρθ=-.(I )求直线l 和C 的普通方程;(II )直线l 与C 有两个公共点A 、B ,定点P (2,3)-,求||||||PA PB -的值.20、在直角坐标系xOy 中,曲线C 的参数方程是35cos ,45sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程; (2)设1:6l πθ=,2:3l πθ=,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB ∆的面积.参考答案:1、(1)由22cos 30ρρθ+-=可得:22230x y x ++-=,化为22(1)4x y ++=.(2)1C 与2C 有且仅有三个公共点,说明直线2(0)y kx k =+<与圆2C 相切,圆2C 圆心为(1,0)-,半径为2,则2221k k -+=+,解得43k =-,故1C 的方程为423y x =-+.2、(1)1a =-时,直线l 的方程为430x y +-=.曲线C 的标准方程是2219x y +=,联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得:30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则C 与l 交点坐标是()30,和21242525⎛⎫- ⎪⎝⎭,(2)直线l 一般式方程是440x y a +--=.设曲线C 上点()3cos sin p θθ,. 则P 到l 距离()5sin 43cos 4sin 41717aad θϕθθ+--+--==,其中3tan 4ϕ=. 依题意得:17max d =,解得16a =-或8a = 3、.解:(1)因为,所以曲线的普通方程为:,由,得曲线的极坐标方程,对于曲线,,则曲线的极坐标方程为(2)由(1)得,,因为,则4、(1)曲线1C 的直角坐标系的普通方程为22y x =曲线2C 的直角坐标系的普通方程为4x y += ………………5分 (2)将2C 的参数方程代入1C 的方程22y x =得222(2)2(2)22t t -=+得: 213202t t -= 解得120,62t t ==12||||62AB t t ∴=-=. ………………10分5、(1)0x y a +-=,24y x =;(2)8.解析:(1)显然y x a =-+⇒0x y a +-= …………………2分由可得,即, …………………5分(2)直线2222x t y a t ⎧=-⎪⎪⎨⎪=+⎪⎩ 过(0,1),则1a =将直线的参数方程代入得,1212622t t t t ⎧+=-⎪⎨⋅=⎪⎩ 由直线参数方程的几何意义可知,.…………………10分6、【解析】(1)在直角坐标系中,曲线,曲线222:(1)1C x y -+=, 所以曲线C 1,,C 2的极坐标方程分别为(sin cos )1ρθθ+=,2cos ρθ=……5分 (2) 设12(,),(,),42A b ππραραα-<<,211112cos (cos sin )(cos 2sin 21)2cos 214444OB OAρπααααααρ⎡⎤⎛⎫==⋅⋅⋅+=++=-+ ⎪⎢⎥⎝⎭⎣⎦ 8πα∴=时,OBOA有最大值214+ …………10分 7、8、解:(1)由已知2cos ,2sin yx y x -=+=θθ,由错误!未找到引用源。

高三数学一轮复习资料 14.2 坐标系与参数方程教案 理

高三数学一轮复习资料 14.2 坐标系与参数方程教案 理

高三数学(理)一轮复习 教案 第十四编 系列4选讲总第70期 § 坐标系与参数方程基础自测1曲线的极坐标方程ρ=4in θ化为直角坐标方程为答案 2-22=4 2直线⎪⎩⎪⎨⎧+=-=ty t x 2221t 为参数上到点A (1,2)的距离为42的点的坐标为答案 (-3,6)或(5,-2) (2,3)的直线的参数方程⎩⎨⎧+=+=ty tx 232(t 为参数),若此直线与直线-3=0相交于点B ,则|AB|= 答案 25 4直线⎩⎨⎧-=+-=ty t x 12t 为参数被圆(-3)212=25所截得的弦长为答案 82 =m 与圆⎪⎩⎪⎨⎧==ϕϕsin cos m y m x ϕ为参数,m >0相切,则m 为答案 2 例题精讲例1 将极坐标方程in θ=31化为直角坐标方程,并说明该方程表示什么曲线 解 由in θ=ρy ,ρ=22y x +,得in θ=ρy =22y x y +=31则>0,平方得22=92,即2=812,=±88,因此,它表示端点除外的两条射线: =88 >0和=-88<0 例2 在极坐标系中,求过点A ⎪⎭⎫ ⎝⎛6,6π,并且平行于极轴的直线的极坐标方程解 如图所示,设M (ρ,θ)为直线上的任意一点,则OM=ρ,∠MOC=θ 过点A ,M 作极轴的垂线AB ,MC 交极轴与B ,C 两点 ∵∥O ,∴MC==6,∠AOB=6π所以MC=AB=θ=OM MC =ρ3,得ρin θ=3 所以ρin θ=3为所求的直线的极坐标方程例3 把下列参数方程化为普通方程,并说明它们各表示什么曲线:(1)⎪⎪⎩⎪⎪⎨⎧+=+=ty t x 232,211(t 为参数);(2)⎪⎩⎪⎨⎧+=+=t y t x 2,12(t 为参数);(3)⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x 1,1(t 为参数); (4)⎩⎨⎧==θθcos 5sin 4y x (θ为参数) 解 (1)由=121t 得,t=2-2∴=2232-2∴3-2-3=0,此方程表示直线 (2)由=2t 得,t=-2,∴=1(-2)2即-22=-1,方程表示抛物线(3)由⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x 11 ∴①2-②2得,2-2=4,方程表示双曲线(4)⎩⎨⎧==θθcos 5sin 4y x ,得⎪⎪⎩⎪⎪⎨⎧==5cos 4sin yx θθ ①2②2,得251622y x +=1表示椭圆例4 (202X ·盐城调研)(10分)求直线⎪⎪⎩⎪⎪⎨⎧--=+=ty t x 531541(t 为参数)被曲线ρ=2co ⎪⎭⎫ ⎝⎛+4πθ所截的弦长解:将方程⎪⎪⎩⎪⎪⎨⎧--=+=ty t x 531541ρ=2co ⎪⎭⎫ ⎝⎛+4πθ分别化为普通方程:341=0,22-=0, 5分圆心C ⎪⎭⎫⎝⎛-21,21半径为22,圆心到直线的距离d=101, 弦长=222d r -=2100121-=5710分巩固练习1在极坐标系中,已知三点M ⎪⎭⎫ ⎝⎛-3,2π、N (2,0)、⎪⎭⎫⎝⎛6,32π、N 、、N 、⎩⎨⎧==θρθρsin cos y x 的直角坐标为1,-3;① ②① ②N 的直角坐标为(2,0);3N =123-=3,N2303--3N =N 、N 、⎪⎭⎫⎝⎛6,πa (ρ,θ)为圆上的任意一点(点O ,B 除外),则OM=ρ,∠MO=θ 连结BM ,OB=2a ,∠MOB=θ-6π在直角三角形OBM 中, co ∠MOB=OB OM =a 2ρ=co (θ-6π),即ρ=2aco θ-6π* 经检验,O (0,32π),B (2a ,6π)满足方程(*), 所以ρ=2aco (θ-6π)为所求的圆的极坐标方程 3(202X ·栟茶模拟)将参数方程⎪⎩⎪⎨⎧==θθ2cos 4,sin 32y x θ为参数化为普通方程,并指出它表示的曲线解 =4co2θ=4-8in 2θ,由=3in 2θ,得in 2θ=3x ∴=4-38,即83-12=0 ∵=3in 2θ≥0,∴所求普通方程为83-12=0 ≥0它表示一条射线(-1,1),倾斜角为4π的直线和椭圆2422y x +=1交于A ,B 两点,求线段AB 的长度及点M(-1,1)到A ,B 两点的距离之积解 直线的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 221,221t为参数,代入椭圆的方程,得2221422122⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+-t t =1即3t 222t-2=0,解得t 1=-2,t 2=32所以,由参数t 的几何意义,得 |AB|=|t 1-t 2|=322--=324,|MA|·|MB|=|t 1t 2|=32 回顾总结 知识 方法 思想 课后作业 一、填空题(,)在曲线⎩⎨⎧=+-=θθsin cos 2y x θ为参数上,则x y的取值范围为答案 ⎥⎥⎦⎤⎢⎢⎣⎡-33,33 (1,1),倾斜角α=6π,直线的参数方程为 答案 ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 211231 3极坐标系中,圆ρ=10co ⎪⎭⎫⎝⎛-θπ3的圆心坐标为答案 ⎪⎭⎫ ⎝⎛3,5π的直角坐标为1,-3,则点3π⎩⎨⎧+=+=θθsin cos 00t y y t x x θρθ,在OM 上取一点·O ρθ⎪⎪⎭⎫ ⎝⎛0,210α,N ,则|4332x 32x ⎪⎩⎪⎨⎧==ϕϕsin cos 3y x ϕ3ϕϕϕπ3ϕϕ⎪⎪⎭⎫ ⎝⎛+ϕϕsin 21cos 23ϕ3πϕ6π⎩⎨⎧==,sin ,cos θθy x θ⎪⎪⎩⎪⎪⎨⎧=-=.22,222t y t x 1C '2C '1C '2C '1C '2C '221C '⎪⎩⎪⎨⎧==,sin 21,cos θθy x θ2C '⎪⎪⎩⎪⎪⎨⎧=-=t y t x 42,2221C '2C '2122222C '1C '⎩⎨⎧=+=θθsin 3,cos 33y x θ⎪⎩⎪⎨⎧==ty t x 33⎩⎨⎧=+=θθsin 3,cos 33y x θ⎪⎩⎪⎨⎧==t y tx 33332323(ρ,θ)为圆上的任意一点 (点O ,B 除外),则OM=ρ,∠MO=θ 连结BM ,在直角三角形OBM 中, co θ=OB OM =4ρ,即ρ=4co θ(*) 经检验,O (0,2π),B (4,0)满足方程(*), 所以ρ=4co θ为所求的圆的极坐标方程13⊙O 1和⊙O 2的极坐标方程分别为ρ=4co θ,ρ=-4in θ1把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (2)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程解 以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位(1)=ρco θ,=ρin θ,由ρ=4co θ,得ρ2=4ρco θ 所以22=22-4=0为⊙224=0为⊙O 2的直角坐标方程(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==,0,011y x 或⎩⎨⎧-==.2,222y x即⊙O 1,⊙O 2交于点(0,0)和(2,-2)过交点的直线的直角坐标方程为=-为坐标原点,直线:⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22422参数t ∈R )与曲线C :⎪⎩⎪⎨⎧==μμ442y x (参数μ∈R )交于 A ,B 两点(1)求直线与曲线C 的直角坐标方程; (2)求证:OA ⊥OB(1)解 直线的普通方程为:--4=的普通方程为:2=4 (2)证明 设A (1,1),B 2,2,由⎪⎩⎪⎨⎧-==,4,42x y x y 消去,得2-1216=0,∴12=12,12=16,∴OA ·OB =2121x x y y =2121)4)(4(x x x x --=21212116)(4x x x x x x ++-=-1,∴OA ⊥OB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

139
响水二中高三数学(理)一轮复习 作业 第十四编 系列4选讲 主备人 张灵芝 总第70期
§14.2 坐标系与参数方程
班级 姓名 等第 一、填空题
1.已知点P (x ,y )在曲线⎩⎨⎧=+-=θ
θsin cos 2y x (θ为参数)上,则x y 的取值范围为 . 2.已知直线l 经过点P (1,1),倾斜角α=6
π,直线l 的参数方程为 . 3.极坐标系中,圆ρ=10cos ⎪⎭
⎫ ⎝⎛-θπ3的圆心坐标为 . 4.点P 的直角坐标为(1,-3),则点P 的极坐标为 .
5.已知曲线的参数方程为⎩⎨⎧+=+=θ
θsin cos 00t y y t x x ,分别以t 和θ为参数得到两条不同的曲线,这两条曲线公共点
个数为 .
6.已知2x 2+3y 2-6x =0 (x ,y ∈R ),则x 2+y 2
的最大值为 .
7.从极点O 作直线与另一直线l ∶ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12,则点P 的轨迹方程为 .
8.过点P ⎪⎪⎭⎫ ⎝⎛0,210作倾斜角为α的直线与曲线x 2+2y 2=1交于M ,N ,则|PM |·|PN |的最小值为 . 二、解答题
9.在平面直角坐标系xOy 中,设P (x ,y )是椭圆3
2x +y 2=1上的一个动点,求S =x +y 的最大值.
10.已知曲线C 1:⎩⎨⎧==,sin ,cos θθy x (θ为参数),曲线C 2:⎪⎪⎩
⎪⎪⎨⎧=-=.22,222t y t x (t 为参数). (1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2
C '的参数方程. 1C '与2
C '公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.
140
11.经过曲线C :⎩⎨⎧=+=θθsin 3,cos 33y x (θ为参数)的中心作直线l :⎪⎩⎪⎨⎧==t
y t x 33(t 为参数)的垂线,求中心到垂足的距离.
12.求圆心为A (2,0),且经过极点的圆的极坐标方程.
13.⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.
(1)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程;
(2)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.
14.设点O 为坐标原点,直线l :⎪⎪⎩
⎪⎪⎨⎧=+=t y t x 22422(参数t ∈R )与曲线C :⎪⎩⎪⎨⎧==μμ442y x (参数μ∈R )交于 A ,B 两点.
(1)求直线l与曲线C的直角坐标方程;(2)求证:OA⊥OB.
141。

相关文档
最新文档