3200-贾鹏

合集下载

青海省2014年公开考录主任科员以下职位公务员面试人员(8月18日)(后楼)

青海省2014年公开考录主任科员以下职位公务员面试人员(8月18日)(后楼)
52.6
6
进入面试
青海省监狱管理局西宁监狱一线民警(6)2名
孙吉林
63031112722

1
46.3
56.65
1
进入面试
何军
63101104608

1
43.2
55.35
2
进入面试
李发孝
63101109623

1
39.9
53.45
3
进入面试
罗松达哇
63031112913

2
41.4
49.7
4
进入面试
李贵寿

1
48.3
54.4
5
进入面试
曹鹏太
63041120413

1
34.3
51.9
6
进入面试
郗华鑫
63031113823

1
40.4
51.7
7
进入面试
陶林
63031117520

1
35.3
50.65
8
进入面试
徐建钰
63101110902

1
45.5
50.5
9
进入面试
武磊
63031117215

1
38.1
万贯信
63101110620

1
55.6
62.8
4
进入面试
周清晓
63041119515

1
62.5
61.75
5
进入面试
李洪鹏
63101106021

1
57.8

2014全国航空航天模型锦标赛成绩册

2014全国航空航天模型锦标赛成绩册

限时载运空投(K3Y)成绩单
* 质量单位为kg
比赛时间:2014年10月4日
队别
飞行 组别
运动员
第一轮 空载 装载 空投 着陆 质量 总质量 得分 总分
*A0016 于 凯 A0019 刘煌星
厦门大学 1 A0017 刘适意 2.91 11 A0018 王云初 A0020 赵广为
0 400
得分 22400
2014年科研类全国航空航天模型锦标赛
限时载运空投(K3Y)成绩单
* 质量单位为kg
比赛时间:2014年10月4日
队别 北航
飞行 组别
运动员
第一轮 空载 装载 空投 着陆 质量 总质量 得分 总分
得分
第二轮 空载 装载 空投 着陆 质量 总质量 得分 总分
得分
第三轮 空载 装载 空投 着陆 质量 总质量 得分 总分
第三轮 空载 装载 空投 着陆 质量 总质量 得分 总分
得分
成绩 名次
弃权
0
0
0
0
弃权
0
0
0
0
备注
-4-
2014年科研类全国航空航天模型锦标赛
限时载运空投(K3Y)团体成绩
队别 飞行组别 合计组数
1
北航
2
3
3
1
西北工大
2
3
3
1
沈航
2
3
3
1
厦门大学
2
3
3
1
郑州航院
2
3
3
各组成绩
155700 257000 311600 246500 81000 77800 161800 81000 154800 22400 103400 32200 6200 27400 18900

临近空间飞艇保形升空过程热运动特性研究

临近空间飞艇保形升空过程热运动特性研究

航天返回与遥感第44卷第2期24SPACECRAFT RECOVERY & REMOTE SENSING2023年4月临近空间飞艇保形升空过程热运动特性研究郑志东1刘宁1韩笑雪2戴秋敏3(1 中国人民解放军32802部队,北京100191)(2 中国人民解放军31576部队,北京100043)(3 南京理工大学能源与动力工程学院,南京210094)摘要为了掌握双气囊临近空间飞艇升空过程中因保形需要而导致的复杂的热运动特性,文章建立了飞艇升空过程中的热平衡模型与运动模型,对某双气囊飞艇的保形升空过程进行仿真研究,获得了临近空间飞艇升空过程中轨迹与温度的变化规律。

结果表明:临近空间飞艇保形升空时,升空速度呈现先降低后升高的变化趋势;受升空过程中氦气囊膨胀对外做功的影响,内部气体“过冷”现象明显,“过冷”最高可达20K;当飞艇升至驻空高度附近时,内部气体温度快速上升;受净浮力影响,飞艇的升空时间与充气质量呈反比;受夏至日太阳辐射投影面积的影响,飞艇升空过程中俯仰角越大,虽然阻力系数减小,但辐射得热降低,造成整体升空时间增加;气囊超压设置越大,飞艇升空时间越长。

研究成果对临近空间飞艇的升空与运行控制具有一定的指导作用。

关键词双气囊保形升空热运动特性升空轨迹临近空间飞艇中图分类号: V274文献标志码: A 文章编号: 1009-8518(2023)02-0024-09DOI: 10.3969/j.issn.1009-8518.2023.02.003Research on the Thermal-motion Characteristics of Near-space Airship During Ascent with Preserving ShapeZHENG Zhidong1LIU Ning1HAN Xiaoxue2DAI Qiumin3(1 Unit 32802 of the Chinese People's Liberation Army, Beijing 100191, China)(2 Unit 31576 of the Chinese People’s Liberation Army, Beijing 100043, China)(3 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)Abstract Aiming at the problem of predicting the thermal-motion characteristics of near space airship during ascent with preserving shape, a thermal and motion models of a double-balloons near space airship when ascents with preserving shape is established based on the analysis of heat transfer and force. Then, a simulation code is developed and the ascent progress is simulated. The ascent trajectory of the airship and the temperature of the internal gases after launching are obtained. Results showed that the ascent velocity decreases after launching and then increases smoothly. The temperatures of the contained gases are lower than the ambient temperature during ascent. Affected by expanding, the super cooling can be as high as 20K. The contained gases increased dramatically when the airship reaches the horvering altitude. The ascent time decreases with the increase of helium mass because of the net buoyancy. Although the drag coefficient收稿日期:2022-09-01基金项目:国家自然科学基金(52006100);江苏省自然科学基金(BK20190469);装发预研课题(315087501)引用格式:郑志东, 刘宁, 韩笑雪, 等. 临近空间飞艇保形升空过程热运动特性研究[J]. 航天返回与遥感, 2023, 44(2): 24-32.ZHENG Zhidong, LIU Ning, HAN Xiaoxue, et al. Research on the Thermal-motion Characteristics of Near-space Airship第2期郑志东等: 临近空间飞艇保形升空过程热运动特性研究 25decreases with the angle of pitch increasing during ascent, the ascent time increases with the increasement of angle of pitch due to the effect solar radiation on summer solstice. The ascent time increase with the increasement of overpressure. The results can be helpful to the design and operation for near space airship.Keywords double ballonets; ascent with preserving shape; thermal-motion characteristic; ascent trajectory; near space airship0 引言临近空间飞艇工作在20km左右的高度,具有定点滞空时间长、覆盖范围广、载荷能力大、效费比高等优势,在导弹预警、边境监控以及应急通信等诸多领域具有广阔的应用前景,是理想的临近空间长时驻空平台[1-3]。

飞机发动机短舱外形设计及数值仿真

飞机发动机短舱外形设计及数值仿真

飞机发动机短舱外形设计及数值仿真
单文娟;闻捷
【期刊名称】《航空科学技术》
【年(卷),期】2016(000)002
【摘要】发动机短舱对飞机的性能有着至关重要的影响。

针对某型民用飞机,对其发动机短舱进行了初步参数选取和气动外形设计;并在此基础上开展了数值仿真计算。

计算结果表明,设计的短舱气动外形满足设计要求,且进气道内总压恢复系数随着进气道扩散段长度的减小而增大。

【总页数】4页(P16-19)
【作者】单文娟;闻捷
【作者单位】上海飞机设计研究院,上海 200232;上海飞机设计研究院,上海200232
【正文语种】中文
【中图分类】V223.6
【相关文献】
1.某型飞机发动机短舱热气防冰系统性能数值模拟 [J], 郁嘉;赵柏阳;卜雪琴;林贵平;李志茂
2.复合材料结构飞机发动机短舱防火设计与试验验证 [J], 李仁鹏
3.飞机发动机短舱防火墙结构和密封设计要求 [J], 胡寅寅;蒋祖武
4.涡桨飞机发动机短舱气动改进设计研究 [J], 李星辉;许瑞飞;张彦军;钱瑞战;雷武

5.飞机发动机短舱泄压过程研究 [J], 王晨臣;潘俊;王洋洋
因版权原因,仅展示原文概要,查看原文内容请购买。

面向北京奥运的体育传媒

面向北京奥运的体育传媒

面向北京奥运的体育传媒
贾鹏;何方
【期刊名称】《新闻前哨》
【年(卷),期】2007(000)004
【摘要】随着2008年北京奥运会的日益临近,奥林匹克运动的无穷魅力吸引了
极为广泛的受众关注,体育业已成为我国大众的热门话题。

人们渴望通过观看比赛,了解体育。

而只有借助传媒,大众才能更方便地领略体育的魅力。

传媒凭借其强大的科技手段与技术优势,将奥林匹克运动及其精神、信仰、理想、价值传遍全世界,同时有力地推动体育的发展。

【总页数】2页(P41-42)
【作者】贾鹏;何方
【作者单位】江汉大学体育学院,湖北430056;湖北省广播电视总台经济,广播430022
【正文语种】中文
【中图分类】F812.42
【相关文献】
1.构建面向北京奥运的智能交通管理信息应用及服务体系 [J], 程新谦;辛铮;孙丽
2.北京奥运会前后我国体育传媒的发展对策 [J], 谈群林
3.面向2008年北京奥运会中国女排整体实力分析 [J], 国翠娟
4.面向2008年北京奥运会中国田径整体实力分析 [J], 王姗姗
5.中荷第一名校联袂面向世界招生创办北京奥运工商管理硕士课程 [J], 张卓辉[荷兰]
因版权原因,仅展示原文概要,查看原文内容请购买。

雅典冠军拼装备

雅典冠军拼装备

雅典冠军拼装备
贾鹏;格雷格·布鲁姆
【期刊名称】《中国商界》
【年(卷),期】2004(000)009
【摘要】当成功和失败的区别只差几毫米或干分之一秒时,穿一套阻力更小的泳衣或一双弹性更强的跑鞋,就能带给参加今年雅典奥运会的选手们至关重要的胜利机会。

这使得人们不禁要问:科技究竟是帮助了运动的发展还是成了运动的操纵者?谁更善于借助科技的力量在雅典夺得冠军呢?
【总页数】1页(P)
【作者】贾鹏;格雷格·布鲁姆
【作者单位】
【正文语种】中文
【中图分类】G818
【相关文献】
1.雅典冠军拼装备 [J], 贾鹏
2.残疾人射箭运动引路人r——记雅典残奥会射箭比赛冠军、新疆射箭队教练王燕红 [J], 李亮子;吴海燕
3.残疾人射箭运动引路人——记雅典残奥会射箭比赛冠军、新疆射箭队教练王燕红[J], 李亮子;吴海燕;
4.爆玉米花的冠军妈妈——29届雅典残奥会冠军吕晓磊和他母亲的故事 [J], 王增

5.雅典奥运里的业余运动员冠军 [J], 卜赛
因版权原因,仅展示原文概要,查看原文内容请购买。

理性看待SA8000

理性看待SA8000

理性看待SA8000
卫扬勇
【期刊名称】《鄂州大学学报》
【年(卷),期】2005(12)2
【摘要】伴随着经济增长的同时,我国企业劳工状况、环境破坏和资源浪费问题日趋严重.与此同时,欧美各国利用各种非关税壁垒特别是近期推行的SA8000对我国企业提出了严峻的挑战.居安思危,未雨绸缪,不惊慌,不回避,不敌视,提高防范意识,增加保护层是我们理性的选择.
【总页数】2页(P28-29)
【作者】卫扬勇
【作者单位】鄂州大学,文法系,湖北,鄂州,436000
【正文语种】中文
【中图分类】F019.6
【相关文献】
1.我们今天该如何看待工具理性与价值理性 [J], 洪强强;
2.理性看待贫困地区农民的非理性行为 [J], 蔡永寿
3.中国企业应如何看待SA8000 [J], 崔占香;谢中聪
4.理性看待SA8000标准对中国外贸的双重作用 [J], 殷越男
5.如何看待SA8000 [J], 研辑
因版权原因,仅展示原文概要,查看原文内容请购买。

奥运赛场上的“毒瘤”

奥运赛场上的“毒瘤”

奥运赛场上的“毒瘤”
贾鹏;GRAPHIC;NEWS(图)
【期刊名称】《科技新时代:上半月》
【年(卷),期】2007(000)003
【摘要】神圣的奥林匹克运动与罪恶的兴奋剂滥用势不两立.但兴奋剂滥用就像奥林匹克运动体内的毒瘤一样难以治愈。

【总页数】2页(P54-55)
【作者】贾鹏;GRAPHIC;NEWS(图)
【作者单位】《科技新时代:上半月》记者;不详
【正文语种】中文
【中图分类】G897
【相关文献】
1.分析奥运会帆船赛测试赛急救医疗需求完善奥运会帆船赛急救医疗保障 [J], 朱明伟;赵珊;井国防
2.中国移动备战奥运系列专题备战奥运,中国移动行动中(八)近30万人参与的"奥运热身赛"——中国移动"奥运有我更精彩"内部传播活动精彩纪实 [J], 乐宁
3.中国移动备战奥运系列专题备战奥运,中国移动行动中(八):近30万人参与能“奥运热身赛”——中国移动“奥运有我更精彩”内部传播活动精彩纪实 [J], 乐宁
4.2021全国田径冠军赛暨奥运选拔赛落幕多项奥运席位归属落定 [J], 本刊社
5.奥运新闻赛场上的“地方军”——简评四台联合报道组的奥运报道 [J], 龚睿
因版权原因,仅展示原文概要,查看原文内容请购买。

超级服务器航母

超级服务器航母

超级服务器航母
佚名
【期刊名称】《互联网周刊》
【年(卷),期】2004(000)022
【总页数】1页(P84)
【正文语种】中文
【中图分类】TP368.5
【相关文献】
1.美超微发布全新NVIDIA Tesla GPU超级服务器 [J], 美超微电脑股份有限公司
2.平行航母:从数字航母到智能航母 [J], 阳东升;王坤峰;陈德旺;包战;苏振东;王睿;赵学亮;王雨桐;王飞跃
3.平行航母:从数字航母到智能航母 [J], 阳东升;王坤峰;陈德旺;包战;苏振东;王睿;赵学亮;王雨桐;王飞跃;;;;;;;;;;;;;
4.发展民族超级服务器产业——写在曙光2000—1超级服务器诞生之际 [J], 祝明发
5.Supermicro(R)针对VMware公司产品优化超级服务器平台 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

有奖问答问题及获奖名单

有奖问答问题及获奖名单

有奖问答问题及获奖名单
佚名
【期刊名称】《网管员世界》
【年(卷),期】2009(000)009
【摘要】桑丘又来送礼啦!感谢朋友们的支持。

您回答的越是具体,中奖机率可就会越高哦。

而且请您持续关注我们的“有奖问答”。

本期的奖品为价值198元的卡巴斯基杀毒软件,本期获奖的朋友是:杭州388杭氧压缩机公司的郑波。

中昊晨光化工研究院陈平,恭喜这两位朋友。

由于很多朋友的邮件里没有注明姓名或者联系方式,
【总页数】1页(P127)
【正文语种】中文
【中图分类】TP311.56
【相关文献】
1.有奖问答问题及获奖名单 [J],
2.有奖问答问题及获奖名单 [J],
3.有奖问答问题及获奖名单 [J],
4.有奖问答问题及获奖名单 [J],
5.有奖问答问题及获奖名单 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

CDA视角下对美联社“血泪海鲜”报道的研究

CDA视角下对美联社“血泪海鲜”报道的研究

CDA视角下对美联社“血泪海鲜”报道的研究
王杨晶
【期刊名称】《科技视界》
【年(卷),期】2016(000)020
【摘要】通过对“血泪海鲜”系列报道的深刻研究,揭示奴役劳工现象背后隐藏的意识形态.本文采用诺曼·费尔克劳德的三维分析法对此相关7篇报道进行研究.主要体现在三方面,文本分析主要从词的名词化和信源进行分析;话语实践从组织过程和话语过程两方面阐释;社会实践体现在经济、政治和文化层面.结果表明,新闻报道不仅是向大众传播海鲜市场存在奴役劳工这一信息,更是在向大众传播信息背后整个跨国海鲜市场的产业链,以及背后复杂的社会关系.
【总页数】2页(P130,162)
【作者】王杨晶
【作者单位】西安外国语大学,陕西西安710128
【正文语种】中文
【相关文献】
1.CDA视角下中美关于西藏问题报道及物性对比分析——以CRI与CNN两篇新闻报道为例 [J], 于迎晨
2.框架理论视域下的拉斯维加斯枪击案报道研究r——以美联社和新华社为例 [J], 杨波
3.接受美学视阈下的新华社对外报道研究---基于与美联社2015年“习近平访美”报道的对比 [J], 李建波
4.框架理论视角下韩国媒体涉华重大事件报道研究
——以粤港澳大湾区报道为例 [J], 陆丹;谢雯雯
5.框架视角下的中国人道主义援助报道研究——以《人民日报》1949—2019年报道为例 [J], 杜晓康
因版权原因,仅展示原文概要,查看原文内容请购买。

法正在开发改进型“黑鲨”鱼雷

法正在开发改进型“黑鲨”鱼雷

法正在开发改进型“黑鲨”鱼雷
一凡
【期刊名称】《《航海》》
【年(卷),期】2008(000)003
【摘要】据法《宇航新闻》报道,法DCNS公司与法国防务采办局(DGA)签署了一项共同开发新一代重型“黑鲨”鱼雷合同。

【总页数】1页(P43)
【作者】一凡
【作者单位】
【正文语种】中文
【中图分类】TJ630.3
【相关文献】
1.来自罗马的“黑鲨”——意大利白头公司研制的重型鱼雷 [J], 邹宇
2.滑动平均法改进型灰色预测模型在德山开发区电力负荷预测中的应用 [J], 王玉平;蔡立红
3.法国核潜艇将装备改进型“黑鲨”鱼雷 [J], 闫璞
4.日正在开发深海潜水鱼雷型机器人 [J], 肇文
5.冰岛正在着手开发以光诱集鱼群的拖网渔法 [J], 缪圣赐
因版权原因,仅展示原文概要,查看原文内容请购买。

一种高精度的电压检测技术方案及实现方法

一种高精度的电压检测技术方案及实现方法

一种高精度的电压检测技术方案及实现方法
杜菊;王三虎
【期刊名称】《电子技术应用》
【年(卷),期】2008(34)9
【摘要】提出了一种高精度的电压检测技术方案及实现方法.介绍了高精度电压检测的硬、软件设计及软件校准技术与方法,重点阐述AD采样电压的全自动校准方法,以消除AD芯片自身的固有偏差.
【总页数】3页(P78-80)
【作者】杜菊;王三虎
【作者单位】中兴通讯股份有限公司RRU中心西安研究所,陕西,西安,710065;中兴通讯股份有限公司RRU中心西安研究所,陕西,西安,710065
【正文语种】中文
【中图分类】TP3
【相关文献】
1.一种可实现高精度时间同步的数据传输方法 [J], 杨冯帆; 常劲帆; 王铮
2.一种高精度电压检测电路的设计方法 [J], 贺朋; 金学明; 张谦
3.一种高精度钢珠筛选设备及实现方法 [J], 孟素各; 彭佩云
4.一种高精度医学红外热像图的实现方法 [J], 高玉宝;江涛;胡孝成;江琼;杨长春;刘泽良;漆世锴
5.一种实现输电线路铁塔关键部件位移高精度监测的计算机视觉方法 [J], 刘强;舒邦京;周大炎;王国文;王子羲
因版权原因,仅展示原文概要,查看原文内容请购买。

舰载雷达接收机的抗过载

舰载雷达接收机的抗过载

舰载雷达接收机的抗过载
闻鑫
【期刊名称】《舰船电子对抗》
【年(卷),期】2008(031)005
【摘要】随着电子战技术的发展,舰载雷达接收环境的日益恶化,现代雷达接收机向着大动态范围方向发展.分析了舰载雷达接收机由于干扰引起的过载,介绍了灵敏度时间控制、瞬时自动增益控制、对数放大器及限幅放大器四种舰载雷达接收机抗过载的方法.
【总页数】3页(P89-91)
【作者】闻鑫
【作者单位】船舶重工集团公司723所,扬州,225001
【正文语种】中文
【中图分类】TN957.5
【相关文献】
1.舰载机弹射起飞纵向过载研究 [J], 盖京波;李平均
2.高过载存储测试中抗过载技术的研究 [J], 文丰;乔建忠;李艳
3.高机动大过载对舰载机飞行员的影响及训练需求浅析 [J], 左艳辉;
4.高机动大过载对舰载机飞行员的影响及训练需求浅析 [J], 左艳辉
5.雷达接收机抗过载对策研究 [J], 金德亚
因版权原因,仅展示原文概要,查看原文内容请购买。

我国气体射流冲击烘烤技术与设备通过鉴定

我国气体射流冲击烘烤技术与设备通过鉴定

我国气体射流冲击烘烤技术与设备通过鉴定
佚名
【期刊名称】《《新材料产业》》
【年(卷),期】2005(000)002
【摘要】近日,重点科技合同课题“气体射流冲击烘烤技术与设备”通过了由北京市科委组织的专家验收和鉴定。

【总页数】1页(P81)
【正文语种】中文
【中图分类】TM925.5
【相关文献】
1.气体射流冲击烘烤甘薯的试验研究 [J], 高振江;王德成;吴薇;张世湘
2.“白吉馍”气体射流烘烤工艺的优化 [J], 魏振东;肖旭霖;曹佳
3.正交试验优选山药片气体射流冲击干燥工艺 [J], 孟建升;蒋俊春;郑志安;谢莹霞;王伟丽;韩知利;肖红伟
4.气体射流冲击干燥无核紫葡萄中试工艺研究 [J], 杨慧;贾文婷;金新文;吴洪斌
5.茎瘤芥的气体射流冲击干燥动力学及多酚降解动力学特征 [J], 李文峰;郑俏然;高晓旭;张向阳;王翠;林兰婷;陈小平;屈阳;张雪梅;林瑶;谭飔
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

METHOD 3200MERCURY SPECIES FRACTIONATION AND QUANTIFICATION BY MICROWAVE ASSISTED EXTRACTION, SELECTIVE SOLVENT EXTRACTION AND/OR SOLID PHASEEXTRACTIONSW-846 is not intended to be an analytical training manual. Therefore, method procedures are written based on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.In addition, SW-846 methods, with the exception of required method use for the analysis of method-defined parameters, are intended to be guidance methods which contain general information on how to perform an analytical procedure or technique which a laboratory can use as a basic starting point for generating its own detailed Standard Operating Procedure (SOP), either for its own general use or for a specific project application.1.0 SCOPE AND APPLICATION1.1 This method contains a sequential extraction and separation procedure that may be used in conjunction with a determinative method to differentiate mercury species that are present in soils and sediments. This method provides information on both total mercury and various mercury species.1.2 The speciation of a metal, in this case mercury, involves determining the actual form of the molecules or ions that are present in the sample. When combined with an appropriate determinative method, this procedure is designed to provide varying degrees of mercury species information. All metal speciation methods are operationally defined by the level of post-extraction processing and the chosen method of analysis. Examples of the operationally-defined mercury fractions and individual species that may be determined using this procedure are presented in the table below.The environmental mobility and toxicity of mercury in a soil profile depend on its speciation. Alkyl mercury species such as methylmercury are at least an order of magnitude more mobile than inorganic mercury species, and thus are more toxic and more readily bioaccumulated. Soluble inorganic mercury species such as mercury chloride are more easily transported by natural process than the other inorganic mercury species and serve as the substrate for mercury methylation process (Ref. 1). These extractable organomercury species and extractable inorganic species contribute the major portion of mercury potential toxicity in the soils. The mercury species that fall into the "semi-mobile" category such as elemental mercury are less toxic than extractable mercury species. The "non-mobile" mercury species such as mercury sulfide are chemically stable in the soil for geologic time periods and thus are least toxic.Operationally-Defined Mercury FractionsTotal MercuryIndividual Mercury Species CAS No.a Extractable Organic Mercury CH 3HgClCH 3CH 2HgCl115-09-3 107-27-7 ExtractableMercury Extractable Inorganic MercuryHgCl 2Hg(OH)2 Hg(NO 3)2HgSO 4HgOHg 2+ complexes c7487-94-7 b ⎯ 10045-94-0 13766-44-4 21908-53-2 ⎯ Non-extractable Mercury Semi-mobile Mercury Hg 0Hg 0-M dHg 2+ complexes cHg 2Cl 2 (minor)7439-97-6 ⎯ ⎯ 10112-91-1 Non-mobile MercuryHg 2Cl 2 (major)HgS HgSe10112-91-1 1344-48-5 20601-83-6 aChemical Abstract Service Registry Number b Not registered by the Chemical Abstract Service c Certain inorganic mercury complexes may be present in both the organic and inorganic extractable fractions d This represents a mercury-metal amalgam1.3 Quantification of mercury in the different fractions may be performed using any suitable technique with appropriate precision and accuracy, for example Method 7473, 1631, or Methods 7470 and 7471. Other analytical techniques, such as gas chromatography-massspectrometry (GC-MS), ion chromatography or high performance liquid chromatography (HPLC) with either GC-MS or inductively coupled plasma-mass spectrometry (ICP-MS) detection(Method 6020), or other hyphenated and/or mass spectrometric techniques, may be employed if performance appropriate for the intended application can be demonstrated. This method may also be applicable to other matrices, such as industrial and municipal waste materials, but its performance on such matrices has not yet been evaluated. Method 6800 (Elemental andSpeciated Isotope Dilution Mass Spectrometry) (Ref. 2) may also be applicable as a diagnostic and validation tool for quantification of selectively extracted mercury species, especially when species transformations occur in the sample preparation or analysis procedures.1.4 Analysts should consult the disclaimer statement at the front of the manual and the information in Chapter Two for guidance on the intended flexibility in the choice of methods, apparatus, materials, reagents, and supplies, and on the responsibilities of the analyst fordemonstrating that the techniques employed are appropriate for the analytes of interest, in the matrix of interest, and at the levels of concern.In addition, analysts and data users are advised that, except where explicitly specified in a regulation, the use of SW-846 methods is not mandatory in response to Federal testingrequirements. The information contained in this method is provided by EPA as guidance to be used by the analyst and the regulated community in making judgments necessary to generate results that meet the data quality objectives for the intended application.1.5 Use of this method is restricted to use by, or under supervision of, personnel appropriately experienced and trained in the use of metal speciation and analysis techniques. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0 SUMMARY OF METHOD2.1 For the determination of extractable mercury species, a representative sample aliquot is extracted with an appropriate volume of solvent at elevated temperatures. Extraction is accomplished with the aid of either microwave irradiation or ultrasound.2.2 Following initial extraction the resultant extracts are separated from the remaining sample matrix for analysis of extractable mercury by an appropriate technique. The residual sample matrix may be analyzed for non-extractable mercury using an appropriate technique.2.3 The method also has provisions for the separation of the extractable mercury fraction into inorganic and organic mercury fractions or individual species. The inorganic and organic mercury fractions may be separated by using a solid-phase extraction procedure. Individual species may be separated and determined by using an HPLC or other appropriate separation device coupled to an appropriate detector.2.4 The method also has provisions for the separation of the non-extractable mercury fraction into semi-mobile and non-mobile mercury fractions using sequential acid extraction and digestion.3.0 DEFINITIONS3.1 Species - The actual form of a molecule or ion that is present in a sample.3.2 Sub-speciation - The process by which mercury species in the extractable mercury or non-extractable fraction are further subdivided.3.3 Total mercury - Total mercury content within the sample, including all inorganic, organic, and complex forms of mercury.3.4 Extractable mercury - An operationally-defined fraction of mercury which can be extracted from the sample using the protocols described within this method. The extractable mercury is meant to represent both organic and inorganic forms of mercury which are more labile.3.5 Extractable inorganic mercury - An operationally-defined subset of the extractable mercury species, i.e., the fraction of inorganic mercury species which can be extracted from the sample using the protocols described within this method.3.6 Extractable organic mercury - An operationally-defined subset of the extractable mercury species, i.e., the fraction of organic mercury species which can be extracted from the sample using the protocols described within this method.3.7 Non-extractable mercury - The operationally-defined fraction of mercury remaining in the sample after using the extraction protocols described within this method. The non-extractable mercury is meant to represent the least labile forms of mercury.3.8 Semi-mobile mercury - An operationally-defined subset of the non-extractable mercury species, i.e., the fraction of mercury species which can be extracted from the sample using the mild-acid extraction protocol(s) described within.3.9 Non-mobile mercury - An operationally-defined subset of the non-extractable mercury species, i.e., the fraction of mercury species which can be extracted from the sample using the harsh-acid extraction protocol(s) described within.3.10 Refer to Chapter One and Chapter Three for other applicable definitions.3.11 See Ref. 3 for additional definitions for "species" and "speciation".4.0 INTERFERENCES4.1 Solvents, reagents, glassware, and other sample processing hardware may yield artifacts and/or interferences to sample analysis. All of these materials must be demonstrated to be free from interferences under the conditions of the analysis by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be necessary. Refer to each method to be used for specific guidance on quality control procedures and to Chapter Three for general guidance on the cleaning of glassware.4.2 Transformations among mercury species have been reported and experimentally verified. For example, methylmercury formed during sample processing from inorganic mercury, may cause positive biases in the methylmercury results (Ref. 4-6). Also, a conversion of methylmercury and ethylmercury to inorganic mercury has been observed under certain sample processing conditions (Figures 1 and 2) (Ref. 7).4.3 The possibility of species interconversions cannot be eliminated due to the necessary reagents, sample matrix, the combination of reagents and matrix, and/or the extraction method used. Method 6800 has successfully been used to monitor and correct for such species transformations during speciation of chromium and mercury (Ref. 8-10).4.4 When non-specific detection techniques are employed, the analyst must be aware of possible interferences. For example, certain organic compounds may absorb at the wavelength of interest when ultraviolet (UV) detection is used.NOTE: The adjustment of the pH during certain sample processing steps may result in the formation of a precipitate. Filtration (10-µm pore size or less) may be applicable toremove such a precipitate. Low recoveries may result from co-precipitation of mercury and other sample components. Rinsing the precipitate on the filter with a 0.1% HClsolution has been demonstrated to minimize this problem.5.0 SAFETY5.1 This method does not address all safety issues associated with its use. The laboratory is responsible for maintaining a safe work environment and a current awareness file of OSHA regulations regarding the safe handling of the chemicals listed in this method. A reference file of material safety data sheets (MSDSs) should be available to all personnel involved in these procedures.5.2 The proper handling of inorganic and organomercury compounds can not be overemphasized. Exposure to organo (alkyl) mercury compounds may cause damage to the central nervous system, emotional disturbances, or irritation of the eyes and skin, and may even lead to death (Ref. 11, 12).5.3 The use of commercially-available protective gear, such as gloves made of nitrile, polyethylene (PE) and ethylvinyl alcohol (EVA) laminate or other appropriate material is required. Latex gloves are not suitable for the handling of organomercury compounds (Ref. 12) and must not be used. In addition, appropriate eye protection should be used.5.4 If any organomercury compound makes direct contact with the gloves, remove the gloves immediately, dispose of them properly, and put on new gloves immediately. These materials only provide temporary protection. Consult the glove manufacturer for permeation rates and times. If contact should occur with the skin or eyes, flush with large amounts of water and seek medical attention immediately. Further information on the safety guidelines on the handling of inorganic and organo (alkyl) mercury can be obtained from the material safety data sheets for the substances.5.5 The preparation and use of concentrated solutions or samples should be carried out in a fume hood (some organomercury compounds are odorless). It is advisable to work inside a plastic container with absorbent pads so that accidental spills will be contained.5.6 In the event of a spill, the area should be well ventilated and any ignition sources removed. If the spill is a solid, collect and dispose of the material in a sealed container. If the spill is a liquid, absorb on paper towels and discard in a designated waste bin. The contaminated area can also be cleaned with 0.05% (v/v) 2-mercaptoethanol solution to complex and remove the spilled mercury.5.7 The extraction process may generate a moderate amount of pressure. Vessels used for extraction should be capable of withstanding these pressures or have pressure relief mechanisms or should be vented during the extraction process.5.8 For safety precautions associated with determinative methods, consult those methods directly.6.0 EQUIPMENT AND SUPPLIESThe mention of trade names or commercial products in this manual is for illustrative purposes only, and does not constitute an EPA endorsement or exclusive recommendation for use. The products and instrument settings cited in SW-846 methods represent those products and settings used during method development or subsequently evaluated by the Agency. Glassware, reagents, supplies, equipment, and settings other than those listed in this manual may be employed provided that method performance appropriate for the intended application has been demonstrated and documented.This section does not list common laboratory glassware (e.g., beakers and flasks).6.1 Analytical balance - Capable of accurate weighings to 0.01 g.6.2 Vials/bottles, amber glass - Sizes as appropriate, e.g., 20 mL, with PTFE-lined screw- caps or crimp-tops for storage of extracts.6.3 Heating sources – Non-sonicating heating sources with adjustable heating control able to maintain a temperature of 95 ± 2 °C (e.g., microwave heat unit, hot block, hot water bath or other equivalent).6.4 Sonication heating source - Bath or horn type.6.5 Graduated cylinder or equivalent volume measuring device.6.6 Volumetric flasks - Sizes as appropriate.6.7 pH measuring device – Universal pH paper or calibrated pH meter.6.8 Solid-phase extraction system - Visiprep solid-phase extraction manifold (Supelco or equivalent system). Consult the manufacturer’s recommendations for the glassware and hardware necessary to perform sample extractions.6.9 Solid-phase extraction column - 6-mL glass reaction tubes (Supelco) or equivalent, complete with PTFE frits (2 per tube).6.10 Filtration Device – Vacuum or manual6.11 Filters – The filter media should have an effective pore size of 1.0 µm or less (glass fiber filters are known to work effectively).6.12 Temperature measurement device – Device should be capable of measuring up to 100 °C accurate to ± 0.1 °C6.13 Vortex mixer or equivalent6.14 Centrifuge - Maximum speed of at least 3200 rpm and capable of handling 10 mL or greater centrifuge tubes6.15 Centrifuge tubes – Disposable glass centrifuge tubes with capacity of at least 10 mL with snap-on cap6.16 Microwave solvent extraction apparatus6.16.1 The temperature performance requirements necessitate that thelaboratory microwave extraction system be capable of sensing the temperature to within ±2.5ºC and automatically adjusting the microwave field output power within 2 sec ofsensing. Temperature sensors should be accurate to ± 2 ºC. Temperature feedbackcontrol provides the primary performance mechanism for the method. Measurement in at least one vessel is required and a rotating turntable to homogenize the microwave field to all samples is required for most systems.6.16.2 Microwave extraction vessels are needed. Vessels are available that canaccommodate 1-g to 10-g samples. In addition the vessel apparatus must accommodate the necessary amount of solvent and if appropriate an inner vessel and stir bar andsecondary microwave energy absorber. Vessels should be essentially transparent tomicrowave energy (with the exception of purposeful microwave absorbing apparatuscomponents), relatively inert to reagents and sample components, and capable ofwithstanding the temperature and pressure requirements (minimum conditions of 200 °C and 442 psi) necessary to perform this procedure. Follow the manufacturer’s instructions regarding cleaning, handling, and sealing the vessels (Ref. 13).7.0 REAGENTS AND STANDARDSReagent-grade chemicals must be used in all tests. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.7.1 Hydrochloric acid (concentrated, 12 M), HCl – Certified ACS Plus grade orequivalent.7.2 Sodium hydroxide, NaOH – Certified ACS grade or equivalent.7.3 Sodium chloride, NaCl – Certified ACS grade or equivalent.7.4 Copper (II) chloride dihydrate, CuCl2·2H2O - Analytical reagent grade or equivalent.7.5 Nitric acid (concentrated, 16 M), HNO3 – Certified ACS Plus grade or equivalent.7.6 Hydrochloric acid (6 M), HCl - Prepared by dilution of 12 M HCl in reagent water.7.7 Sodium hydroxide (10 M), NaOH - Prepare by dissolution of solid NaOH pellets ofappropriate purity in reagent waterCH3CH2OH - HPLC grade or equivalent.7.8 Ethanol,7.9 Silver nitrate, AgNO3 – Certified ACS grade or equivalent.7.10 HPLC subspecies option mobile phase componentsCH3OH - HPLC grade or equivalent.7.10.1Methanol,2-Mercaptoethanol,HSCH2CH2OH - reagent grade.7.10.2NH4CO2CH3 - reagent grade.acetate,Ammonium7.10.37.11 Acetic acid, CH3CO2H - HPLC grade or equivalent.7.12 Sulphydryl cotton fiber (SCF) separation and concentration option7.12.1 Materials for preparing SCF7.12.1.1 Cotton - mercury-free cotton fiber.7.12.1.2 Mercaptoacetic acid (97+%), HSCH2CO2H - analytical reagentgrade.7.12.1.3 Acetic anhydride, (CH3CO)2O - HPLC grade or equivalent.7.12.1.4 Sulfuric acid, (concentrated, 18 M), H2SO4 - analytical reagentgrade or spectrograde quality.7.12.2 SCF eluent solutions7.12.2.1 SCF eluent 1, an aqueous solution containing 1.0 M HCl and1.0 M NaCl - Prepare by diluting 20.7 mL of concentrated HCl to 250 mL in reagentwater, then dissolving 14.6 g of NaCl in the prepared 1.0 M HCl.7.12.2.2 SCF eluent 2, an aqueous solution containing 6 M HCl,saturated NaCl, and 0.1% CuCl2⋅2H2O - Prepare by diluting 124 mL ofconcentrated HCl to 250 mL in water, then adding 0.25 g of CuCl2⋅2H2O and 11.0 gof NaCl.NOTE: A portion of the solid NaCl may remain undissolved and settle to thebottom of the vessel. The top portion of this solution should be used.7.13 Reagent water - All references to water in the method refer to reagent water unless otherwise specified. Refer to Chapter One for a definition of reagent water.7.14 2.0% (v/v) HCl + 10% (v/v) ethanol extraction solution - Prepared by dilution of the proper amount of concentrated HCl and ethanol in reagent water.7.15 1:2 (v/v) HNO3 extraction solution - Prepare by combining 1 part concentrated HNO3 with 2 parts reagent water.7.16 1:6:7 (v/v/v) HCl : HNO3 : reagent water - Prepare by combining 1 part concentrated HCl, 6 parts concentrated HNO3 with 7 parts reagent water7.17 Chloride ion test solution - 0.1 M silver nitrate in 0.1 M HNO3. Commercially prepared 0.1 M silver nitrate solution is available.7.18 4 M HNO3 extraction solution – Prepared by dilution of the proper amount of concentrated HNO3 in reagent water.7.19 Inorganic mercury standard solutions - Commercially prepared standards containing natural isotopically-abundant inorganic mercury species and isotopically-enriched inorganic mercury species, such as Hg2+, are available (Ref. 14, 15). Standard solutions can also be prepared by dissolution of the selected pure solid mercury compound in an appropriate solvent. Mercury compounds must be of known concentration. All solvents used for standards preparation must be analytical reagent grade or equivalent.7.20 Organic mercury standard solutions - Commercially prepared standards containing natural isotopically-abundant CH3HgCl or other organic mercury species and/or isotopically-enriched CH3HgCl or other organic mercury species are available (Ref. 14, 15). Standard solutions can also be prepared using the pure organic mercury compound and appropriate solvents (Ref. 5). Pure compounds must be of known concentration. Solvents used for standards preparation must be analytical reagent grade or equivalent.7.21 Sodium acetate, anhydrous, NaCH3CO2 – Certified ACS grade or equivalent.7.22 Sodium acetate trihydrate, NaCH3CO2·3H2O – Certified ACS grade or equivalent.7.23 0.2 M acetate buffer solution (pH 3.0) – Mix 11.4 mL of acetic acid and 0.2789 g anhydrous sodium acetate or 0.4627 g sodium acetate trihydrate in reagent water. Dilute to 1 L with reagent water. Measure the pH of the buffer solution and if needed adjust the pH with a strong acid or base.8.0 SAMPLE COLLECTION, PRESERVATION, AND STORAGE8.1 Sample handling and preservation procedures should follow the guidelines in the introductory material of Chapter Three, Inorganic Analytes.8.2 Samples should be collected and placed in containers that are made of glass or other appropriate material.8.3 Sample extracts should be analyzed within 5 days (Ref. 16).9.0 QUALITY CONTROL9.1 Refer to Chapter One for guidance on quality assurance (QA) and quality control (QC) protocols. When inconsistencies exist between QC guidelines, method-specific QC criteria take precedence over both technique-specific criteria and those criteria given in Chapter One, and technique-specific QC criteria take precedence over the criteria in Chapter One. Any effort involving the collection of analytical data should include development of a structured and systematic planning document, such as a Quality Assurance Project Plan (QAPP) or a Sampling and Analysis Plan (SAP), which translates project objectives and specifications into directions for those that will implement the project and assess the results. Each laboratory should maintain a formal quality assurance program. The laboratory should also maintain records to document the quality of the data generated. All data sheets and quality control data should be maintained for reference or inspection.9.2 Before processing any samples, the analyst should demonstrate that all parts of the equipment in contact with the sample and reagents are interference-free. This is accomplished through the analysis of a method blank. Each time samples are extracted, cleaned up, and analyzed, and when there is a change in reagents, a method blank should be prepared and analyzed for the analytical species of interest as a safeguard against chronic laboratory contamination. The blanks should be carried through all stages of sample preparation and analysis.9.3 Initial demonstration of proficiencyEach laboratory must demonstrate initial proficiency with each sample preparation and determinative method combination it utilizes by generating data of acceptable accuracy and precision for target analytes in a clean matrix. The laboratory must also repeat the demonstration of proficiency whenever new staff are trained or significant changes in instrumentation are made. See Method 8000 for information on how to accomplish a demonstration of proficiency.9.4 Sample quality control for preparation and analysisThe laboratory must also have procedures for documenting the effect of the matrix on method performance (precision, accuracy, method sensitivity). At a minimum, this should include the analysis of QC samples including a method blank, a duplicate, a matrix spike and a laboratory control sample (LCS) in each analytical batch. Any method blanks, matrix spike samples, and replicate samples should be subjected to the same analytical procedures (Secs.4.0 and 11.0) as those used on actual samples.9.4.1 Method blank: For each batch of samples processed (maximum 20), atleast one method blank should be carried throughout the entire sample preparation and analytical process, as described in Chapter One. A method blank is prepared using thesame reagents and quantities used with samples and processed through the appropriate steps of the procedure with the samples. These steps may include, but are not limited to extraction, chromatographic separation, concentration, dilution, filtering, and analysis. If the method blank does not contain target analytes at a level that exceeds the project-specific criteria requirements, then the method blank would be considered acceptable. In the absence of project-specific criteria, if the blank is less than the lower limit of quantitation, less than 10% of the regulatory limit, or less than 10% of the lowest sample concentration, whichever is greater, then the method blank is considered acceptable. If the method blank cannot be considered acceptable, the method blank should be re-analyzed at once, and if still unacceptable, then all samples after the last acceptable method blank must be re-prepared and re-analyzed along with the other appropriate batch of QC samples. These blanks will be useful in determining if samples are being contaminated. If the method blank exceeds the criteria, but the samples are all either below the reporting level or below the applicable action level or other criteria, then the data should not be rejected based on this analysis.9.4.2 Duplicate: For each batch of samples processed (maximum 20), at least one duplicate sample should be analyzed. A duplicate is a replicate sample aliquot carried through the same sample preparation and analysis process as the original sample. A duplicate is used to document method precision in a given sample matrix. Duplicate precision is determined via comparison of the relative percent difference (RPD) between the analysis result of the duplicate and that of the original sample. A duplicate sample should be prepared for each matrix type (i.e., sediment, soil, etc.). Acceptance criteria should be set at a laboratory-derived limit developed through the use of historical analyses per matrix type analyzed. In the absence of historical data, this limit should be set at an RPD of ≤ 25%.9.4.3 Matrix spike (MS): For each batch of samples processed (maximum 20), at least one MS sample should be carried through the entire sample preparation and analytical process. An MS is an intralaboratory split sample spiked with a known concentration of each analytical species of interest (see Secs. 7.19 and 7.20). An MS is used to document the accuracy of a method in a given sample matrix. MS samples should be spiked at the project-specific action level or, when lacking project-specific action levels, between the low- and mid-level calibration standards. Acceptance criteria should be set at a laboratory-derived limit developed through the use of historical analyses per matrix type analyzed. In the absence of historical data, the accuracy limit should be set at ±25% of the spiked concentration. A matrix spike sample should be included whenever a new matrix type is being analyzed.9.4.4 LCS: An LCS should be included with each batch of samples processed (maximum 20). The LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight. The LCS is spiked with the same analytes as the matrix spike, when appropriate. When the results of the matrix spike analysis indicate a potential problem due to the sample matrix itself, the LCS results may be used to verify that the laboratory can perform the analysis in a clean matrix.NOTE: A standard reference material (SRM), certified reference material (CRM) or reference material (RM) may be used in place of an LCS. The SRM, CRM or RMgenerally consists of a commercially-prepared, well characterized matrix similar to the sample matrix and containing the analytical species of interest at establishedreference concentration levels.。

相关文档
最新文档