第九章 力矩分配法和近似法PPT课件

合集下载

结构力学-力矩分配法

结构力学-力矩分配法

MB=150-90=60
2)去掉约束,相当于
m -150 A-15
M-1-50175
200kN150M-B 90 20kN/m
MB
-3B0 151020
-30↓↓↓↓↓↓↓↓↓↓↓ --12900
C
在结点加上负的不平衡
力矩,并将它分给各个 175
杆端及传递到远端。
mBA 300
mBC 120 -MB=-6090
注意:
• ①结点集中力偶m顺时针为正,产生正的分配弯矩。 • ②分配系数 μ1j 表示1j杆1端承担结点外力偶的比率,它
等于该杆1端的转动刚度S1j与交与结点1的各杆转动刚度 之和的比值,即:μ1j=S1j/ΣS1j ,且Σ μ1j=1 (3)
• ③只有分配弯矩才能向远端传递。
• ④分配弯矩是杆端转动时产生的近端弯矩,传递弯矩 是杆端转动时产生的远端弯矩。
• 用力矩分配法计算多结点的连续梁和无侧移刚架,只要 逐次放松每一个结点,应用单结点的基本运算,就可逐 步渐近求出杆端弯。以图1所示连续梁为例加以说明。
转动刚度
在确定杆端转动刚度时:近端看位移(是否为单位位移)
远端看支承(远端支承不同,转动刚度不同)。
下列那种情况的杆端弯矩MAB=SAB
MAB
MAB
θ MAB
1
√ ① ②
1
MAB
1
③④
1
Δ
转动刚度SAB=4i是( )
A
i
B
A
i
√ √ B ①

A
i
B

A
i
4i>SAB>3i
√B ②
A
i⑤ B
i
返回

结构力学第9章__力矩分配法(新)

结构力学第9章__力矩分配法(新)

9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7

09第九章_力矩分配法

09第九章_力矩分配法

09第九章_力矩分配法第九章力矩分配法本章的问题:A.力矩分配法的适用条件是什么?B.什么叫固端弯矩?约束力矩如何计算?C.什么是转动刚度、分配系数和传递系数?D.什么是不平衡力矩?如何分配?E.力矩分配法的计算步骤如何?F.对于多结点的连续梁和无侧移的刚架是如何分配和传递弯矩的?力矩分配法是位移法的渐近法。

适用于连续梁和无结点线位移的刚架。

§ 9-1力矩分配法的基本概念力矩分配法的理论基础是位移法,属于位移法的渐近方法。

适用范围:是连续梁和无结点线位移的刚架。

针对本方法,下面介绍有关力矩分配法的几个相关概念。

1、名词解释(1)转动刚度转动刚度表示杆端对转动的抵抗能力。

杆端的转动刚度以S表示,它在数值上等于使杆端产生单位转角时需要施加的力矩。

图9-1给出了等截面杆件在A端的转动刚度S AB的数值。

关于S AB 应当(1)在S AB(2)S AB在图9-1中,由图9-1远端固定:远端简支:远端滑动:远端自由:i图9-1各种结构的转动刚度(2)分配系数图9-2所示三杆AB 、AD 、AC 在刚结点A 连接在一起。

远端B 、C 、D 端分别为固定端,滑动支座,铰支座。

假设有外荷载M 作用在A 端,使结点A 产生转角θA ,然后达到平衡。

试求杆端弯矩 M AB 、 M AC 、 M AD 。

由转动刚度的定义可知:M AB = S AB θA = 4i AB θA M AC = S AC θA = i AC θA M AD= S AD θA = 3i AD aθM A θ=式中将A θ即:杆AB的转动刚度与交于A点的各杆的转动刚度之和的比值。

注意:同一结点各杆分配系数之和应等于零。

即Σμ=μAB+μAC+μAD=1总之:作用于结点A的力偶荷载M,按各杆端的分配系数分配于各杆的A端。

(3)传递系数在图9-2中,力偶荷载M作用于结点A,使各杆近端产生弯矩,同时也使各杆远端产生弯矩。

由位移法的刚度方程可得杆端弯矩的具体数值如下:M AB = 4i ABθA M B A = 2i ABθAM AC = i ACθA M CA =-i ACθAM AD =3i ADθA M DA = 0由上式可看出,远端弯矩和近端弯矩的比值称为传递系数用C AB表示。

力矩分配法ppt课件

力矩分配法ppt课件

Z1 MA'
D
A
Z1
Z1
C Aj

M jA M Aj
B
M BA 2iAB Z1 MCA 0 M DA iADZ1
M BA M AB
CAB

1 2
M CA M AC
C AC
0
M DA M AC

C
AC
1
MAC
MA' A
MAD
在等截面杆件中,弯矩传递系数 C 随远端的MAB支承情况而 不同。三种基本等截面直杆的传递系数如下:
一、单结点连续梁的力矩分配法
⑶放松刚臂,计算刚臂转动
A
Z1时结点的反力矩R11。
3m
M B A 4iZ1 SBAZ1
M B C 3iZ1 SBCZ1 R11 M B A M B C 0
A
基本体系
R11 (M B A M B C ) (SBA SBC )Z1
17
第7章 力 矩 分 配 法
§7.2 力 矩 分 配 法 的 基 本 原 理
⑵计算固端弯矩
20kN/m
100kN
M
F AB
ql 2
12
30 42
12
60.0kN m
A EI=1 B EI=2
92.6
C EI=1 D
M
F BA

60.0kN

m
M
F BC


Fl 8

1008 8
远端固定
C Aj
1 2
远端滑动 C Aj 1
远端铰支 CAj 0
7
第7章
力矩分配法

《力矩分配法 》课件

《力矩分配法 》课件

05
力矩分配法的未来发展与展 望
力矩分配法在新型结构中的应用
新型材料结构
随着新型材料的不断涌现,力矩分配法在复合材料、智能材料等新型结构中的应 用将更加广泛,为复杂结构的分析和设计提供有力支持。
新型连接方式
针对新型连接方式如焊接、胶接等,力矩分配法将进一步完善其理论体系,以适 应不同连接方式的特性,提高结构的安全性和可靠性。
通过将结构划分为若干个独立的杆件或单元,并假定每个杆件的一端为固定端 ,另一端为自由端,然后根据力的平衡条件和变形协调条件,逐个求解各杆件 的内力和变形。
适用范围与限制
适用范围
适用于分析具有连续梁和刚架结构形 式的问题,如桥梁、房屋、塔架等。
限制
对于具有复杂结构形式或非线性性质 的问题,力矩分配法可能无法得到准 确的结果,需要采用其他数值方法或 实验方法进行分析。
根据杆件长度和截面特性,将杆件力 矩分配至杆件两端。
分配过程中要考虑杆件的弯曲变形和 剪切变形。
计算杆件内力
根据杆件力矩和截面特性,计算杆件的内力(弯矩和剪力) 。
内力的计算要考虑材料的力学性能,如弹性模量、泊松比等 。
03
力矩分配法的应用实例
桥梁工程中的应用
1 2
3
桥梁设计
力矩分配法可以用于计算桥梁的弯矩、剪力和轴力等,为桥 梁设计提供依据。
与其他方法的比较
与有限元法比较
力矩分配法适用于分析具有连续梁和刚架结构形式的问题,计算过程相对简单,但无法处理复杂的结 构形式和非线性问题。有限元法则可以处理各种复杂的结构形式和非线性问题,但计算过程相对复杂 。
与实验方法比较
实验方法可以获得较为准确的结果,但需要耗费大量的人力和物力资源,且实验过程可能存在风险。 力矩分配法虽然可能存在一定的误差,但可以在一定程度上替代实验方法,节省资源和时间。

第九章力矩分配法原理

第九章力矩分配法原理

∑MAg = -45
MABg
M=15
- 50
50
- 80
10 1/2 20 10 15
A MADg
- 40
70 10 - 65
70 65
-1
-10
40 100
- 10 C
B
A
D
10
80
M图(kN ·m)
C
§9-2 多结点的力矩分配
力矩分配法计算多结点结构,只要逐次放松每一个结点,应用单结 点力矩分配法的基本运算,就可逐步地渐近地求出杆端弯矩。
2、传递系数C: 当杆件的近端发生转动时,其远端弯矩与近端弯矩的比值:
C M远 M近
∴远端弯矩可表达为: M BA CAM B AB
等截面直杆的传递系数
CAB=1/2 SBA=2i
A
i
B
CAB=0
SBA=0
A
i
B
CAB= -1 SBA=-i
A
i
B
i
§9-1 力矩分配法的基本概念
等截面直杆的转动刚度和传递系数如下表:
§9-1 力矩分配法的基本概念
2、单结点结构在跨中荷载作用下的力矩分配法
1)锁住结点,求固端弯矩及 结点不平衡力矩
200kN
20kN/m
↓↓↓↓↓↓↓↓↓↓↓
M AB g
结2点00不 6平衡1力50kN 矩要8反号分配.
m μ
A
3i
3m
M BA g
20结0点 6不平15衡0k力N矩 m
=8固端弯矩之和
A

⑤A
i
B
i
B
i
B
i 4i>SAB>3i

力矩分配法15页PPT

力矩分配法15页PPT
力矩分配法
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

结构力学——力矩分配法分解课件

结构力学——力矩分配法分解课件

THANK YOU
复杂结构的力矩分配法分析
总结词
需要对复杂结构进行精细的力矩分配
详细描述
对于复杂结构,如桥梁、高层建筑等,力矩分配法需要更加精细的分析。这需要对结构的各种参数进 行详细的计算和调整,包括转动刚度、分配系数、传递系数等。通过合理的简化模型和精细的计算, 可以获得结构的整体性能和局部细节,满足工程设计的需要。
应用范围
适用于具有刚性转动 部分的连续梁和框架
适用于具有弹性支撑 的连续梁和框架
适用于具有弹性转动 部分的连续梁和框架
适用条件
结构体系为连续梁或框架 结构具有刚性转动部分,且转动部分在分配力矩后不会出现弹性变形
结构具有弹性支撑,且弹性支撑在分配力矩后不会出现弹性变形
计算复杂度与精度要求
力矩分配法的计算复杂度取决于梁和框 架的自由度数量,自由度越多,计算越

误差传递
由于传递系数和分配系数的近似 计算,可能会引入一定的误差,
影响分析结果的准确性。
计算复杂度
对于大型复杂结构,力矩分配法 的计算量可能会变得很大,需要
借助计算机辅助分析。
改进与发展方向
01
02
03
04
数值优化
通过改进算法和优化计算方法 ,提高力矩分配法的计算效率
和精度。
考虑非线性因素
将非线性因素纳入力矩分配法 中,以适应更广泛的结构类型
在力矩分配法中,将结构中的结点分为两类:基本结点和附属结点。基本结点是承 受力矩的结点,附属结点则是传递力矩的结点。
力矩分配法的原理是将所有结点的力矩自由度进行分配,通过调整传递系数来使各 结点的力矩平衡,从而求解出各个结点的位移。
刚度系数与传递系数
刚度系数是指单位力矩作用下结 点的位移,它反映了结点的刚度

结构力学 课件 力矩分配法

结构力学 课件 力矩分配法

SAB
1
2 传递系数C
传递系数: 一单跨超静定梁的一端(A端)单位转角时,发生于远 端(B端)的弯矩与近端(A端)的弯矩之比。
如: 当远端(B端)固定,C AB
M
BA
SAB
1 2 S AB
MBA
A B
图(a)
1
C 当远端(B端)铰支 , AB
M
SAB
A
B
BA
0
SAB
A
1
图(b)
S AB
(1)设想在结点B增加一个附加刚臂,得到位 移法基本结构。阻止其转动如图(g)所示。 查表容易得到各单跨超静定梁的杆 端弯矩。则附加刚臂的约束力矩由 结点B的平衡条件得
M
B
Fp
A
q
B C
图(f)
MB
A
Fp
B
q
C
图(g)
M
F BA
M
F BC
MB MBAF -MB
A B C
附加刚臂的约束力矩MB 是原结构 上所没有的,它反映了基本结构汇 交于B结点的各杆B端弯矩所不能平 衡的差额。我们称之为B结点的不 平衡力矩。
MBCF
图(h)
(2)原结构在结点B本来没有转动约束,即不存在不平衡力矩MB ,因 此,为了与实际情况相符,必须消除人为引入的附加刚臂,即使MB 0,这就相当于在 MB的基础上再施加上一个(- MB )如图(h)所示。
此时梁将产生新的杆端弯矩M´BA 、 M´BC (分配弯矩),在远端将产生新 的杆端弯矩M´AB 、 M´CB 、(传递弯 矩)。 (3)原结构在荷载的作用下的实际杆端弯 矩应为图(g) 和图(h)两种情况的叠加。 下面举例说明力矩分配法的解题过 程。

9力矩分配法

9力矩分配法

CB 1
CD 0
③传递系数
1 CCB 2
CBC 0
第9章 力矩分配法
§9-3 对称结构的计算
取一半结构进行计算,注意杆件截半后,线刚度增倍。 例9-3-1 求矩形衬砌在上部土压力作用下的弯矩图。
q
A EI1 F
B
EI2
K
l2
C
解:设梁的线刚度为i1=EI1/l1 柱的线刚度为i2=EI2/l2
⑸最后一轮循环最后一个结点分配后只向其他结点传递。
第9章 力矩分配法
⑹不能同时放松相邻结点(因定不出其转动刚度和传递系数), 但可以同时放松所有不相邻的结点,以加快收敛速度。
A
B
C
D
E
B、D同时分配后向C传递,C分配后再同时向B、D传递,如此循 环。
A
B
C
D
E
F
B、D同时分配后同时向C、E传递,C、E同时分配后再同时向B、 D传递,如此循环。
A
B
15.86 3m 3m
C M (kNm) 6m
结点
A
B
C
解:① 不平衡力矩
m
g AB
Pl 8
20 6 8
15
m
g BA
Pl 8
15
mBgC
ql2 8
9
mBg
m
g BA
mBgC
6
杆端
AB
BA BC CB ②分配系数
分配系数
4/7 3/7
固端弯矩 -15
15
-9 0
平衡
分配传递 -1.72 -3.43 -2.57 0
第9章 力矩分配法
§9-1 力矩分配法的基本概念

9力矩分配法

9力矩分配法

21.4
6.1
-9.2 -12.2 -6.1
1.8
6.1
1.8 3.5 2.6
… … ...
14
q 12kN / m
A
EI
1 EI
10m
10m
2 EI
10m
BA
q 12kN / m
1
B 2
q 12kN / m
A
M
u 1
ql2 / 8
1
ql2 / 12
M
u 2
2

B MF 0
28.6
100
-28.6 -57.1 -42.9
分0

21.4
6.1
传 递
0.429 0.571 0.571 0.429 150 -100 100 0 0 -28.6 -57.1 -42.9 0 -9.2 -12.2 -6.1 1.8 3.5 2.6 0 -0.8 -1.0
-9.2 -12.2 -6.1
1.8
6.1
SAB 4i
AiB SAB 3i
对等直杆,SAB只与B端的
支撑条件有关。
A端一般称为近端(本端),
AiB
B端一般称为远端(它端)。
SAB i
4
M
d BA

SBA B
M
d BC

SBC B
M
u B

M
d BA

M
d BC
0
B

S BA
1 SBC

(
M
u B
)
M
d BA

S BA SBA SBC
q 12kN / m B

第九章 力矩分配法和近似法PPT课件

第九章 力矩分配法和近似法PPT课件

数。
M B AC A BM A B (91 )
5
第九章 力矩分配法和近似法
SAB = 4i
三、弯矩分配系数m
如用位移法求1解:
D 设iAAD点M 有iA力AZ C1 矩iAMB ,B 求MMAB、MAC和MM M M ADA A A B C D 4 3 iiA iA A C B SD SAABA A B=A =11 3 iiS S S A A A B C D Z Z Z 11 1
m Aj 1
A
7
第九章 力矩分配法和近似法
例9-1: 试用力矩分配法计算图示刚架,EI为常数。
解1)AE的内力是静定的,原结
E
20kN
构可转换为9-3b图进行计算
4m
C
2)计算A结点各杆的弯矩分配系数
A
80
D
SAB
4EI 4
EI
S AC
EI 4
4m
SAD
3EI 4
3EI 4
由(9-2)式计算各杆的分配系数
近端
A
fA l
MBA = 2 iAB fA
远端
B
远端固定
CAB
MBA MAB
1 2
远端铰支
MAB = 3iABfA
A
fA
MAB= iABfA
A
fA
MBA = 0
B
MBA = - iAB fA
B
CAB
MBA MAB
0
远端定向
CAB
MBA MAB
1
杆AB仅在近端A有转角时,引起远端B的弯矩MBA称为传 递弯矩,各杆远端弯矩分别等于各杆近端弯矩乘以传递系
mAB
8 0.39 84.58

结构力学 第三十一讲力矩分配法和近似法

结构力学 第三十一讲力矩分配法和近似法

4.计算原理:
(1)力矩分配法。
A
为了减少误差,在利用力矩分配时,上 层各柱的线刚度乘折减系数0.9,传递系 D 数由1/2改为1/3。(P.238)
q 3kN/m
B
C
E F
(2)横梁:横梁的最后弯矩就是各分 层刚架所求得的横梁弯矩值。
G
H
(3)立柱:除底层立柱,其余各层立柱在计算中要出 现两次,故,上层柱的弯矩应由分层刚架的两次的弯矩 值叠加。(P.238)
q 3kN/m
A
B
C
D
E
F
q 3kN/m
A
B
C AA
D
E
D
D
F
q q3k3Nk/mN/m
BB
CC
弹性
固定端
E
E
F
G
H
4m
4m
4m
4m
G
H
4m
4m
G
H
3.分层法的计算模型:
(1)梁、与梁相邻的立柱构成的分层刚架
(2)刚结点 → 弹性固定端:刚结点是介于固定端和铰
支座的弹性固定端,底层柱的支座性质不变。
4m 3.8m
q= 20kN/m
q= 20kN/m
A
BG
HA
i=3
i=4
i=3
例9-9 分层法
q= 20kN/m
BG
H
i=3
i=4
i=3
i=1 40kN i=1
i=1 40kN
i=1
i=0.9
i=0.9
i=0.9
i=0.9
C i=1.5
DI
i=3
i=4
i=3

力矩分配法的基本概念ppt课件

力矩分配法的基本概念ppt课件

-3.17
3.17 A
17.67 -17.67
(12) 1.9
17.67 B M 图(kN·m)
D 21.6
0
C
【例9-2】试用力矩分配法作图示刚架的弯矩图。
15kN/m
B
C
2EI
40kN
E 2EI
10kN DF
30kN 30kN·m
C
40kN E
10kN 10kN·m D
不平衡力矩
4m
EI
MC
固端弯矩
+8 -22.5
(-14.5)
( 12)
+9.67 +4.83
0 (0)
【例9-1】试用力矩分配法作图示连续梁的弯矩图。
解:1)计算分配系数:设EI=12i,则 iBA=EI/4=3i,iBC=EI/6=2i,
SBA= 4iBA=12i, SBC= 3iBC=6i,则 BA 12i
2)计算固端弯矩:q=M6kANFB/=m -8, MBFA= 8,
MB = 10
D
A
B
B
C 10
0
10 MP图(kN·m)
固端弯矩M F MAFB=10
MBFA =10 MBFC=0
MCFB=0 (问题之一:M F 怎么求?)
求B结点不平衡弯矩
MB
M
F BA
M
F BC
10
0
10kN m
2、“放松”结点B,求分配弯矩和传递弯矩
在刚臂上施加
一个方向相反
的反力矩R11 大小等于B 节
待分配力矩
Z1 MA'
D
A
Z1
Z1
B
M A 0 M AB M AC M AD M A

第9章 力矩分配法与近似法

第9章 力矩分配法与近似法
第9章 力矩分配法与近似法
力法方程
第九章力矩分配法与近似法
均要解联立方 程,工作繁重。 位移法方程 渐近法——力矩分配法 适合手算计算
• 1、力矩分配法建立于近似状态,逐次调整后收 • 敛于真实状态,得到精确解,属于渐近法。
• • • • • • 2、力矩分配法不解联立方程,计算步骤单一。 物理概念生动形象,计算结果直观。 3、基于位移法的力矩分配法,直接求得杆 端弯矩,精度满足工程要求,应用广泛。 4、适合于手算,与电算并存。 5、常见还有无剪力分配法、迭代法等。
依次对各结点使用上述方法,即每次只放松一个结点, 其它结点仍暂时固定;把各刚结点的不平衡力矩反号 进行分配和传递,直至不平衡力矩小到可忽略。
重新锁定该结点,放松另一结点;使其达到“平衡”。
最后累加固端、分配和传递结果得最终杆端弯矩。
它是一种逐渐逼近精确解的近似 方法。
例: 试绘制连续梁的弯矩图。
汇交于该结点的各杆A端。
显然有

i
Ai
1
汇交于同一刚节点的各杆杆端的分配系数之和恒等于1
各杆端的分配弯矩与该杆端转动刚度成正比,转动刚度越大,则该 杆端产生的弯矩越大。
3 传递系数C 传递系数: 一单跨超静定梁的一端(A端)单位转角时,发生于远端(B
端)的弯矩与近端(A端)的弯矩之比。
当远端(B端)固定,
BC 0.5 -100
CB
.EI 4 分配传递 -40 -40 8 BA 0.5 0 140 -140 最终弯矩 2 EI EI 3 4 12 8 把不平衡力矩反号加到B结点上并按分配系数分配到各杆的B端。
过程如表所示。
0
180
100 -20 80
例 3 、 用力矩分配法 计算图示刚架各 杆端弯矩。 解:①基本结构 ②分配系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 力矩分配法和近似法
第九章 力矩分配法和近似法
教学内容:力矩分配法的基本概念,用力矩分配法计算连 续和无结点线位移的刚架,多层多跨刚架的近似计算,反 弯点。 教学要求: 1、理解力矩分配法的物理意义,转动刚度、分配系数、 传递系数概念的物理意义,多层多跨刚架的近似计算; 2、掌握力矩分配法中正负号规定,能够根据远端的不同 支承条件熟练地写出各种情形的杆端转动刚度、向远端的 传递系数,并计算分配系数;掌握力矩分配法的主要环节, 力矩分配法计算连续梁和无结点线位移刚架。 重点: 力矩分配法的基本原理,连续梁和无结点线位移 刚架的计算。 难点:多层多跨刚架的近似计算。
B
4m
4m
80kNm
mABSAB SEIEIE4I3EI
1 42
C
A
D
A
mACSAC SEIEIEI4 43EI
1 48
m AD
3 8
B
A
8
第九章 力矩分配法和近似法
例9-1: 试用力矩分配法计算图示刚架,EI为常数。
3)计算各杆近端分配弯矩
80kNm
M A mB1 2(80)40kNm M A mC1 8(80)10kNm M A mD8 3(80)30kNm
60
50
8 0 分配与传递 2 0 4 0 2 0
20
杆端弯矩 M 4 0 1 0 0 1 0 0
m Aj 1
A
7
第九章 力矩分配法和近似法
例9-1: 试用力矩分配法计算图示刚架,EI为常数。
解1)AE的内力是静定的,原结
E
20kN
构可转换为9-3b图进行计算
4m
C
2)计算A结点各杆的弯矩分配系数
A
80
D
SAB
4EI 4
EI
3EI 4
由(9-2)式计算各杆的分配系数
4)计算各杆远端传递弯矩
C
A
D
B
5)根据各杆端弯矩绘 制弯矩图
M B cA1 2M A mB1 2 ( 4 0 ) 2 0 kN m
30
M C cAM A mC10kN m
M
c DA
0
80
40
10
10
注意:分配时应反号
20
9
第九章 力矩分配法和近似法 四、单结点结构的力矩分配法计算步骤如下:
1)固定结点,算出各杆的固端弯矩;汇交于结点各杆 的分配系数和传递系数,并求出结点的不平衡力矩; 2)将不平衡力矩反号后,乘以各杆的分配系数,得到 相应各杆端的分配弯矩; 3)将分配弯矩乘以传递系数,得到各杆远端的传递弯 矩; 4)最后将各杆的固端弯矩、分配弯矩、传递弯矩三者 代数和叠加,即得到各杆杆端的最后弯矩。
近端
A
fA l
MBA = 2 iAB fA
远端
B
远端固定
CAB
MBA MAB
1 2
远端铰支
MAB = 3iABfA
A
fA
MAB= iABfA
A
fA
MBA = 0
B
MBA = - iAB fA
B
CAB
MBA MAB
0
远端定向
CAB
MBA MAB
1
杆AB仅在近端A有转角时,引起远端B的弯矩MBA称为传 递弯矩,各杆远端弯矩分别等于各杆近端弯矩乘以传递系
10
第九章 力矩分配法和近似法
[例9-2]: 用力矩分配法计算图示梁。
解:1)计算分配系数。
令 i EI 61 ,则有:
iAB 1 iBC 2
B端的转动刚度:
SB A4iA B414
SBC iBC 2
mBA
4 4
2
2 3
m BC
1 3
80kN
10kN m
A EI
B 2EI
C
3m 3m
6m
2)计算各杆固端弯矩 M A F B1 880660kNm MB FA60kNm
M B F C1 31062120kNm
M C F B1 6106260kNm
11
第九章 力矩分配法和近似法
[例9-2]: 用力矩分配法计算图示梁。
3)进行弯矩的分配和传递
4)绘制M图
100
80kN A EI
10kN m
B 2EI
C
40
45
A
120 B
3m 3m
6m
C 分配系数
23 13
固端弯矩 6 0 6 0 1 2 0
表示杆端对转动的抵抗能力。
在数值上 = 仅使杆端发生单位转角时需在杆端施加的
力矩。
SAB=3i
SAB=4i
1
1
对等直杆,SAB与杆的线抗弯刚度i(材料的1 性质、横截面的形
状和尺寸、杆长)及远端支承有关SA,B=而i 与近端支承无关。
4
第九章 力矩分配法和近似法
二、传递系数C
MAB = 4 iAB fA
无结点线位移的刚架 §9-4 多层多跨刚架的近似计算
3
第九章 力矩分配法和近似法
§9-1 力矩分配法的基本概念
理论基础:位移法—计算原理、基本假定、
基本结构和正负号的规定等和位移法相同;
力矩分配法 计算对象:杆端弯矩;
计算方法:逐渐逼近的方法;
适用范围:连续梁和无侧移刚架。
一、转动刚度S(劲度系数):
1
第九章 力矩分配法和近似法
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
第九章 力矩分配法和近似法
第九章 力矩分配法和近似法
§9-1 力矩分配法的基本概念 §9-2 用力矩分配法计算连续梁和
三、弯矩分配系数m
设A点有力矩M,求MAB、MAC和MAD 于是可得:
D
MA
B
iAD
Z 1 iAB
M
M AB
S AB M SA
A
iAC
C
MAD
MAB
MAC
MAjmAjM
M AC
S AC M SA
A
其中:
m A j
S A j 弯矩分配系数 SA
M AD
SAD M SA
A
A
同一刚结点各杆端的分配系数之和应等于1,即:
C
MAD
MAB
MAC
M AB
S AB M SA
A
M 0 M (SA BSA CSA D )Z 1
A
Z1
M
SABSACSAD
M SA
于是可得:
M AC
S AC M SA
A
作用于A结点的外力偶M
A
M AD
SAD M SA
A
按汇交于A结点各杆的转 动刚度的比例分配给各杆 A端。
6
第九章 力矩分配法和近似法
数。
M B AC A BM A B (91 )
5
第九章 力矩分配法和近似法
SAB = 4i
三、弯矩分配系数m
如用位移法求1解:
D 设iAAD点M 有iA力AZ C1 矩iAMB ,B 求MMAB、MAC和MM M M ADA A A B C D 4 3 iiA iA A C B SD SAABA A B=A =11 3 iiS S S A A A B C D Z Z Z 11 1
相关文档
最新文档