2012年秋九年级数学培A辅导试题(二)
27.3 位似 课件 2024-2025学年人教版(2012)九年级下册数学
综合应用创新
(2)在网格纸中,以点O为位似中心画出△ABC的位似图形, 使△ABC与它的位似图形的相似比为12(不要求写画法). 思路引导:
综合应用创新
解:△ABC的位似图形如图27.3-10中的△A′B′C′和△A″B″C″.
综合应用创新
技巧点拨 画位似图形的技巧: 1. 对应点可以在位似中心的同侧,也可以在位似中心的异
感悟新知
(2)若△ABC的面积为7,求△A′B′C′的面积. 解:根据题意,得SS△△AA′BB′CC′=(12)2=14, 即S△A7′B′C′=14, ∴ S△A′B′C′=7×4=28.
知2-练
感悟新知
知2-练
3-1. 如图,以点O为位似中心,将△ABC放大得到△DEF, 若AD=OA,△ABC的面积为4,则△DEF的面积为( C ) A. 2 B. 8 C. 16 D. 24
学习目标
第二十七章 相似
27.3 位似
感悟新知
知识点 1 位似图形的定义
知1-讲
位似图形 与位似中
心
如果两个图形不仅相似,而且对应顶点的连 线相交于一点, 并且这点与对应顶点所连线段 成比例,那么这两个图形叫做位似图形, 这个 交点叫做位似中心
位似多边 形
对于两个多边形, 如果它们的对应顶点的连线 相交于一点, 并且这点与对应顶点所连线段成 比例,那么这两个多边形就是位似多边形
感悟新知
续表
知1-讲
位似 (1)相似仅要求两个图形形状完全相同,而位似是在 与相 相似的基础上要求对应顶点的连线相交于一点,并 似的 且这点与对应顶点所连线段成比例; 区别 (2)位似图形是相似图形的特例,如果两个图形是位 与联 似图形, 那么这两个图形一定是相似图形, 但相似的 系 两个图形不一定是位似图形
2012年秋学期九年级化学课堂检测试题(二).doc
2012年秋学期九年级化学课堂检测试题(二)(满分:60分时间:60分钟)九()班学号姓名成绩相对原子质量:C:12 O:16 H:1 Ca:40 Fe:56 Mg:24 S:32 Cu:64一、请选择(每小题只有一个选项符合题意,每小题1分,共10分)1.下列物质中,属于纯净物的是()A.钢B.生铁C.河水 D.液氧2.下列仪器中,不能在酒精灯火焰上直接加热的是()A.试管 B.烧杯 C.蒸发皿D.燃烧匙3.从人类利用金属的历史看,先有青铜器时代再到铁器时代,然后才有了铝制品。
造成这个先后顺序事实的最主要因素是()A.地壳中金属元素的含量B.金属的导电性C.金属的延展性D.金属冶炼的难易程度与金属活动性4.不锈钢是一种合金钢,有耐腐蚀的重要特性,被广泛应用于医疗器械、反应釜、炊具、装饰材料等。
不锈钢中添加的主要合金元素是()A.硅B.锰C.铬和镍D.钨5.在化学反应中,反应前后肯定发生变化的是()A.元素的种类B.物质的质量总和C.分子的种类D.各种原子的数目6.下列方法能用来区分软水和硬水的是()A.看颜色B.加明矾搅拌C.加肥皂水搅拌D.加食盐搅拌7.下列实验操作或做法正确的是()A.酒精泼到实验桌上燃烧起来,应立即用湿抹布扑灭B.在实验室用尝味道的方法区别食盐和蔗糖C.刚加热完的试管立即用冷水冲洗D.未经老师许可,把实验时用剩的药品带回家8.若金属锰(Mn)在金属活动性顺序中位于铝和锌之间,则下列反应不正确的是()A.Mn+2HCl = MnC12+H2↑ B.Mg +MnSO4= MgSO4+MnC.Mn+Cu(NO3)2= Mn(NO3)2+Cu D.Fe+MnSO4 = FeSO4+Mn9.下列对实验现象的描述不正确的是()A.硫在空气中燃烧发出微弱淡蓝色火焰B.铝在氧气中燃烧发出耀眼白光C.将金属银投入到稀盐酸中,银表面产生大量气泡D.硫酸铜溶液中滴加氢氧化钠溶液产生蓝色沉淀10.某气体可能由初中化学中常见的一种或多种气体组成,经测定其中只含有碳、氧两种元素,且碳、氧元素的质量比为1:2,则下列关于该气体的说法中正确的是()A.一定是纯净物 B.一定是CO、CO2的混合物C.该气体最多的可能组合有2种D.该气体最多的可能组合有3种二、请选择(每小题有1-2个选项符合题意,每小题2分,共10分)11.下列事实能证明在化学反应中分子可分的是()A.石蜡蒸气遇到凝固成固体B.水在通电的情况下分解生成氢气和氧气C.水蒸气冷凝变成水 D.过氧化氢溶液在二氧化锰的催化作用下生成氧气12.将洁净的铁丝浸入含有AgNO3和Zn(NO3)2的电镀废水中,一段时间后取出,铁丝表面覆盖一层物质,这层物质是()A.Ag、Zn B.Ag C.Zn D.Ag、Fe13.为验证Al、Fe、Cu三种金属的活动性顺序,可选用的一组物质是()A. AlCl3溶液、FeCl2溶液、CuSO4溶液B. Al、Cu、FeCl2溶液C. Fe、AlCl3溶液、CuSO4溶液D. Cu、AlCl3溶液、FeCl2溶液14. 2.8g CO在高温下跟5.8g某种铁的氧化物完全反应,这种氧化物是()A.FeOB.Fe2O3C.Fe3O4D.无法确定15.化学知识中有很多的“相等”。
2012年九年级数学期中考试附加卷
芒市五岔路中学试卷 芒市五岔路中学试卷试卷共4页,第1页 试卷共4页,第2页学校: 班级: 姓名: 考号:装 订 线2012年五岔路中学九年级期中考试数学附加卷(全卷共4个大题,共4页;满分50分,考试用时30分钟)艺造型共50个,摆放在迎宾大道两侧。
已知搭配一个A 种造型需甲种花卉8盆,乙种花卉4盆,搭配一个B 种造型需甲种花卉5盆,乙种花卉9盆。
(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来;(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本360元,试说明(1)中哪种方案成本最低,最低成本是多少。
2、(12分)已知中, ,D,E 是BC 边上的点,将绕点A 旋转,得到,连接。
(1)如图1,当.(2)如图2,当,有怎样的数量关系?请写出,并说明理由。
(3)如图3,在(2)的结论下,当,,BD 与DE 满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必说明理由)芒市五岔路中学试卷 芒市五岔路中学试卷试卷共4页,第3页 试卷共4页,第4页装订线3、(12分)如图,已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA=EC. (1)求证:;(2)延长EC 到点P ,连接PB ,若PB=PE ,试判断PB 与⊙O 的位置关系,并说明理由。
4、(14分)如图,在直角坐标系中,点A ,B ,C 的坐标分别为(-1,0),(3,0),(0,3)。
过A ,B ,C 三点的抛物线的对称轴为直线,D 为对称轴l 上一动点. (1)球抛物线的解析式(2)求当AD+CD 最小时点D 的坐标。
(3)以点A 为圆心,以AD 为半径作⊙A①证明:当AD+CD 最小时,直线BD 与⊙A 相切 ②写出直线BD 与⊙A 相切时,D点的另一个点的坐标。
2012年秋四校联考期中考试数学试题2
2012秋季九年级第五次月考数学试题一、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共21分) 1、一元二次方程032=+x x 的解是( )A .3-=xB .3,021==x xC .3,021-==x xD .3=x 2、下列计算正确的是( )3、将抛物线y=3x 向左平移2个单位,再向下平移1个单位,所得抛物线为( ).(A)y=3(x+2)2—1 (B)y=3(x-2)2+1 (C)y=3(x-2)2—1 (D)y=3(x+2)2+l 4a 3=- ,则 a 的范围是( )A 、a ≥3B 、a>3C 、a ≤3 D 、a<35、△ABC 的内切圆和外接圆是两个同心圆,那么△ABC 一定是()A 、等腰三角形B 、等边三角形C 、直角三角形D 、钝角三角形 6、如上图,⊙O 的半径为2,弦AB=C 在弦AB 上,且AC=AB41,则OC 的长为( )7、抛物线y=(k -2)2x 2+(2k +1)x +1与x 轴有两个交点,则k 的取值范围是( )(A) k >34且k ≠2 (B)k ≥34且k ≠2 (C) k >43且k ≠2 (D)k ≥43且k ≠2 8、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )二、填空题(共8道题,每小题3分,共24分) 9、函数13++=x x y 的自变量x 的取值范围是__________________. 10、如图,在⊙0中,CD ⊥AB 于E ,若50B ∠=︒,则A ∠度数为 11、已知x 1、x 2是方程2x 2+14x -16=0的两实数根,那么121123x x +=-的值为 12、已知圆锥的底面半径为2cm ,其母线长为3cm ,则它的侧面积为2cm 。
2012年九年级数学测试卷(至二次函数)
2012年秋九年级数学测试卷一、选择题(每题3分,共36分) 1.已知a <02a -可化简为( )A. -aB. aC. -3aD.3a 2.某乡镇企业经过两年的发展,产值翻了3番,则年平均增长率为( ) A 50%B (12-)×100%C (212-)×100%D 75%3. 在△ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是( ) A .3πB .23π C .π D .43π4.抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段A B 的长为( ) A.1 B.2 C.3 D.4 5.如图,CA CB ,分别与⊙O 相切于点D B ,,圆心O 在A B 上,A B 与⊙O 的另一交点为E ,2A E =,⊙O 的半径为1,则B C 的长为( ) A.2 C .2D6.如图,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( ). A .4-94π B .4-98π C .8-94π D .8-98π7、如图将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若,则AE 的长为( )A. B. 3 C. 2 D.8、已知⊙O 的半径OA=2,弦AB 、AC 的长分别是22、32,则∠BAC 的度数为( ) A.15° B.75° C.15°或75° D.15°或45°9. 等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定10.将4个红球和若干个白球放入不透明的一个袋子内,摇匀后随机摸出一球,若摸出红球的概率为23,那么白球的个数为( )A.1个 B.2个 C.3个 D.6个 11、已知A (1,2)、B (5,3)、P (m ,-m ),则△ABP 周长取最小值时p 点坐标为( )A )111,111(-B )111,111(-C )117,117(-D )119,119(-AE CBO 第5题12.二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:(每题3分,共18分)13. 如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 2cm .13题图 14题图 17题图14.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2 012次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2012的位置,则P 2012的横坐标x 2012=__________.15.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得的图象的解析式为532+-=x x y ,则b=____________,c=________________。
12秋第一次月考九年级数学试题
一、选择题(每小题3分,共36分) 1. 下列式子 一定.. 是二次根式的是( ) A .2--xB .xC .22+xD .22-x2.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —13.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=3 4.下列二次根式中属于最简二次根式的是( ) A .14B .48C .ba D .44+a5.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③aa a =-23;④a aa a a=∙=112。
做错的题是( )A .①B .②C .③D .④6.化简6151+的结果为( )A .3011 B .33030 C .30330 D .11307. 关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( )A. 1a ≠B. 1a ≠-C. 1a ≠±D.为任意实数8. 用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x +=B .()216x -=C .()229x +=D .()229x -=9. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >- B. 1k >-且0k ≠ C.1k < D.1k <且0k ≠10. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15 C .15 D .不能确定11. 为了让湖北的山更绿、水更清,2010年省委、省政府提出了确保到2012年实现全省森林覆盖率达到63%的目标,已知2010年我省森林覆盖率为60.05%,设从2010年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()260.05163%x +=D .()260.05163x +=12. 在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度 的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、想好了再填 (共5小题,每小题3分,共15分)13.方程(3x-1)(2x+1)=1化为一元二次方程的一般形式是__ ____。
2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.3. (2012广东广州14分)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.4. (2012广东肇庆10分)已知二次函数2y mx nx p =++图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证: n 4m 0+=; (2)求m 、n 的值;(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.5. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.7. (2012浙江宁波12分)如图,二次函数y=ax 2+bx+c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA=PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标;②若⊙M M 的坐标.8. (2012浙江温州14分)如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。
【解析版】初中数学九年级下期中复习题(培优)(2)
一、选择题1.(0分)[ID :11131]若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数1y x=-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 22.(0分)[ID :11130]如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是( )A .B .C .D .3.(0分)[ID :11128]下列说法正确的是( ) A .小红小学毕业时的照片和初中毕业时的照片相似 B .商店新买来的一副三角板是相似的 C .所有的课本都是相似的 D .国旗的五角星都是相似的 4.(0分)[ID :11124]若反比例函数ky x=(x<0)的图象如图所示,则k 的值可以是( )A .-1B .-2C .-3D .-45.(0分)[ID :11100]若37a b =,则b a a -等于( ) A .34B .43C .73D .376.(0分)[ID :11095]在函数y =21a x+(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( ) A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 27.(0分)[ID :11085]如图,过反比例函数的图像上一点A 作AB ⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.5 8.(0分)[ID:11073]已知2x=3y,则下列比例式成立的是()A.x2=3yB.x+yy=43C.x3=y2D.x+yx=359.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:910.(0分)[ID:11070]河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米11.(0分)[ID:11068]在ABC中,点D,E分别在边AB,AC上,:1:2AD BD=,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=12.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.513.(0分)[ID:11044]如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.105 m B.(105 1.5)mC.11.5m D.10m14.(0分)[ID:11042]如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4315.(0分)[ID:11076]在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O 到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍二、填空题16.(0分)[ID:11204]《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.17.(0分)[ID :11184]如图,在▱ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,则CD 的长为___________.18.(0分)[ID :11168]若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____.19.(0分)[ID :11143]已知点(,)P m n 在直线2y x =-+上,也在双曲线1y x=-上,则m 2+n 2的值为______.20.(0分)[ID :11136]如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .21.(0分)[ID :11224]如图,矩形ABCD 的顶点,A C 都在曲线ky x=(常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.22.(0分)[ID :11193]一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.23.(0分)[ID :11180]若函数y =(k -2)2k5x -是反比例函数,则k =______.24.(0分)[ID :11177]如图,将矩形ABCD 折叠,折痕为EF ,BC 的对应边B'C′与CD 交于点M ,若∠B′MD=50°,则∠BEF 的度数为_____.25.(0分)[ID :11218]如图,l 1∥l 2∥l 3,AB=25AC ,DF=10,那么DE=_________________.三、解答题26.(0分)[ID :11313]如图,∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N .(1)求证:△ABD ∽△BCD ; (2)若CD =6,AD =8,求MC 的长.27.(0分)[ID :11295]如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.28.(0分)[ID :11287]如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C .(1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.29.(0分)[ID:11273]在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.30.(0分)[ID:11319]如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B 处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.D4.C5.B6.A7.C8.C9.B10.B11.D12.A13.C14.B15.A二、填空题16.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈17.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相18.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比19.6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值再利用完全平方公式将原式变形得出答案详解:∵点P(mn)在直线y=-x+2上∴n+m=2∵点P(m20.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△21.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(3)C (5)所以B()然后利用待定系数法求直线BD的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD的解析式为y=m22.6【解析】符合条件的最多情况为:即最多为2+2+2=623.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣224.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C25.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC∴∴∵DF=10∴∴DE=4三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.3.D解析:D 【解析】 【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形. 【详解】A .小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B .商店新买来的一副三角板,形状不相同,不相似;C .所有的课本都是相似的,形状不相同,不相似;D .国旗的五角星都是相似的,形状相同,相似. 故选D . 【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.4.C解析:C 【解析】 【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案. 【详解】 如图所示:由题意可知A (-2,2),B (-2,1), ∴1-2⨯2<<-2⨯k ,即4-<<-2k 故选C. 【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.5.B解析:B 【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.8.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.9.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.10.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.11.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】可假设DE ∥BC ,则可得12AD AE DB EC ,13AD AE AB AC ==, 但若只有13DE AD BC AB ==,并不能得出线段DE ∥BC . 故选D .【点睛】 本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.12.A解析:A【解析】【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2,故选A . 【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.13.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°, ∴△DEF ∽△DAC ,∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.14.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:15.A解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题16.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈解析:四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.17.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.18.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC相似△A′B′C′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC相似△A′B′C′,面积比为1:4,∴△ABC与△A′B′C′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.19.6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值再利用完全平方公式将原式变形得出答案详解:∵点P(mn)在直线y=-x+2上∴n+m=2∵点P(m解析:6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn 的值,再利用完全平方公式将原式变形得出答案.详解:∵点P (m ,n )在直线y=-x+2上,∴n+m=2,∵点P (m ,n )在双曲线y=-1x上, ∴mn=-1,∴m 2+n 2=(n+m )2-2mn=4+2=6.故答案为6.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m ,n 之间的关系是解题关键. 20.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF a==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.21.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.22.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=623.-2【解析】【分析】根据反比例函数的定义列出方程解出k 的值即可【详解】解:若函数y =(k -2)是反比例函数则解得k =﹣2故答案为﹣2解析:-2【解析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.24.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键. 25.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC∴∴∵DF=10∴∴DE=4 解析:【解析】试题解析::∵l1∥l2∥l3,∴AB DE AC DF=.∵AB=25 AC,∴25 ABAC=,∴25 DEDF=.∵DF=10,∴2 105 DE=,∴DE=4.三、解答题26.(1)见解析;(2)MC=.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC∵BM∥CD∴∠MBD=∠BDC,∠MBC=∠BCD=90°∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∴MC.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.27.5【解析】【分析】利用平行线分线段成比例定理得到AB DE AC DF =,然后把有关数据代入计算即可. 【详解】 123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF∴=, AB 4AC 7=,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 28.(1)抛物线的解析式为y=x 2+2x ;(2)D 1(-1,-1),D 2(-3,3),D 3(1,3);(3)存在,P (,)或(3,15).【解析】【分析】(1)根据抛物线过A (2,0)及原点可设y=a (x-2)x ,然后根据抛物线y=a (x-2)x 过B (3,3),求出a 的值即可;(2)首先由A 的坐标可求出OA 的长,再根据四边形AODE 是平行四边形,D 在对称轴直线x=-1右侧,进而可求出D 横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标; (3)分△PMA ∽△COB 和△PMA ∽△BOC 表示出PM 和AM ,从而表示出点P 的坐标,代入求得的抛物线的解析式即可求得t 的值,从而确定点P 的坐标.【详解】解:(1)根据抛物线过A (-2,0)及原点,可设y=a (x +2)(x-0),又∵抛物线y=a (x +2)x 过B (-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x +2)x=x 2+2x ;(2)①若OA 为对角线,则D 点与C 点重合,点D 的坐标应为D (-1,-1); ②若OA 为平行四边形的一边,则DE=OA ,∵点E 在抛物线的对称轴上,∴点E 横坐标为-1,∴点D 的横坐标为1或-3,代入y=x 2+2x 得D (1,3)和D (-3,3),综上点D 坐标为(-1,-1),(-3,3),(1,3).(3)∵点B (-3,3)C (-1,-1),∴△BOC 为直角三角形,∠COB=90°,且OC :OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题29.(1)证明见解析(2)222(32【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=122⨯×2=2. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.30.此时轮船所在的B 处与灯塔P 的距离是98海里.【解析】【分析】过点P 作PC ⊥AB ,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB 的长即可.【详解】作PC ⊥AB 于C 点,∴∠APC=30°,∠BPC=45°,AP=80(海里), 在Rt △APC 中,cos ∠APC=PC PA, ∴PC=PA•cos ∠3(海里), 在Rt △PCB 中,cos ∠BPC=PC PB , ∴PB=403cos PC BPC =∠6≈98(海里), 答:此时轮船所在的B 处与灯塔P 的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.。
2012年中考数学二模25题
25.(本题满分14分,第(1)、(2)小题各3分,第(3)、(4)小题各4分) 已知:正方形ABCD 的边长为1,射线AE 与射线BC 交于点E ,射线AF 与射线CD 交于点F ,∠EAF=45°.(1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想.(延长线呢)(2)设BE=x ,DF=y ,当点E 在线段BC 上运动时(不包括点B 、C ),如图1,求y 关于x 的函数解析式,并指出x 的取值范围.(3)当点E 在BC 延长线上时,设AE 与CD 交于点G ,如图2.问⊿EGF 与⊿EF A 能否相似,若能相似,求出BE 的值,若不可能相似,请说明理由.图2图1GFE D C B A 45°45°F E D C B A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长;(2)设BM x =,CMF y ANF ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.O ABCMDN B 1F第25题图25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分)已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB . (1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BCCDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.ABC (图 )8 A BC (备用图)25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图,ABC ∆中,5==BC AB ,6=AC ,过点A 作AD ∥BC ,点P 、Q 分别是射线AD 、线段BA 上的动点,且BQ AP =,过点P 作PE ∥AC 交线段AQ 于点O ,联接PQ ,设POQ ∆面积为y ,x AP =.(1)用x 的代数式表示PO ;(2)求y 与x 的函数关系式,并写出定义域;(3)联接QE ,若PQE ∆与POQ ∆相似,求AP 的长.BPDQ CAO E已知,90ACB ∠=,CD 是ACB ∠的平分线,点P 在CD 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABCPD图9ABCEGPDF如图,在△ABC 中,10==AC AB ,53cos =B ,点D 在AB 边上(点D 与点A ,B 不重合),DE ∥BC 交AC 边于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作平行四边形DEFG ,联结BG . (1)当EF =FC 时,求△ADE 的面积;(2)设AE =x ,△DBG 的面积为y ,求y 与x 的函数关系式,并写出x 的取值范围; (3)如果△DBG 是以DB 为腰的等腰三角形,求AD 的值.GE D CBAF(第25题图)24.在ABC Rt △中,4==BC AB ,90=∠B ,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边BC AB ,或其延长线上交于E D ,两点(假设三角板的两直角边足够长),如图1,图2,表示三角板旋转过程中的两种情形.(1)直角三角板绕点P 旋转过程中,当=BE 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图1的情形时,求证:PE PD =;(3)如图3,若将直角三角板的直角顶点放在斜边AC 的点M 处,设n m MC AM ::=(n m ,为正数),试判断ME MD ,的数量关系。
2012年九年级第二轮数学模拟数学试卷
蓝 蓝 红 红 红黄 (第8题)(第5题) B C D OE A2012年九年级中考第三次模拟考试数 学 试 卷考生须知:1. 全卷共三大题,24小题,满分为150分.考试时间为120分钟,本次考试采用闭卷形式. 2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.参考公式:二次函数2y ax bx c =++图像的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.-4的倒数是( ▲ ) A .41 B .41-C .-4D .42.为了响应中央号召,今年某市加大财政支农力度,全市农业支出累计达到23400万元, 其中23400万元用科学记数法可表示为( ▲ )A .2.34×104万元B .2.34×105万元C .23.4×104万元D .0.234×105万元 3.下列四个几何体中,主视图是三角形的是( ▲ )4.计算2a ·3a ,正确的结果是( ▲ )A .26a B .25a C .6a D .5a5.如图,直线EO ⊥CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( ▲ )A .120°B .130°C .135°D .140°6.不等式组⎩⎨⎧≤>+134x x 的解集在数轴上可表示为( ▲ )7.若圆锥的侧面积为15π,底面半径为3,则圆锥的母线长为( ▲ )A.2.5B.5 C .5π D.10π8.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是( ▲)1 2 0 2- A . 1-1 20 2- B .1- 1 2 0 2- C . 1- 1 20 2- D . 1-A .B .C .D .OA B C D (第13题) y O x B A(第14题) H G FED C BA (第16题)A .16B .13C .12 D .239.某男子排球队20名队员的身高如下表:身高(cm ) 180 186 188 192 208 人数(个)46532则此男子排球队20名队员的身高的中位数是( ▲ )A .186 cmB .187 cmC .188 cmD .190 cm 10.小明借了同学好多的三角板来玩,他发现用四块 含30°角的直角三角板(如图1),可以拼成一个 更大的含30°角的直角三角形,于是他提出一个 问题:在图2的基础上至少再添加( ▲ )个如 图1的三角板,可以拼成一个比图2更大的含30°角的直角三角形. A. 4 B. 5 C. 6 D. 7卷 Ⅱ二、填空题(本题共6小题,每小题5分,共30分)11. 因式分解:=+x x 22▲ .12.已知关于x 的方程03=-ax 的解是x=2,则a 的值为 ▲ .13.某蔬菜基地的圆弧形蔬菜大棚的横断面如图,已知弦AB=16m ,半径OA=10m ,则中间柱CD 的高度为 ▲ m .14. 如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,作AB ⊥x 轴于点B ,若OB=1,则k= ▲ .15.某县2011年农民人均年收入为8000元,计划到2013年,农民人均年收入达到12000元.设人均年收入的平均增长率为x ,则可列方程为 ▲ .(不解方程)16.如图,在正方形ABCD 中,点E 、F 、G 、H 均在其内部,且DE=EF=FG=GH=HB=2, ∠E=∠F=∠G=∠H=60°,则正方形ABCD 的边长AB= ▲ . 三、解答题(本题有8小题,共80分) 17.(本题10分)(1)计算:0)14.3(163-+--π; (2)31962++-x x .18.(本题6分)如图,在□ABCD 中,E 为BC 的中点,连接DE , 延长DE 交AB 的延长线于点F .DCE(第10题) 图1图2七年级学生参加社会实践活动人数 的百分比统计图七年级学生参加社会实践活动 的人数统计图 求证:AB=BF .19.(本题8分)如图,方格纸上的每个小方 格都是边长为1小正方形,我们把顶点落 在格点上的三角形称为“格点三角形”, 图中的△ABC 就是一个格点三角形. (1)填空:BC= ▲ ,tanB= ▲ ;(2)①在方格纸中画出..一个格点三 角形DEF ,使△DEF ∽△ABC ,并且DE:AB=2:1.②△DEF 与△ABC 的周长之比 为 ▲ .20.(本题10分)某市教育局为了了解七年级学生第一学期参加社会实践活动的天数,随机抽查本市部分七年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1) a ▲ ,该扇形所对圆心角的度数为 ▲ ; (2)补全条形统计图;(3)如果该市有七年级学生20000人,请你估计“活动时间不少于5天”的大约有多少人?21.(本题10分)如图,已知AB 是⊙O 的直径,锐角∠DAB 的平分线AC 交⊙O 于点C ,作3天 4天 5天 6天 7天和7天以上 30%15%10%20%a 20 30 10 50 60 40 3天 4天 5天 6天 7天和7天以上 人数 时间 ABCBCO EADF 'Fyx APO B CD ⊥AD ,垂足为D ,直线CD 与AB 的延长线交于点E . (1)求证:直线CD 为⊙O 的切线; (2)当OB=BE=1时,求AD 的长.22.(本题10分)如图,抛物线32 2+-=x x y F :的顶点 为P ,与y 轴交于点A ,过点P 作PB ⊥x 轴于点B ,平移 抛物线F 使其经过点A 、B 得到抛物线' F . (1)求顶点P 和点B 的坐标; (2)求抛物线' F 的解析式;(3)将抛物线' F 向右平移 ▲ 个单位后,所得的抛物线恰好经过P 点.(请你填空)23.(本题12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式 粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行,受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完. (1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? (2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数a 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?24.(本题14分)如图,在Rt △ABC 中,∠ACB=Rt ∠,BC=3,AC=4,D 是AC 的中点,P 是AB上一动点,连接DP 并延长至点E ,使EP=DP ,过P 作PK ⊥AC ,K 为垂足.设AP=m(0≤m ≤5).E K DA C BPDACB(备用图)(1)用含m 的代数式表示DK 的长; (2)当AE ∥BC 时,求m 的值;(3)四边形AEBC 的面积S 会随m 的变化而变化吗?若不变,求出S 的值;若变化,求出S 与m 的函数关系式;(4)作点E 关于直线AB 的对称点'E ,当K DE ' 是等腰三角形时, 求m 的值.(直接写出答案即可)。
2012年秋九年级数学期中复习二
1. 某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。
设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A.36(1-x )2=36-25 B.36(1-2x )=25C.36(1-x )2=25 D.36(1-x 2)=252. 方程x(x-2)+x-2=0的解是( )A .2B .-2,1C .-1D .2,-13. 已知一元二次方程:0132=--x x 的两个根分别是1x 、2x 则221221x x x x +的值为( )A . 3-B . 3C . 6-D . 64. 如果关于x 的一元二次方程kx 2x +1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k <12 B .k <12且k ≠0 C.-12≤k <12 D.-12≤k <12且k ≠0 5.在算式((的中填上运算符号,使结果最大,这个运算符号是( )A.加号B.减号C.乘号D.除号6.设a ,b 是方程220130x x +-=的两个不相等的实数根,22a a b ++的值 .7. 如果代数式34-x 有意义,则得取值范围是( )A .3≠xB .3<x . C.3>x D .3≥x8. 计算﹣×= . 9.计算:(﹣1)101+(π﹣3)0+()-1﹣=_____________10. △ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( )A .80°B .160°C .100°D .80°或100°11. 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .12. 已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm13. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t= .14. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 mm .15.在平面直角坐标系xoy 中,已知点A (0,2),⊙A 的半径是2,⊙P 的半径是1,满足 与⊙A 及x 轴都相切的⊙P 有 个.16.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.17.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =面积为( )A .4πB .2πC .πD .2π3B18.用半径为2cm 的半圆围城一个圆锥的侧面,则这个圆锥的底面半径为( )A. 1cmB. 2cmC. πcmD. 2πcm19.有一个底面半径为3cm 、母线长为10cm 的圆锥,则其侧面积是_________㎝220. 先化简,再求值:235(2)362m m m m m -÷+---,其中m 是方程2310x x +-=的根.21.关于x 的一元二次方程2310x x m ++-=的两个实数根分别为12,x x .(1)求m 的取值范围;(2)若12122()100x x x x +++=,求m 的值.22. 某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的进价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为 万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)23.如图,△OAC 中,以O 为圆心,OA 为半径作⊙O ,作OB ⊥OC 交⊙O 于B ,垂足为O ,连接AB 交OC 于点D ,∠CAD=∠CDA .(1)判断AC 与⊙O 的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC 的长.4.D5.D6.2012 10.D 11. 10或8 13. 0或2 14.8 15.4 16. π 17.D20.原式=2113(3)3m m =+ 21.解:(1)∵原方程有两个实数根, ∴=9-4(-1)0m ∆≥, 解之,得:134m ≤. (2)由韦达定理,得:1212+=-3=-1x x x x m ∙,, ∴2(-3)+(-1)+10=0m ⨯, 解之,得:=-3m .22.(1)27-(3-1)×0.1=26.8.(2)设销售汽车x 辆,则汽车的进价为27-(x-1)×0.1=27.1-0.1x 万元, 若x ≤10,则(28-27.1+0.1x )x+0.5x=12解得x 1=6,x 2=-20(不合题意,舍去)若x>10,则(28-27.1+0.1x )x+x=12解得x 3=5(与x>10舍去,舍去),x 4=-24(不合题意,舍去)公司计划当月盈利12万元,需要售出6辆汽车.。
2012~2013学年第一学期__离散数学__A卷_(2)
上海第二工业大学(试卷编号:)2012~2013学年第一学期离散数学A 卷姓名:学号:班级:成绩:一、判断题(每小题2分,本题共10分) 1、若A B A C =,则B C =。
( 错 ) 2、设1ρ和2ρ是集合A 上的等价关系,则12ρρ是A 上的等价关系( 对 )3、若函数:f A B →,:g B C →,则若f 与g 的复合gf 是双射,则函数f 是双射。
( 错 )4、在有界格中,必有最大元和最小元。
( 对 )5、存在13个结点,并且每个结点的度均为3的图。
( 错 )二、填空题(每空2分,本题30分) 1、设集合{,{}}A a b =,{,}B a b =,则22AB =_______{空,{a}}________________,B A ⨯=_________{(a,a),(b,a),(a,{b}),(b,{b}}________________。
2、若{1,2,3,4}A =,则A 上共有___11_______个不同的自反关系。
3、假设{0,1,2,3}A =,1{(,)|2}i j j i ρ==+和2{(,)|2}i j i j ρ==+是A 上的关系,则12ρρ=_____{(0,0),(1,1)}__;21ρρ=___{(2,2),(3,3)};关系1ρ的自反闭包是:__{(0,0),(1,1),(2,2),(3,3),(0,2),(1,3)}__;关系2ρ的对称闭包是:_{(1,3),(3,1),(2,0),(0,2)}_。
4、命题P :“小李喜欢跳舞”,命题Q :“小李不喜欢唱歌”,则复合命题P Q ⌝∧表示:____小李不喜欢跳舞且不喜欢唱歌_____________________。
5、设集合{1,2,3,4}A =,{,,,}B a b c d =,则A B ⨯有___16__个序偶,A 到B 有___256____个关系,其中有____24____个是双射函数。
2012年中考数学分类解析(159套63专题)专题22_二次函数的应用(几何问题)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 【答案】 D 。
【考点】二次函数的图象和性质。
【分析】根据题意得:y =|ax 2+bx +c|的图象如右图,∵|ax 2+bx +c|=k(k≠0)有两个不相等的实数根, ∴k>3。
故选D 。
二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上. (Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求A B Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求A B Cy y y -的最小值.【答案】解:(Ⅰ)若a=1,b=4,c=10,此时抛物线的解析式为y=x 2+4x+10。
①∵y=x 2+4x+10=(x+2)2+6,∴抛物线的顶点坐标为P (-2,6)。
②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y=x 2+4x+10上, ∴y A =15,y B =10,y C =7。
∴A B Cy 15==5y y 107--。
(Ⅱ)由0<2a <b ,得0b x 12a<=--。
由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。
连接BC ,过点C 作CD⊥y 轴于点D , 则BD=y B -y C ,CD=1。
过点A 作AF∥BC,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。
则∠FAA 1=∠CBD。
2012年秋九年级数学期中复习一
1、 下列计算正确的是( )= B. 2= C. (26= D. ==2有意义,则的取值范围是( )A . 3x > B. 3x < C. 3x ≤ D. 3x ≥3、方程x 2=3x 的解是( )A .x=3B . x=0C . x 1=3, x 2=0D . x 1=-3, x 2=04、方程232x x -=的两根之和与两根之积分别是( )A. 12和B. 12--和C. 1233-和- D. 1233和- 5、关于x 的一元二次方方程220x x m -+=没有实数根,则x 的取值范围是( )A. 1m >-B. 1m <-C. 1m >D.1m <6、下列各式中,属于最简二次根式的是( )A .x 4B .12+xC .23x D .5.0 7.、某超市一月份的营业额为200万元,三月份时营业额增长到288万元,如果平均每月增长率为x,则由题意列方程应为 ( )A . 2002)1(x +=288B . 200x 2=288C . 200(1+2x )2=288D . 200[1+(1+x)+ 2)1(x +]=2888、已知a ,b ,c 在数轴上的位置如图:化简代数式c b a c b a a ++-++-22)(的值为9、m 是关于x 的方程02=++m nx x 的根,且0≠m ,则n m +的值是__________10、已知1632+n 是整数,则n 的最小整数值是________________11.(1)、2)2(-+ 631510⨯- (2)、(5+1)(5-1)+222- 12.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套。
(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少元?。
2012年下学期九年级数学中考试题
AEDB C2012年下学期九年级期中考试卷数 学温馨提示:(考试范围:第1~3章 考试时间:120分钟 满分120分)一、选择题(每小题3分,共24分)1.一元二次方程2350x x --=中的一次项系数和常数项分别是()A. 1,-5B. 1,5C. -3.-5D. -3,52.关于x 的方程022=-+m x mx ( m 为常数)的实数根的个数有()A. 0个B. 1个C. 2个D. 1个或2个3.将方程2650x x --=左边配成一个完全平方式后,所得方程是( )A. 2(6)41x -=B. 2(3)4x -=C. ()2314x -=D. 2(6)36x -= 4.下列命题是假命题的是()A.所有的矩形都相似B.所有的圆都相似C.一个角是100°的两个等腰三角形相似D.所有的正方形都相似5.已知线段a 、b ,有32a b a b +=-,则a:b 为 ()A. 5 : 1B. 5 : 2C. 1 : 5D. 3 : 5 6.如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形一定是( )A.锐角三角形B.钝角三角形C. 等腰三角形D.直角三角形7.某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为x ,根据题意得方程()A. 25000(1)5000(1)7200x x +++=B. 25000(1)7200x +=C. 25000(1)7200x +=D. 250005000(1)7200x ++=8.如图,∆∆ABC ADE ~,且∠=∠ADE B ,则下列比例式正确的是 ()A. AE BE AD DC= B. AE AB AD AC =;C. AD AC DE BC =D. AE AC DE BC=二、填空题(每小题3分,共24分) 9.方程22x x =的解是 。
10.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=15cm .则线段d=____cm 。
2012年考研数学真题及参考答案(数学二)
∫∫ (x
5
y − 1 dxdy = ∫ 2π dx ∫
− 2
)
π
1
sin x
(x
5
y − 1)dy = −π
⎛0⎞ ⎛0⎞ ⎛1⎞ ⎛ −1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ (7)设 α1 = 0 , α 2 = 1 , α 3 = −1 , α 4 = 1 其中 c1 , c2 , c3 , c4 为任意常数,则下列向量组线性相关 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜c ⎟ ⎜c ⎟ ⎜c ⎟ ⎜c ⎟ ⎝ 1⎠ ⎝ 2⎠ ⎝ 3⎠ ⎝ 4⎠
【答案】 : ( −1, 0 ) 【解析】 :将
y’ = 2 x + 1, y” = 2 代入曲率计算公式,有
K= | y′′ | = (1 + y′2 )3/2 2
2 ⎡ ⎣1 + (2 x + 1) ⎤ ⎦ 3 2
=
2 2
整理有 (2 x + 1) = 1 ,解得 x = 0或 − 1 ,又 x < 0 ,所以 x = −1 ,这时 y = 0 ,
【答案】 :(D) 【 解 析 】::
2
(B) I2< I2< I3. (D) I1< I2< I3.
I k = ∫ e x sin xdx 看 为 以 k 为 自 变 量 的 函 数 , 则 可 知
2
k
e
I k ' = e k sin k ≥ 0, k ∈ ( 0, π ) , 即可知 I k = ∫ e x sin xdx 关于 k 在 ( 0, π ) 上为单调增
的是( ) (B) α1 , α 2 , α 4 (D) α 2 , α 3 , α 4 (A) α1 , α 2 , α 3 (C) α1 , α 3 , α 4 【答案】 : (C)
2012年秋初三数学期中考试试卷及答案(苏教版)
张桥中学初三数学阶段试题 2012.12.7(时间:120分钟 满分:150分)请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效! 一、选择题(每题3分,共24分)1.函数y有意义的自变量x 的取值范围是 A .x ≤12B .x ≠12C .x ≥12D .x <122. 已知四边形ABCD 是平行四边形,下列结论中不正确的是A. 当AB =BC 时,它是菱形B.当AC ⊥BD 时,它是菱形C. 当∠ABC =90°时,它是矩形D.当AC =BD 时,它是正方形 3.一名篮球运动员投篮命中的概率是0.8,下列陈述中,正确的是A .他在每10次投篮中必有8次投中B .他在10次一组的投篮中,平均会有8次投中C .他投篮 10次,不可能投中9次D .他投篮100次,必投中80次4. 如图,AB 是⊙O 的直径,C ,D 为圆上两点∠AOC =130°,则∠D 等于 A .25°B .30°C .35°D .50°5. 已知两圆半径1r 、2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是 A .相交 B . 相切C . 外切D . 外离6. 已知二次函数y =2(x -3)2+1,可知正确的是A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大7. 下列命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤菱形的四个顶点在同一个圆上;⑥正多边形都是中心对称图形;⑦若圆心到直线的距离恰好等于圆的半径,则该直线是圆的切线;⑧在圆中90°的角所对弦是直径。
其中正确结论的个数有 A .3个 B .4个 C .5个 D .6个 8.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如 果AD ⊥ED ,那么线段DE 的长为 A .1B.2C . —1 D.2二、填空题(每题3分,共30分)9.已知一组数据2, 1,-1,0, 3,则这组数据的极差是 。
2012北京市门头沟初三二模数学考试试题与答案
2012年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1. 4-的倒数是 A.4-B.4C. D.2. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.将 0.000 0963用科学记数法表示为A. 51063.9⨯ B. 51063.9-⨯ C. 41063.9-⨯ D. 31063.9-⨯3. 下列交通标志中既是中心对称图形,又是轴对称图形的是4. 五边形的内角和是A.360°B.540°C.720°D.900° 5. 为了支援地震灾区同学,某校开展捐书活动, 九(1)班40名同学积极参与.现将捐书数量 绘制成频数分布直方图如图所示,则捐书数量 在5.5~6.5组别的频率是A. 0.1B. 0.2C. 0.3D. 0.46. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,两组数据的平均数相同,其方差分别为s 甲2=0.002、s乙2=0.03,则下列说法正确的是 A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定7.关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是 A. B. C. D.8. 如图,已知MN 是圆柱底面直径,NP 是圆柱的高.在圆柱的侧面上,41-41A.B.C.D.NM121>m 121<m 121->m 121-<mED C B A 过点M 、P 嵌有一圈路径最短的金属丝.现将圆柱侧面沿NP 剪开,所得的侧面展开图是A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22344xy y x x +-= .10. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,若 32=BD AD ,AE =3,则AC = .11.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (10≥x )本, 则付款金额y (元)与练习本个数x (本)之间的函数关系式是 .12. 一组按规律排列的式子:22b a ,432b a -,843b a ,1654b a -,…,其中第6个式子是 ,第n 个式子是 (n 为正整数).三、解答题(本题共30分,每小题5分) 13.计算:4)3(45sin 80-+-+︒-π14.解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x15.已知:3=x ,求2212-÷-x xx x 的值.16. 已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE =FC .17. 如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.21FEDC BA P /N /PN M P /N /P N M P /N /P N M M /P /N /PNM18. 列方程或方程组解应用题某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分) 19.已知:如图,四边形ABCD 中,BC =CD =DB ,∠ADB =90°, sin ∠ABD =54,S △BCD =39. 求四边形ABCD 的周长.20. 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径.点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足 为D . (1)求证:CD 为⊙O 的切线; (2)若DC +DA =6,⊙O 的直径为10,求AB 的长.21.甲学校到丙学校要经过乙学校. 从甲学校到乙学校有A 1、A 2、A 3三条线路,从乙学校到丙学校有B 1、B 2二条线路.(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B 1线路的概率是多少?22. 数学课上,同学们探究发现:如图1,顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形. 并且对其进行了证明.(1)证明后,小乔又发现:下面两个等腰三角形如图2、图3也具有这种特性.请你在 图2、图3中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;O B D C E A P DCBA 36︒CA 图 245︒45︒图 336︒36︒(2)接着,小乔又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可以把它分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出此三角形的各内角的度数.(说明:要求画出的既不是等腰三角形,也不是直角三角形.)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知抛物线y =ax 2+x +2.(1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a 1时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点M (m ,0);当a =a 2时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小.24. 有两张完全重合的矩形纸片,小亮将其中一张绕点A 顺时针旋转90°后得到矩形AMEF (如图1),连结BD 、MF ,此时他测得BD =8cm ,∠ADB =30°. (1)在图1中,请你判断直线FM 和BD 是否垂直?并证明你的结论;(2)小红同学用剪刀将△BCD 与△MEF 剪去,与小亮同学继续探究.他们将△ABD 绕点A 顺时针旋转得△AB 1D 1,AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,请直接写出旋转角β的度数;(3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB 时,求平移的距离是多少.-4-3-2-1-4-3-2-143214321Oxy C D MA B FE图1D M A BF图3N F 2P A 2M 2 DMA BFD 1图2B 1 K25. 如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为 ,点A 、D 的坐标分别为(-4,0),(0,4). 动点P 从A 点出发,在AB 边上匀速运动. 动点Q 从点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外). (1)求出点C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时,S 有最大值?并求出这个最大值.2012年数学二模评标 一、选择题1.C2.B3.D4.B5.B6.A7.C8.AO xyABCDPQ31634+-=x y二、填空题9. 10. 11. 12.三、解答题(本题共30分,每小题5分)13.解:原式= ……………………………………4分= ………………………………………….5分14.解:由(1)得,…………………………………….2分由(2)得,x<3 ………………………………………4分不等式组的解集是………………………5分15.解:= ………………………..3分= ……………………………………..4分当x=3时,原式= = = …………………………5分16.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D. ………………………….2分∵∠1=∠2,……………………………………….3分△ABE≌△CDF. ………………………………4分AE=CF. ………………………………………5分17.解:(1)由题意得,m=6,n=3.∴A(1,6),B(3,2). …………………………2分由题意得,解得,∴一次函数解析式为y=-2x+8. ……………………3分(2)反比例函数的值大于一次函数的值的x的取值范围是0<x<1或x>3. …..5分18.解:设甲组每天修桌凳x套,则乙组每天修桌凳为1.5x套. (1)分由题意得,…………………………………………….3分解得,x=16 ………………………………………………………………………4分经检验,x=16是原方程的解,且符合实际意义.1.5x=1.5 16=24 …………………………………………………………..5分答:甲组每天修桌凳16套,乙组每天修桌凳为24套.19.解:过C作CE⊥BD于E.∵∠ADB=90°,sin∠ABD= ,∴AD=4x,AB=5x. ………………………..1分∴DB=3x∵BC=CD=DB,∴DE= ,∠CDB=60°. ………………………2分∴tan∠CDB=∴CE= . ……………………………3分∵S△BCD= ,∴∴ x=2. ………………………………………….4分∴AD=8,AB=10,CD=CB=6.∴四边形ABCD的周长=AD+AB+CD+CB=30. ……………………………..5分20.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC.∵CD⊥PA,∴∠CDA=90°,∴∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO. ………………………1分∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.∴CD为⊙O的切线.…………………………2分(2)解:过O作OF⊥AB,垂足为F,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,……………………3分∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得 .即,化简得:解得或(舍). ………………………4分∴AD=2, AF=5-2=3.∵OF⊥AB,AB=2AF=6. ………………………..5分21.(1)………………………………..2分结果:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2) (4)分(2)小张恰好经过了B1线路的概率是………………………………………….6分22.(1)正确……………………………….2分(一个1分)(2)正确………………………………..4分23. 当a=-1时,y=-x2+x+2,∴a=-1,b=1,c=2.∴抛物线的顶点坐标为( , ),对称轴为直线x= .……2分(2)∵代数式-x2+x+2的值为正整数,∴函数y=-x2+x+2的值为正整数.又因为函数的最大值为,∴y的正整数值只能为1或2.当y=1时,-x2+x+2=1,解得,…………3分当y=2时,-x2+x+2=2,解得x3=0,x4=1.……………4分∴x的值为,,0或1.(3)当a<0时,即a1<0,a2<0.经过点M的抛物线y=a1x2+x+2的对称轴为 ,经过点N的抛物线y=a2x2+x+2的对称轴为 .…………5分∵点M在点N的左边,且抛物线经过点(0,2)∴直线在直线的左侧……………6分∴< .∴a1<a2.…………………………………………………………7分24. 解:(1)垂直. …………………………1分证明:延长FM交BD于N.如图1,由题意得:△BAD≌△MAF.∴∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°.∴∠DNM=90°,∴BD⊥MF.2分(2)β的度数为60°或15°(答对一个得1分)4分(3)如图2,由题意知四边形PNA2A为矩形,设A2A=x,则PN=x.在Rt△A2M2F2中,∵M2F2=MF=BD=8,∠A2F2M2=∠AFM=∠ADB=30°.∴M2A2=4,A2F2= . …………………………..5分∴AF2=-x.在Rt△PAF2中,∵∠PF2A=30°.∴AP=AF2 30°=( -x)•=4- x.∴PD=AD-AP=-4+ x.……………..6分∵NP∥AB,∴=.∴=,解得x=6-.即平移的距离是(6- )cm.…………………………..7分25. 解:(1)把y=4代入y=- x+,得x=1.∴C点的坐标为(1,4). ……………………………………….1分(2)当y=0时,- x+=0,∴x=4.∴点B坐标为(4,0).过点C作CM⊥AB于M,则CM=4,BM=3.∴BC===5.∴sin∠ABC== .①0<t<4时,过Q作QN⊥OB于N,则QN=BQ•sin∠ABC= t.∴S= OP•QN=(4-t)× t =- t2+ t(0<t<4). ……………2分②当4<t≤5时,连接QO,QP,过点Q作QN⊥OB于N.同理可得QN= t.∴S= OP•QN=×(t-4)× t.= t2- t(4<t≤5). …………………………….3分③当5<t≤6时,连接QO,QP.S=×OP×OD=(t-4)×4.=2t-8(5<t≤6). ……………………………….4分S随t变化的函数关系式是 .(3)①当0<t<4时,∵- <0当t==2时,S最大== . ……………………………5分②当4<t≤5时, S= t2- t,对称轴为t=-=2,∵ >0∴在4<t≤5时,S随t的增大而增大.∴当t=5时,S最大=×52-×5=2. …………………………..6分③当5<t≤6时,在S=2t-8中,∵2>0,∴S随t的增大而增大.∴当t=6时,S最大=2×6-8=4. …………………………………………7分∴综合三种情况,当t=6时,S取得最大值,最大值是4. ………………………8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年秋九年级数学培A辅导试题(二)班别:______. 座号:___ _. 姓名:_______________. 成绩:______________一、选择题(每小题3分,共21分)二.填空题:(每小题4分,共40分)8.-2的相反数是 .9. 分解因式:24x-=.10. 2010年“五一”放假期间,泉州市某景点共接待游客约96000人,用科学记数法表示为.11.为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)12.如图,若D,E分别是AB,AC中点,现测得DE的长为20米,则池塘的宽BC是____米.13.在直角坐标系中,⊙A、⊙B的位置如图所示. 将⊙A向下平移个单位后,两圆内切.A BC(第12题) (第13题) 14.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.15.已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是 cm. 16.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线2y x=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会逐渐 .( 第16题)17.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答问题: (1) 他们在进行 米的长跑训练;(2) 在15<x <20的时段内,求两人速度之差是_______米 /分.三、解答题(本大题有9小题,共89分)18. (9分)计算:101|3|201022-⎛⎫-+-⨯ ⎪⎝⎭19. (9分)先化简,再求值:2(1)(2)aa a ++-,其中a =20.(9分)如图,在□ABCD 中,F E 、分别是边AD 和BC 上的点,且AE=CF.求证:CDF ABE ∆∆≌.F分)(第20题)21.(9分)一次测试九年级50名学生1分钟跳绳 次数的频数分布表和部分频数分布直方图如图.请结合图表完成下列问题: (第21题)(1)请把频数分布直方图补充完整;(2) 设九年级学生一分钟跳绳次数为x, 当 x ≥140时为优秀,若该年级有400名学生,估计这个年级跳绳优秀的学生大约有多少人?22.(9分)将分别标有数字1,3,5,8的四张质地、大小完全一样的卡片背面朝上放在桌面上,随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字. (1) 请你利用树状图或列表法,说明能组成哪些两位数?(2)求抽取到的两位数恰好是18的概率.23.(9分)如图,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >. 过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥y 轴于D 且与AC 相交于点H ,连结AD , DC ,CB .(1)求m 的值; (2)若△ABD 的面积为4,求△BCD 的面积.24.(11分)如图,在平面直角坐标系中,直线l :b x y +=2与x 轴交于点A (4-,0),与y 轴交于点B.(1)(3分)填空:=b ;(2)(8分)已知点P 是y 轴上的一个动点..,以P 为圆心,3为半径作⊙P. ①若PA=PB ,试判断⊙P 与x 轴的位置关系,并说明理由. ②当⊙P 与直线l 相切时,求点P 与原点O 间的距离.(第23题)25.(13分)某服装商店准备购进甲、乙两种运动服进行销售.若每件甲种运动服的进价比每件乙种运动服的进价少20元,且用800元购进甲种运动服的数量与用1000元购进乙种运动服的数量相同.(1)若每件甲运动服的进价a元,①用含a的代数式表示用1000元购进乙种运动服的件数;②求a的值;(2)若该商店准备用不超过10000元购进甲、乙两种运动服120件,且每件甲种运动服的销售价格为120元,每件乙种运动服的销售价格为150元,问应如何安排购两种运动服的资金,才能使将本次购进的甲、乙两种运动服全部售出后,获得的总利润最大?最大的总利润是多少元?26.(13分)如图,在平面直角坐标系中,抛物线2164y x =-与直线y=kx 相交于A(-4,-2),B(6,b)两点. (1)求k 和b 的值;(2)当点C 线段..AB ..上运动时,作CD ∥y 轴交抛物线于点D, ①求CD 最大值;②如果以CD 为直径的圆与y 轴相切,求点C 的坐标(第26题)2012年秋九年级数学培A 辅导试题(二)参考答案及评分标准一、选择题(每小题4分,共24分)1.A ;2.C ; 3.D ; 4.B ; 5.D ; 6.A ; 7.D. 二、填空题(每小题3分,共36分)8.2; 9.)2)(2(-+x x ; 10. 49.610⨯;11.抽样调查;12.40;13.2; 14.4;15.3;16.减少;17.5000;150米/分钟.三、解答题(共90分)18. (9分)计算:101|3|201022-⎛⎫-+-⨯ ⎪⎝⎭解:原式=3+1-4---------------(6分)=0---------------(9分)19. (9分)先化简,再求值:2(1)(2)a a a ++-,其中a =解:原式=a 2+2a+1+a 2-2a----------(4分) =2a 2+1-----------------------(6分) 当2=x 时,原式=2215⨯+=----------(9分)20.证明:在□ABCD 中 ∠A=∠C, AB=CD---------(4分)ABE CDF AB CD A C AE CF ∆∆=⎧⎪∠=∠⎨⎪=⎩和中---------(8分)∴CDF ABE ∆∆≌---------(9分)21.解:(1)图略---------(4分) (2)跳绳成绩优秀的学生=192400%10050186=⨯⨯+(人)---------(8分)答:这个年级跳绳优秀的学生大约有192人。
---------(9分)22.解:树状图如下(列表略):开始个位十位 由上述树状图或表格知:所有可能出现的结果共有12种,恰好是18的有1种………(6分)P (恰好是18)=121.………(9分) 23.(1)解: 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. 3分(2)据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,H 点的坐标为41a ⎛⎫⎪⎝⎭,,5分1a > ,DB a ∴=,AH =a44-。
6分由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭,得3a =, 7分∴点B 的坐标为433⎛⎫⎪⎝⎭,.∴△BCD 的面积=143223⨯⨯=9分24.(10分)解:(1)8=b ;…………………………………… 2分 (2)由(1)得B (0,8)设x OP =,则x BP AP -==8, 在Rt △AOP 中,由勾股定理得222)(84x x -=+ ……………………… 3分 解得3=x ……………………………… 4分 ∵3=PO =半径∴⊙P 与x 轴相切. ……………………… 5分 (3)当点P 在点B 下方时,如图,设⊙1P 与直线l 相切于点M ,(备用图)1 3 5 83 5 81 5 81 3 81 3 5连接M P 1,则31=M P 由△1BMP ∽△BOA 得ABBP OAMP 11=…… 6分即54431BP =,解得531=BP∴53811-=-=BP OB OP ………… 7分 当点P 在点B 上方时,如图,设⊙2P 与直线l 相切于点N , 连接N P 2,同理可得 532=BP , ……………………………………………… 8分53822+=+=BP OB OP ………………………………………… 9分 综上所述,此点P 与原点O 间的距离为538-或538+.……… 10分25.(1)800a (或201000+a );……3分 (2)根据题意800100020a a =+……5分 解得a=80……6分经检验a=80是方程的解,符合题意……7分(3)设购进甲种运动服x 件,则购进乙种运动服(120-x )件. 根据题意80x+100(120-x)≤10000 解得x ≥100, ……8分 又80x ≤10000, ∴x ≤125,即100≤x ≤125……9分总利润w =(120-80)x+(150-100)(120-x)=6000-10x ……10分 由于-10<0, ∴w 随着x 的增大而减少,……11分 当x=100时,最大的利润为5000元,……12分此时应安排8000元购进甲种运动服,2000元购进乙种运动服。
……13分26.(1)把A(-4,-2)代入y=kx 得-2=-4k ,得k=12……2分 把B (6,b )代入y=12x,得b=3……4分 (2)设C (x,y )则2211125(6)(1)2444C D CD y y x x x =-=--=--+……6分∴当x=1时,CD 的最大值是254;……7分(3)当点C 在线段OB 上时,2116242x x x -++=,解得x 1, x 1不合题意,舍去),∴点C 的坐标()……10分 当点C 在线段OA 上时,2116242x x x -++=-, 解得x 1=-2, x 1=12 (不合题意,舍去) ∴点C 的坐标(-2,-1)……12分综上,点C 的坐标是()或(-2,-1)……13分。