LTE问题整理

合集下载

49个LTE面试问题归纳整理

49个LTE面试问题归纳整理

49个L T E面试问题归纳整理(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--49个LTE面试问题归纳整理这是一篇由网络搜集整理的关于49个LTE面试问题归纳整理的文档,希望对你能有帮助。

2 .LTE测试中关注哪些指标?LTE一般设置4. PB、 PA含义是什么5. RSRP、SINR、RSRQ什么意思?6. LTE前台测试单流与双流的标识?7. LTE目前所用哪些传输模式,各有什么区别和作用?8. LTE各参数调度效果是什么?9. MCS调度实现过程:10.对OFDM和mimo了解多少,说一下?11. LTE关键技术?12. TD-LTE编码方式?13. LTE无线帧与TDS无线帧有什么区别,如何配置来降低LTE与TDS 之间的干扰何计算TD-LTE的速率?15. 20 M、3:1配比时,杭州上下行速率达到多少(分TM讲)16. RE、RB、REG、CCE、什么意思,深圳的带宽是多少,20兆带宽有多少RB?17. LTE上下行都有什么信道?18. LTE上下行信道映射关系?19.控制信道具体相关信息?20. LTE组网结构,EPC包含哪些网元,EPC英文全拼?21. LTE和CDMA有什么相同点和不同点?22. LTE与TD的区别,对LTE的认识?23. TD-LTE与GSM区别?24. LTE网络规划的内容?25. LTE进行规划时需要考虑什么因素;26. PCI中文名称以及504个是怎么计算出来的?27. PCI规划?28. LTE主要有什么干扰?29.模3干扰会导致什么情况?30.单验流程31.单验的.速率达标值,单验速率上不去的因素?32.单验站点出现问题处理,例如下载、上传不达标?33.灌包操作,TCP和UDP的区别?34.终端开启后收到第一个系统消息是什么;35.接入信令流程?36.切换信令流程,测量控制这条信令里面包含哪些信息37.为什么说LTE是永远在线的,与3G有什么本质上的区别?38. TD-LTE是否存在呼吸效应,如何解决?39. LTE网络的鉴权认证方案是如何实现的?40. TD-LTE载波可同时接入多少用户?41. ICIC是什么解决了什么问题42.什么是SON?频段与D频段演进的差异?通道天线与2通道天线性能差异?45. FDD与TDD的区别后台操作相关步骤,包括添加邻区、调整参数等?47.现网LTE改造时出现站点无法开启原因有什么,怎么处理;48.项目经历,项目从事职责49.作为一个地市的负责人,需要做些什么?原理性的问题应该比较多,其他的随机发挥就好了!希望能帮助到你!.....。

华为LTE初级面试问题汇总

华为LTE初级面试问题汇总

LTE初级面试问题汇总1、一般影响网络质量的因素有哪些?干扰(模三干扰,上行干扰、系统外干扰等),弱覆盖,天馈问题、驻波告警、设备故障,后台参数设置出错等。

2、切换成功率怎么定义?切换成功率等于切换成功次数比上切换总次数乘以100%(即切换成功率=切换成功次数/切换总次数*100%)3、造成高掉话的原因一般有哪些,如何解决?干扰、弱覆盖、邻区漏配,对应的解决方法是对于常见的模三干扰的解决方法是更改PCI,弱覆盖的解决方法是调整下倾角、方位角或增大基站发射功率,邻区漏配的解决方法是4、常见的故障告警有哪些?驻波告警、设备故障、基站断链等。

5、TAC是什么?6、什么是PCI?物理小区标识7、单站验证主要看哪几个指标?8、怎样判断天馈接反?根据DT测试LOG文件里的PCI和前台回放数据,若离主服务小区主覆盖方向距离很近,但信号很弱或主服务小区的背面信号很强、且没有及时切换到另一主覆盖方向的小区过去,可以判定为天馈接反。

9、单验合格的标准是什么?平均下载速率大于等于85Mbps,平均上传速率大于等于30Mbps,PING时延小于等于30ms,电调0°与8°的RSRP和PUCCH值要相差5db左右。

10、如果站点在立交中间,该怎样对站点进行测试?若在立交桥下可以停车就在车上测试,找好点时尽量避免立交和大树的遮挡;若不能停车,就步行找好点进行测试。

11、单验时中点达标的标准是多少?-80dbm到-90dbm12、拉网前要做什么准备工作规划好测试路线,设备要准备齐全,了解掌握站点的开通状态与是否有告警等。

13、规划路线有什么原则?尽量规划右转,避免走单行道,避免多走重复路线等。

14、什么是覆盖率?覆盖率是指RSRP取值为1测试点在区域所有测试点钟的百分比;(有区域覆盖率和边缘覆盖率)15、LTE的优势是什么?网络架构更扁平化,建网更加便捷,且减低建网成本,缩小传输时延,多钟关键技术,使得数据业务速率非常快,在20M带宽下,下载速率能达到100Mbps,上传速率能达到50MBps,大大提高了用户体验和感知,支持的业务丰富多彩(如智能交通、平安家居、实时视频监控、即拍即传)等。

61个经典LTE问题

61个经典LTE问题

61个经典LTE问题61个经典lte问题,考试必备!必须收藏!1.我们为什么要从3G发展到LTE?lte(longtermevolution)是指3gpp组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是sae(systemarchitectureevolution)。

之所以需要从3g演进到lte,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如wimax的出现,给3g系统设备商和运营商造成了很大的压力。

在lte系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖范围、降低运营成本:● 大幅提升峰值传输数据速率,如下行达到100MB/s,上行达到50MB/s;●在保持目前基站位置不变的情况下,提高小区边缘比特速率;● 显著提高频谱效率,如3gppr6版本的2~4倍;●无线接入网的时延低于10ms;● 显著减少控制面的时延(从空闲状态过渡到活动状态的时延小于100ms(不包括寻呼时间));●支持灵活的系统带宽配置,支持1.4mhz、3mhz、5mhz、10mhz、15mhz、20mhz带宽,支持成对和非成对频谱;● 支持现有3G系统与非3G系统、LTE系统网络互联;●更好的支持增强型mbms;● 该系统不仅能为低速移动终端提供最佳服务,还能支持高速移动终端,并能为速度>350km/h的用户提供100kbps的接入服务;●实现合理的终端复杂度、成本、功耗;● 取消CS域,在PS域中实现CS域服务,如VoIP;2lte扁平网络架构是什么?● LTE接入网e-utran由eNodeB组成,提供用户接口和控制接口;●lte的核心网epc(evolvedpacketcore)由mme,s-gw和p-gw组成;● Enodeb通过X2接口互连,以支持数据和信令的直接传输;●s1接口连接enodeb与核心网epc。

其中,s1-mme是enodeb连接mme的控制面接口,s1-u是enodeb连接s-gw的用户面接口;3与3G相比,LTE采用了哪些关键技术●采用ofdm技术◇ OFDM(正交频分复用)属于调制复用技术,它将系统带宽分成多个正交子载波,并在多个子载波上并行传输数据;◇各个子载波的正交性是由基带ifft(inversefastfouriertransform)实现的。

LTE网规网优基础知识问答

LTE网规网优基础知识问答

LTE网规网优基础知识问答目录一、LTE概述与基本原理 (2)1. LTE基本概念及发展历程 (3)2. LTE网络架构与主要组件 (4)3. LTE关键技术及特点 (5)二、网规基础知识 (7)1. 网规概述及重要性 (8)2. 网络规划目标与原则 (10)3. 网络规划流程 (10)4. 基站选址与布局规划 (11)5. 频率规划与干扰协调 (12)三、网优基础知识 (14)1. 网络优化概述及目的 (15)2. 网络优化流程与方法 (16)3. 无线网络性能评估指标 (18)4. 容量优化与负载均衡技术 (19)5. 覆盖优化与信号增强措施 (20)四、LTE系统性能参数与配置优化 (22)1. 系统性能参数介绍 (24)2. 性能参数配置与优化策略 (25)3. 小区间干扰协调与优化方法 (27)4. 基站设备配置与优化建议 (28)五、LTE网络故障排查与处理 (30)1. 网络故障分类与识别方法 (31)2. 常见故障原因分析及处理措施 (32)3. 故障处理流程与案例分析 (32)4. 网络维护与管理技巧分享 (34)六、案例分析与实践经验分享 (35)1. 成功案例介绍与分析角度 (36)2. 实践中的经验教训总结 (38)3. 案例中的优化策略与实施效果评估 (39)七、LTE发展趋势与展望 (40)1. LTE技术发展趋势分析 (42)2. 新技术在LTE网络中的应用前景探讨 (43)一、LTE概述与基本原理LTE(Long Term Evolution,长期演进)是一种标准的无线宽带通信,主要用于移动设备和数据终端,其设计目标是提供一种高速、低延迟、高连接性的无线通信服务。

LTE的发展是为了满足移动通信市场的需求,特别是在3GPP的长期演进计划中,旨在解决3G网络中的瓶颈问题,提高无线通信的速度和质量。

LTE的关键技术包括正交频分复用(OFDM)、多输入多输出(MIMO)、密集波分复用(Dense WDM)、链路自适应技术等。

LTE中高级面试问题169个汇总整理精华

LTE中高级面试问题169个汇总整理精华

2017-6-8 Long TermEvolutionLTE QUESTIONBILYeverHWTable of Contents1LTE频率资源的使用情况及计算公式? (7)2RSRP、SINR、RSRQ什么意思? (7)3SINR值好坏与什么有关? (7)4UE的发射功率多少? (8)5LTE组网结构,EPC包含哪些网元,EPC英文全拼? (8)6LTE的网络结构和各网元之间的接口 (9)7LTE网络规划的内容? (10)8LTE进行规划时需要考虑什么因素 (11)9TM1-9.LTE目前所用哪些传输模式,各有什么区别和作用? (11)10LTE各参数调度效果是什么? (12)11MCS调度实现过程: (12)12LTE的MIMO技术、优点和有几种方式 (13)13影响LTE单用户下行和上行吞吐率的因素主要有哪些,请列举并简单叙述 (13)14简述OFDMA和MIMO技术的特点和优势。

(14)15OFDMA的优缺点 (14)16对OFDM和mimo了解多少,说一下? (14)17MIMO模式及自适应概览 (15)18简述OFDM有哪些不足? (15)19LTE关键技术? (16)20LTE的HARQ技术 (17)21LTE的OFDMA和SC-FDMA解释 (17)22TD-LTE编码方式? (18)23LTE无线帧与TDS无线帧有什么区别, (18)24F频段与D频段演进的差异? (19)25如何计算TD-LTE的速率? (19)2620M、3:1配比时,上下行速率达到多少? (20)27RE、RB、REG、CCE、什么意思? (20)28LTE的带宽有哪些,对应的RB数又是多少? (21)29TDD和FDD的帧结构,简述一下 (21)30TDD LTE与FDD LTE相比有哪些优势和劣势? (21)31LTE各参数调度效果是什么? (22)3264QAM比16QAM提高多少? (22)33LTE上下行都有什么信道? (23)34LTE上下行信道映射关系? (23)35控制信道具体相关信息? (24)36什么是TAU?TAC的规划原则?TAL和TAC的对应关系是否一一对应?为什么不是一一对应?出于什么考虑? (24)37简述UE发起TAU的原因。

LTE中常见问题及解决办法

LTE中常见问题及解决办法

LTE中常见问题及解决办法目录1 功率控制的作用、目标、意义 (2)2 软切换的优点与缺点分别是什么 (3)3 远近效应 (3)4 改善覆盖质量的常用优化措施 (3)5 如何判断小区基站天线接反? (4)6 如何判断邻区漏配 (4)7 如何判断导频污染 (4)8 什么是CQT,什么情况下用CQT? (5)9 切换失败原因分析 (5)10 孤岛效应 (5)11 LTE中rsrp和sinr取值范围: (5)12 乒乓效应: (6)13 越区覆盖: (6)14 拐角效应(街角效应): (6)15 下载速率低的原因: (7)16 弱覆盖的定义: (7)17 模3干扰定义: (8)18 互调干扰: (9)19 重叠覆盖: (9)20 单站验证流程: (10)21 LTE同频切换的信令流程: (11)22LTE中测量报告类型: (13)23LTE有哪些上行和下行物理信道及物理信道和物理信号的区别: (14)24 LTE具有什么特点(主要涉及的目标)? (16)25 LTE使用的频带、频段、频率范围、频点号 (16)26 现阶段中国TD-LTE的频谱是如何分配的? (17)27 RE、RB、REG、CCE、什么意思,20兆带宽有多少RB? (17)28 LTE有哪些关键技术,请列举并做简单说明其主要思想。

(18)29 QPSK、16QAM、64QAM (19)30LTE传输模式(TM类型) (19)31 TD-LTE网络的拓扑结构和主要接口。

(21)32 TD-LTE的帧结构并做简要说明 (22)33 LTE切换的种类 (24)一、根据切换触发的原因,LTE的切换可分为:基于覆盖的切换、基于负载的切换和基于业务的切换、基于速率切换等。

(24)1功率控制的作用、目标、意义功率控制的作用:克服远近效应、阴影效应,针对不同用户需求,提供合适的发射功率,提高系统的容量。

功率控制的目标:在维持通话质量的前提下,降低发射功率。

LTE问题集锦(4)

LTE问题集锦(4)

LTE问题集锦(4)问题16:时间同步问题1.无线链路质量检测为了保证下行信令和数据的正确传输,在小区搜索完成后,UE侧需要对下行链路质量进行检测,确保正确接收下行信令和数据;同时,UE通过随机接入过程来实现与基站的上行同步,之后,基站不断对UE发送定时调整指令来维持上行同步。

因此,UE在接入LTE系统前必须要对服务小区的下行无线信道质量进行检测,并根据检测结果想高层汇报同步与否的状态,即是同步状态(in-sync)还是未同步状态(out-of-sync)。

无线信道质量检测分为下面两种情况:1)在非DRX模式中,UE侧物理层中的每一个无线帧都必须对无线链路质量进行评估(相对于相关检测中的门限值Q out和Q in);2)在DRX模式中,UE侧物理层中的每DRX周期至少对无线链路质量进行评估一次(相对于相关检测中的门限值Q out和Q in);结论:UE将检测到的链路质量与判决门限(Q out和Q in)进行比较来判定自身处于同步/失步状态。

•当无线链路质量低于门限Q out时,UE侧的物理层将会把out-of-sync状态报告给高层。

•当无线链路质量好于门限Q out时,UE侧的物理层将会把in-sync 状态报告给高层。

2.传输时间调制信号在空间传输是有延迟的,如果UE在呼叫期间向远离基站的方向移动,则从基站发出的信号将“越来越迟”的到达UE,与此同时,UE的信号也会“越来越迟”的到达基站,延迟过长会导致基站收到的UE在本时隙上的信号与基站收下一个其它UE信号的时隙相互重叠,引起码间干扰。

LTE中,不同UE的上行信号到达eNodeB时,要求必须时间对齐,以保证UE之间上行信号的正交性,从而有助于消除小区内的干扰。

为了确保UE与基站保持同步,需要做的是维持UE的上行同步工作,即需要对UE的定时时刻进行调整。

•eNodeB通过检测UE发出的参考信号(RS)来确定UE是否与基站保持同步,如果存在同步偏差,eNodeB就会发送一个定时调整指令(也称为时间提前量,Timing Advance,TA,TA的时间范围是:0~0.67ms,粒度为0.52us,即16*Ts)来指示UE需要进行定时同步点的调整。

LTE速率低原因分析

LTE速率低原因分析

LTE速率低原因分析LTE(长期演进)是第四代(4G)移动通信技术的一种标准,旨在提供更快的数据传输速率,并支持更多的用户同时连接。

然而,有时候用户可能会遇到LTE速率低的情况。

本文将分析导致LTE速率低的可能原因。

1.信号强度不足:LTE速率的一个关键因素是信号质量。

如果用户所处的区域信号强度较弱,LTE速率就会受到影响。

建筑物、山脉和其他物理障碍物都可能减弱信号。

此外,如果用户远离LTE基站,也会导致信号弱。

2.对LTE基站过载:LTE基站需要处理大量的数据流量。

如果LTE基站负载过高,就会导致速率下降。

这通常发生在人口稠密的地区,如城市中心。

基站负载过高可能是因为用户数量太多,或者基站设备不足以处理当前的数据需求。

3.网络拥塞:即使LTE基站正常运行,网络仍可能出现拥塞。

这通常发生在特定时间段,如高峰时段。

当大量用户同时连接到LTE网络时,网络容量可能不足以满足所有用户的需求,从而导致速率降低。

4.用户位置移动:当用户移动时,他们的设备需要重新连接到不同的LTE基站。

这个过程可能需要一些时间,而在切换过程中,速率可能会下降。

此外,如果用户处于边缘区域,他们可能频繁地切换到不同的基站,这可能导致速率不稳定。

5.软件问题:有时,设备上的软件问题可能导致LTE速率低。

例如,可能存在操作系统或应用程序的错误,导致设备不能正常连接到LTE网络,或者导致数据传输速率下降。

6.网络设备故障:LTE网络设备故障可能导致速率低。

例如,基站设备可能出现硬件故障,无法提供正常的速率。

此外,与设备传输相关的电缆或连接部件可能损坏或老化,也可能导致速率低。

为解决LTE速率低的问题,以下几个方面可以考虑:1.增强信号:使用一个信号放大器或强化器可以提高LTE信号的接收效果。

此外,还可以将设备放置在窗户附近或使用室内天线来增强信号强度。

2.切换网络:如果LTE信号太弱或基站负载高,可以尝试切换到其他网络,如Wi-Fi或3G。

LTE网络优化分析报告

LTE网络优化分析报告

LTE网络优化分析报告一、引言LTE(Long Term Evolution)是第四代无线通信技术,具有高速率、低时延、分组交换以及平坦的IP体系等优势,已经成为全球主流的移动通信网络技术。

然而,在LTE网络部署和运营过程中,仍然面临一些网络质量问题和优化挑战。

本报告针对LTE网络的优化进行了深入分析和研究,总结出可行的优化方案和建议,以提升网络性能和用户体验。

二、网络问题分析1.LTE网络覆盖问题:在实际应用中,LTE网络的覆盖范围存在一定的限制,尤其是在室内和复杂地理环境下容易出现盲区和弱覆盖区域。

2.LTE网络干扰问题:不同频段之间和相邻基站之间的干扰是LTE网络中一个主要的质量问题。

另外,周围的信号干扰,如电力线干扰和室内杂散干扰也会影响网络性能。

3.LTE网络容量问题:随着用户数量和用户对数据流量需求的增加,LTE网络容量可能成为限制网络性能和用户满意度的一个瓶颈。

高速率用户和热点区域的需求更加迫切。

4.LTE网络切换问题:在LTE网络中,切换是保证用户业务连续性和网络质量的关键。

网络切换过程中可能存在瞬时中断和延迟等问题。

三、优化方案和建议1.LTE覆盖优化方案:-合理规划增加基站覆盖,特别是在人口密集区、室内和边缘区域等盲区和弱覆盖区域。

- 利用Sector Splitting和MIMO等技术,提升基站的覆盖范围和容量。

- 利用Femtocell和Picocell等微型基站技术,增强室内覆盖和边缘区域覆盖效果。

2.干扰优化方案:-通过频率选择、频率规划和功率分配等手段,减小同一频段或相邻基站之间的干扰。

-引入干扰消除和干扰对消等技术,减小外部信号和杂散的影响。

3.容量优化方案:-通过增加基站数量、增加信道带宽和将MIMO技术用于高容量覆盖区域,提升LTE网络的容量。

- 对于高速率用户和热点区域,可以采用Small Cell、Carrier Aggregation等技术,增加网络的处理能力。

精品案例_LTE速率低的原因及优化方法

精品案例_LTE速率低的原因及优化方法

精品案例_LTE速率低的原因及优化方法LTE(Long Term Evolution)是一种高速无线数据通信技术,它提供了高速的互联网连接,可满足人们对于移动数据的需求。

然而,有时候LTE的速率可能会降低,这给用户的网络体验带来了不便。

本文将探讨LTE速率降低的原因,并提供一些优化方法。

LTE速率低的原因:1.信号弱:LTE是一种基于无线信号传输的技术,如果信号强度不足,将会导致速率下降。

信号弱的原因可能是用户距离LTE基站过远,或者在有楼宇遮挡的地区。

2.网络拥堵:在高峰时间或者繁忙的区域,网络可能因为过多用户同时连接而导致拥堵,从而限制了每个用户的速率。

3.频谱资源不足:LTE使用特定的频段来传输数据,如果一个特定频段的资源被过多用户使用,速率将会降低。

4.设备问题:有时候LTE速率低的原因可能是用户所使用的设备存在问题,例如设备老化或者硬件故障,这会影响数据传输速率。

LTE速率低的优化方法:1.改善信号强度:用户可以尽量靠近基站,避免楼宇的遮挡,从而改善信号强度。

另外,用户也可以使用信号增强器或者信号接收器来提升信号强度。

2.避开网络拥堵时段:用户可以避开高峰时间使用LTE网络,从而避免网络拥堵导致的速率下降。

3.切换到稳定的频段:用户可以尝试手动切换到其他相对稳定的频段,从而提升速率。

这可以通过设备的设置菜单进行操作。

4.更新设备软件和固件:用户可以及时更新设备的软件和固件,以确保设备正常工作,并修复任何可能影响速率的问题。

6.使用LTE高效能设备:选择性能较好的设备,例如使用支持多天线和多载波聚合的LTE设备,这样可以提供更好的速率和覆盖范围。

总结:。

LTE常见故障总结

LTE常见故障总结

LTE常见故障总结11、System module failure (0010)32、BTS reference clock missing (1898)33、Configuration error: Unit initialization failure (0012)34、Configuration error: Not enough HW for LCR (1868)45、Configuration error: Power level not supported (4008)46、Cell configuration data distribution failed (6253)47、Failure in optical RP3 interface (4064)58、Failure in optical RP3 interface (0010)59、Baseband bus failure (3020,1906)510、RF module failure (6259,1911、1711、1712)511、Cell power failure (4090)612、GPS Receiver alarm: Control Interface notavailable (4011)613、X2 interface setup failure(6304)614、Transport layer connection failure in X2interface615、Failure in replaceable baseband unit716、Temperature alarm(0002)717、VSWR(1838)718、Failure in optical RP3 interface (2004)819、GPS时钟盒闪断,时钟信号不正常,无法识别RRU820、Failure in optical RP3 interface(2000)821、光纤交叉连接822、基站始终无法建立S1连接,只到configed状态923、GPS时钟盒闪断,时钟信号不正常,无法识别RRU924、某一个小区的RRU无法识别925、BBU版本无法识别1026、校准初步排查1027、本地IP地址和路由正常,ping不通MME和网关1128、TRS文件始终无法生效1129、三种疑难告警1230、远程ping不通基站1231、风扇告警1232、BTSlog有link消息,但是pinger始终不亮1233、驻波问题1334、pinger正常,但是SM里小区显示橙黄色告警1335、几个特列1336、FOSI 和FOSN的光功率范围1337、不同频段RRU类型1338、MAC绑定及载波冲突1439、传输不通1440、升级完成后出现驻波告警141、System module failure (0010)引起原因:由于天气温度过高或者机房温度过高,导致BBU的热量散发不出去,引起的告警,一般表现是第三小区挂死,严重的可能会整站挂死,甚至会烧坏BBU。

LTE核心网常见故障和投诉案例分析

LTE核心网常见故障和投诉案例分析

LTE核心网常见故障和投诉案例分析1.呼叫掉话:呼叫掉话是用户最常见的投诉之一、它可能是由于核心网故障造成的。

可能原因包括:-信号覆盖不足:这可能是由于设备故障或基站问题导致的。

解决方案包括维修设备或增加基站容量。

-呼叫拥塞:当LTE核心网容量超过负荷时,呼叫掉话率可能会增加。

解决方案包括优化网络资源分配和增加容量。

-数据传输问题:LTE核心网的数据传输可能受到故障的影响。

解决方案包括修复故障和优化数据传输。

2.数据速率下降:用户可能投诉在使用LTE网络时遇到数据速率下降的问题。

这可能由以下原因引起:-设备问题:用户设备可能存在故障或配置问题,导致数据速率下降。

解决方案包括检查设备并提供技术支持。

-频谱问题:LTE频谱拥塞可能导致数据速率下降。

解决方案包括优化频谱分配和增加频带宽度。

-核心网负载:LTE核心网负载过高可能导致数据速率下降。

解决方案包括优化网络资源和增加容量。

3.信令延迟:信令延迟是另一个常见的投诉问题。

这可能是由于以下原因引起:-信令丢失:LTE核心网可能会遇到信令丢失问题,导致延迟增加。

解决方案包括修复故障和优化信令传输。

-呼叫拥塞:当LTE网络容量超过负荷时,信令延迟可能会增加。

解决方案包括优化网络资源和增加容量。

-核心网拓扑问题:LTE核心网拓扑设计不合理可能导致信令延迟。

解决方案包括重新设计和优化核心网拓扑。

4.服务不可用:用户可能投诉LTE网络服务不可用。

可能原因包括:-网络故障:当LTE核心网遭遇故障时,服务可能会中断。

解决方案包括快速修复故障和提供备用网络。

-天气影响:极端天气条件可能影响LTE网络的可用性。

解决方案包括增强天气适应性和增加备用设备。

-用户设备故障:用户设备故障可能导致无法使用LTE网络。

解决方案包括检修设备或提供替代设备。

综上所述,LTE核心网常见故障和投诉案例包括呼叫掉话、数据速率下降、信令延迟和服务不可用。

针对这些问题,可以采取一系列解决方案,包括维修设备、优化网络资源、增加容量和重新设计核心网拓扑。

LTE初级基础面试问题点汇总

LTE初级基础面试问题点汇总

LTE面试问题汇总1、LTE网络结构及频率范围:UE(终端)、ENodeB(基站)、EPC(核心网:MME、SGW、PDW);D频段、F频段;E频段:PL=32.44+20logD+20logF,穿透损耗;关键点:纯数据网,无CS域;纯PS域,语音业务通过VOIP(Voice over IP)实现;优势:组网灵活,IP组网;缺点:IP引入传输时延;2、LTE接口:1)Uu:UE---ENodeB(无线接口);2)S1:ENodeB---EPC接口;3)X2:ENodeB----ENodeB(IP网络全互联形成网状组网);3、测试软件:CDS、Probe(华为)、CNT\CNA(ZTE);熟悉测试观察窗口以及窗口说明;4、测试关键指标:1)RSRP:2)RSRQ:3)SINR:4)RSSI:(下行接收信号总功率:有用信号+噪声;上行干扰关注RSSI指标);5)CQI:6)MCS:7)Transmision Mode:MIMO方式;8)PCI:小区扰码;5、RFKPI关键指标:1)覆盖率:RSRP>考核值,RSRQ>考核值;采样点占比>考核值;6、RF常见问题:1)覆盖类:盲区、弱覆盖、越区覆盖、导频污染、切换带重合大小;2)质量问题:上行质差(RSSI:正常-105左右);下行质差:RSRQ、SINR;干扰原因:●时隙交叉干扰(TD-SCDMA与TD-LTE需要时隙对齐,时隙配比原则,后台查询);●GPS跑偏导致干扰;(GPS时钟精度,后台查询GPS时钟信息及告警);●网内同邻频干扰;(频率规划:同频组网、异频组网);---ICIC技术控制干扰;●网外干扰:异系统干扰(LTE天馈与其他系统天馈隔离度要求)、其它设备干扰;3)切换类:●不触发切换;---邻区漏配核查(系统消息查询邻区配置、MAP窗口结合);切换参数设置问题,切换门限、切换迟滞;●切换过慢:邻区配置过多、切换参数设置不合理;●切换失败:7、工程优化工作内容:1)单站验证:单站验证项目(覆盖性能、切换性能、工参正确性、功能实现);条件:测试站点开通、未UnLock状态;方法:围绕基站正反测试两圈(切换性能:长呼测试、天馈接反);功能验证:每扇区找点CQT;(ping、FTP等);2)簇优化验证:验证目的:(连续覆盖、小区间切换、质量);条件:簇划分、簇基站开通且测试期间未UnLock(未开通及退服基站需标注);方法:规划测试路线、沿路线进行测试(测试项目根据局方要求,模板设置要求;局方规范);8、LTE关键技术:1)频域:OFDMA、SC-FDMA(单载波频分多址);(峰均比对功放要求过高);---子载波:15KHz;2)时域:时隙结构:一个帧10ms—2个半帧5ms---4个数据子帧+1个特殊子帧(3个特殊时隙:DwPTS(Rs+Data)、UPPTS、GP);一个子帧:2个时隙;7个正常时隙+3个特殊时隙共计10个时隙(半帧);---OFDM符号;频域+时域=RE(分配传输通道最小单元);信道类型不同(传递内容不同)--REG(4个RE;CCE:9个REG;RB:12个RE;用户速率限制,在传递通道容量的角度RB资源数限制;3)码域:上行码分复用(PUCCH);4)空域:MIMO;5)功率:功率分配配比,RS参考信号功率;CRS:公共控制信道参考信号功率;SRS:探测参考信号;6)其他技术:降低干扰技术ICIC;9、LTE核心技术:资源调度算法,无线侧通过用户占用资源动态分配起到在频域降低干扰、降低路径损耗;(频率更换,干扰降低、传输路径损耗降低);资源角度合理分配RB资源(集中分配RB 给用户,或分布式分配RB给用户);调度算法核心:参考信号测量(RS、SRS、CQI)、RB资源计算分配(MCS编码原则—动态CQI映射相应MCS);10、LTE关键信令:主叫信令;被叫信令、切换信令;11、切换分析之层三信令:1)RRC connection Reconfigurtion:携带切换相关参数;包含UE需要测量的对象(邻区)、小区列表、报告方式(周期性上报MR或事件上报)、测量标识、事件参数(A3事件参数)等。

LTE的掉话原因分析及处理思路(加精

LTE的掉话原因分析及处理思路(加精

LTE的掉话原因分析及处理思路(加精LTE(Long-Term Evolution)是一种移动通信技术,为用户提供高速数据传输和更稳定的通信质量。

然而,LTE网络在实际使用中可能会出现掉话现象,影响用户的通信体验。

掉话是指通话或数据传输过程中突然中断的情况,可能由多种原因引起。

本文将对LTE掉话的原因进行分析,并提出相应的处理思路。

一、LTE掉话的原因分析:1.频率干扰:当LTE信号受到其他频段或其他无线设备的干扰时,会导致通信中断或掉话。

2.基站负载过重:如果LTE基站的通话负荷过重,可能会导致通信连接不稳定,从而引起掉话现象。

3.地形遮挡:地形起伏或建筑物阻挡信号传输会导致LTE信号弱化,从而影响通话质量。

4.用户位置变动:当用户在快速移动过程中,如高速驾驶或地铁运行中,可能会导致基站切换不及时,引起掉话。

5.信号干扰:电磁干扰、天气影响或其他无线设备工作可能会对LTE 信号产生干扰,造成掉话现象。

6.网络故障:LTE基站设备故障、传输线路故障等都可能导致通信中断或掉话。

7.用户设备问题:用户使用老旧或不兼容的设备、软件问题、设备损坏等都可能导致LTE掉话。

二、LTE掉话处理思路:1.优化网络规划:对LTE网络进行规划优化,调整基站覆盖范围和功率等参数,提高信号质量和覆盖范围,降低掉话率。

2.增加基站密度:增加LTE基站密度,提高信号覆盖范围和质量,减少用户在移动过程中的掉话现象。

3.加强干扰监测:实时监测LTE信号干扰源,及时发现并处理可能影响通信质量的干扰因素,减少掉话发生的可能。

4.提高用户设备兼容性:鼓励用户使用符合LTE标准的设备,避免因设备兼容性问题而引起的掉话现象。

5.强化故障处理机制:建立健全的LTE故障处理机制,快速响应网络故障事件,提供快速恢复服务,降低掉话率。

6.加强用户培训:向用户普及LTE网络知识,教育用户正确使用设备、信号、网络选择等功能,减少用户因操作不当而引起的掉话。

41个常见LTE问题和答案汇总

41个常见LTE问题和答案汇总

一、TD-LTE路测中对于掉线的定义如何,掉线率指标是指什么?掉线的定义为测试过程中已经接收到了一定数据的情况下,超过3分钟没有任何数据传输。

掉线率=各制式掉线次数总和/(成功次数+各制式掉线次数总和)二、LTE的测量事件有哪些?同系统测量事件:A1事件:表示服务小区信号质量高于一定门限;A2事件:表示服务小区信号质量低于一定门限;A3事件:表示邻区质量高于服务小区质量,用于同频、异频的基于覆盖的切换;A4事件:表示邻区质量高于一定门限,用于基于负荷的切换,可用于负载均衡;A5事件:表示服务小区质量低于一定门限并且邻区质量高于一定门限,可用于负载均衡;异系统测量事件:B1事件:邻小区质量高于一定门限,用于测量高优先级的异系统小区;B2事件:服务小区质量低于一定门限,并且邻小区质量高于一定门限,用于相同或较低优先级的异系统小区的测量。

三、UE在什么情况下听SIB1消息?SIB1的周期是80ms,触发UE接收SIB1有两种方式,一种方式是每周期接收一次,另一种是UE收到paging消息,由paging消息所含的参数得知系统信息有变化,然后接收SIB1,SIB1消息会通知UE是否继续接收其他SIB。

四、随机接入通常发生在哪5 种情况中?a)从RRC_IDLE 状态下初始接入。

b)RRC 连接重建的过程。

c)切换。

d)RRC_CONNECTED 状态下有下行数据自EPC(核心网)来需要随机接入时。

e)RRC_CONNECTED 状态下有上行数据至EPC 而需要随机接入时。

五、LTE上行为什么要采用SC-FDMA技术?考虑到多载波带来的高PAPR(峰值平均功率比)会影响终端的射频成本和电池寿命。

最终3GPP决定在上行采用单载波频分复用技术SC-FDMA中的频域实现方式DFT-S-OFDM。

可以看出与OFDM不同的是在调制之前先进行了DFT(离散傅里叶变换)的转换,这样最终发射的时域信号会大大减小PAPR。

LTE常用问题解答

LTE常用问题解答

LTE常⽤问题解答LTE常⽤问题解答1.PCI个数及规划原则,互操作的内容、含义,CSFB流程和重选重定向的含义;(1)PCI个数及规划原则:从物理层来看,PCI(physical-layer Cell identity)是由主同步信号(PSS)与辅同步信号(SSS)组成,可以通过简单运算获得。

公式如下:PCI=PSS+3*SSS,其中PSS取值为0...2(实为3种不同PSS序列),SSS取值为0...167(实为168种不同SSS序列),利⽤上述公式可得PCI的范围是从0...503,因此在物理层存在504个PCI。

(2) 互操作的内容、含义。

2.熟悉单验流程、单验达标标准,⼲扰排查和互操作的内容;3.单验报告⾥的每个部分的内容要熟悉,各类信令流程要熟悉,⾄少是主要的需熟悉;4.RSRP、SINR、模三⼲扰的含义或原因,能解释清楚、速率优化的⽅法、天馈调整的⽬的意义、天线原理,CXT&CXA是否使⽤过,或是华为软件⾥都有哪些参数平时⼯作中是要注意的,都有什么含义;5.RF优化速率提升、DT测试平均sinr值是多少、三四类终端的含义以及中兴和华为现有的⼀些终端是哪类终端,kpi指标要熟悉;6.覆盖优化的内容;7.掉线原因和解决⽅法、⼲扰分类,建议先分⼤类再说⼩⽅⾯;8.质差的原因和解决⽅法上⾏质差判断:(1)、查看上⾏SINR值(2)、查看UE发射功率(3)、查看上⾏MCS分布(4)、查看⽆⽤户时RSSI值是否异常处理思路:(1)、查看驻波⽐是否正常(2)、覆盖情况(3)、上⾏SINR调整开关是否打开(4)、上⾏功率控制的P0设置是否正常(5)、正常情况下,20M RSSI为-100dVm,若异常,则进⾏PRB轮循,看那些RB受到⼲扰,再分析是杂散、阻塞、互调⼲扰。

9.簇优化的⽬的,⽅法;⽬的:同⼀区域的若⼲基站单站优化完成后,针对由这些基站所组成的连续区域的优化就是簇优化。

簇优化是⼯程优化重要的组成部分,其⽬的是保证簇内的连续覆盖和良好的信号质量;保证簇内各项CS/PS业务使⽤的连续性;保证簇内覆盖率、接通率、掉话率等各项指标的良好。

(完整版)LTE路测问题分析归纳汇总

(完整版)LTE路测问题分析归纳汇总

LTE路测问题分析归纳汇总一、Probe测试需要重点关注参数无线参数介绍➢PCC:表示主载波,SCC:表示辅载波,目前LTE(R9版本)都采用单载波的,到4G(R10版本)有多载波联合技术就表示辅载波。

➢PCI:物理小区标示,范围(0-503)共计504个。

➢RSRP:参考信号接收电平,基站的发射功率,范围:-55 < RSRP <-75dbm。

➢RSSQ:参考信号接收质量,是RSRP和RSSI的比值,当然因为两者测量所基于的带宽可能不同,会用一个系数来调RSRQ=N*RSRP/RSSI。

➢RSSI:接收信号强度指示,表示UE所接收到所有信号的叠加。

➢SINR:信噪比,是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值,Average SINR>20➢Transmission mode:传送模式,一共有8种,TM1表示单天线传送数据,TM2表示传输分集(2个天线传送相同的数据,在无线环境差(RSRP和SINR差)情况下,适合在边缘地带),TM3表示开环空间复用(2个天线传送不同的数据,速率可以提升1倍),TM4表示闭环环空间复用,TM5表示多用户 mimo,TM6表示rank=1的闭环预编码,TM7表示使用单天线口(单流BF),TM8表示双流BF。

Transmission mode=TM3。

➢Rank Indicator:表示层的意思,rank1表示单层,速率低,rank2表示2层,速率高。

Rank Indicator = Rank 2➢PDSCH RB number:表示该用户使用的RB数。

这个值看出,该扇区下大概有几个用户。

(20M带宽对应100个RB,15M带宽对应75个RB,10M带宽对应50个RB,5M带宽对应25个RB,3M带宽对应15个RB,1.4M带宽对应6个RB)多用户可以造成速率低原因之一。

➢PDCCH DL Grant Count:下行时域(子帧)调度数,PDCCH DL Grant Count >950。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LTE面试问题整理1.LTE测试用什么软件?什么终端?答:LTE测试前台测试使用华为出的测试软件GENEX Probe,后台分析使用GENEX Assistant ;测试终端有:CPE(B593s)、小数据卡(B398和B392)、TUE2.LTE测试中关注哪些指标?答:LTE测试中主要关注PCI(小区物理的标识码)、RSRP(参考信号的平均功率,表示小区信号覆盖的好坏)、SINR(相当于信噪比但不是信噪比,表示信号的质量的好坏)、RSSI(Received Signal Strength Indicator,指的是手机接收到的总功率,包括有用信号、干扰和底噪)、PUSCH Power(UE 的发射功率)、传输模式(TM3为双流模式)、Throughput DL, Throughput UL上下行速率、掉线率、连接成功率、切换成功率…………3.RSRP、SINR、RSRQ什么意思?RSRP: Reference Signal Received Power下行参考信号的接收功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。

区别在于协议规定RSRP指的是每RE的能量,这点和RSCP 指的是全带宽能量有些差别,所以RSRP在数值上偏低;SINR:信号与干扰加噪声比(Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。

RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。

和WCDMA中CPICH Ec/Io作用类似。

二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的;4.SINR值好坏与什么有关?下行SINR计算:将RB上的功率平均分配到各个RE上;下行RS的SINR = RS接收功率/(干扰功率+ 噪声功率)= S/(I+N) ;从公式可以看出SINR值与UE收到的RSRP、干扰功率、噪声功率有关,具体为:外部干扰、内部干扰(同频邻区干扰、模三干扰)5.UE的发射功率多少?答:LTE中UE的发射功率由PUSCH Power 来衡量,最大发射功率为23dBm;6.有没有去前台做过测试,覆盖和质量的要求是怎样的等等?-110 -3在Radio Parameters窗口:从传输模式Transmission Mode 看为TM3模式(只有TM3模式支持双流,TM2和TM7只支持单流),Rank indicator为Rank 2才表示终端在双流模式(下左图);还可以通过RANK SINR来判断,如果在RANK1模式下,则对应的SINR值在RANK1 SINR项出现;如果在RANK2模式下,则对应的SINR值在RANK2 SINR项出现;由于PROBE软件反映速度慢,平时我们还可以在MCS窗口可以判断:如下右MCS图所示,有列数字,两列都不为零说明已在双流模式,如,左边一列数字不为零,右边一列全为零,说明占用的是单流;8.LTE目前所用哪些传输模式,各有什么区别和作用?LTE的9种传输模式:1. TM1,单天线端口传输:主要应用于单天线传输的场合2. TM2,开环发射分集:不需要反馈PMI,适合于小区边缘信道情况比较复杂,干扰较大的情况,有时候也用于高速的情况,分集能够提供分集增益3. TM3,开环空间复用:不需要反馈PMI,合适于终端(UE)高速移动的情况4. TM4,闭环空间复用:需要反馈PMI,适合于信道条件较好的场合,用于提供高的数据率传输5. TM5,MU-MIMO传输模式(下行多用户MIMO):主要用来提高小区的容量6. TM6,闭环发射分集,闭环Rank1预编码的传输:需要反馈PMI,主要适合于小区边缘的情况7. TM7,Port5的单流Beamforming模式:主要也是小区边缘,能够有效对抗干扰8. TM8,双流Beamforming模式:可以用于小区边缘也可以应用于其他场景9. TM9, 传输模式9是LTE-A中新增加的一种模式,可以支持最大到8层的传输,主要为了提升数据传输速率深圳现网开了TM2、3、7自适应,局部区域开了TM2、3、7、8自适应。

9.LTE各参数调度效果是什么?1、20M带宽有100个RB,只有满调度才能达到峰值速率,调度RB越少速率越低;2、PDCCCH DL Grant Count 在F\D\E频段中下行满调度为600次/秒,只有满调度才能达到峰值速率,调度次数越少速率越低;PDCCCH UL Grant Count 在F频段中上行满调度为200次/秒(时隙配比 2:5,SA2(3:1)SSP6(3:9:2)),D\E频段中上行满调度为400次/秒(时隙配比1:7,SA2(2:2)SSP7(10:2:2)),只有满调度才能达到峰值速率,调度次数越少速率越低;10.MCS调度实现过程:答:UE测算SINR,上报RI及CQI索引给eNodeB,eNodeB根据UE反馈的RI及CQI索引进行TM 和MCS调度;MCS一般由CQI,IBLER,PC+ICIC等共同确定的。

下行UE根据测量的CRS SINR映射到CQI,上报给eNB。

上行eNB通过DMRS或SRS测量获取上行CQI。

对于UE上报的CQI(全带或子带)或上行CQI,eNB首先根据PC约束、ICIC约束和IBLER情况来对CQI进行调整,然后将4bits的CQI映射为5bits的MCS。

5bits MCS通过PDCCH下发给UE,UE根据MCS可以查表得到调制方式和TBS,进行下行解调或上行调制,eNB相应的根据MCS进行下行调制和上行解调。

11.对OFDM和mimo了解多少,说一下?答:OFDM,正交频分复用,是一种载波调制技术,本质为多载波,特点是正交,核心操作为IFFT变换,关键性参数为CP长度和子载波间隔确定;技术优势为(也可为问题:与CDMA相比,OFDM有哪些优势):频谱利用率高、带宽扩展性强(1.4、5、10、15、20M)、抗多径衰落(通过+CP)、频域调度和自适应(集中式、分布式)、实现MIMO技术较为简单(MIMO技术关键是有效避免天线间的干扰);存在问题:PAPR(峰均比问题)、时间和频率同步、多小区多址和干扰抑制;概述:MIMO 表示多输入多输出(Mulitple-Input Mulitple-Output),MIMO技术的核心是使用802.11n 协议。

采用多天线,多发多收。

实现空间分集,使得频带的利用率大大的提高,他是利用BLAST算法使得传输速率更快。

在信息的传输过程中,存在衰落相关性,我们可以通过增大发射天线的距离或着差异化发射信号的发射角度来减少衰落相关性。

狭义MIMO定义为:多流MIMO,按照这个定义,只有空间复用和空分多址可以算是MIMO。

MIMO系统达到极限容量本质的关键为对对角阵的解析,对角阵中的秩(RANK,测试中UE上报的RANK数)是决定基站下行发射的关键,表征空口中能够被区分的径的个数,所以MIMO技术中多天线的径一定要区分开来,如区分不开将会造成强干扰,适用于存在较多信号反射折射区域,不适合于海面等空旷区域;另外由于MIMO对SINR要求较高,适用于靠近基站处,不适用于边缘区域;技术分类:从MIMO效果分:传输分集(能接近但不能提升峰值速率)、波束赋形(抗干扰、降低发射功率、更大覆盖、提升接收效果)、空间复用(目前唯一能够突破物理限制提升峰值速率的技术),空分多址(较难实现、现未使用)从是否在发射端有信道先验信息分:闭环MIMO、开环MIMO;利用MIMO技术可以提高信道的容量,同时也可以提高信道的可靠性,降低误码率。

前者是利用MIMO信道提供的空间复用增益,后者是利用MIMO信道提供的空间分集增益。

传输分集为SFBC(空频块码)和STBC(空时块码);现网配置MIMO为2*2 MIMO,SFBC(空频块码,以三种维度发射:不同天线、不同频率、不同数据版本);12.LTE关键技术?1、64QAM高阶解调、自适应调制和编码AMC(基于UE反馈的CQI;包括:1调制技术(低阶、高阶)2信道编码(增加冗余));2、HARQ:混合HARQ,做到即传又纠,即系统端对编码数据比特的选择性重传以及终端对物理层重传数据合并;分CC(全部重传)和IR(只重传校验比特);采用多进程“停-等”HARQ;为了获得正确无误的数据传输,LTE仍采用前向纠错编码(FEC)和自动重复请求(ARQ)结合的差错控制,即混合ARQ(HARQ)。

HARQ应用增量冗余(IR)的重传策略,而chase合并(CC)实际上是IR的一种特例。

为了易于实现和避免浪费等待反馈消息的时间,LTE仍然选择N进程并行的停等协议(SAW),在接收端通过重排序功能对多个进程接收的数据进行整理。

HARQ在重传时刻上可以分为同步HARQ和异步HARQ。

同步HARQ意味着重传数据必须在UE确知的时间即刻发送,这样就不需要附带HARQ处理序列号,比如子帧号。

而异步HARQ则可以在任何时刻重传数据块。

从是否改变传输特征来分,HARQ又可以分为自适应和非自适应两种。

目前来看,LTE倾向于采用自适应的、异步HARQ方案。

3、下行OFDM: 正交频分复用技术,多载波调制的一种。

将一个宽频信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输;上行SC-FDMA4、多天线技术;5、MIMO6、物理层结构(无线帧结构、物理资源、上下行信道)13.TD-LTE编码方式?下行数据的调制主要采用QPSK、16QAM和64QAM这3种方式;上行调制主要采用π/2位移BPSK、QPSK、8PSK和16QAM,同下行一样,上行信道编码还是沿用R6的Turbo编码;14.LTE无线帧结构,子帧等,上下行配比情况,特殊子帧包含哪些,怎么配置?A.FDD-LTE无线帧:1个无线帧(10ms)有10个子帧(1ms),1个子帧有2个时隙(0.5ms);B.TDD-LTE无线帧:1个无线帧(10ms)有两个半子帧(5ms),1个半子帧有4个子帧(1ms)和1个特殊的子帧(1ms)。

1个子帧有2个时隙(0.5ms),特殊子帧是由DwPTS,GP,UpPTS。

三个无论如何配置总是1ms。

目前特殊子帧的配置有3:9:2,10:2:2等。

特殊时隙功能:DwPTS:最多12个symbol,最少3个symbol,可用于传送下行数据和信令UpPTS:UpPTS上不发任何控制信令或数据,UpPTS长度为2个或1个symbol,2个符号时用于短RACH或Sounding RS,1个符号时只用于soundingGP:a)保证距离天线远近不同的UE的上行信号在eNB的天线空口对齐b)提供上下行转化时间(eNB的上行到下行的转换实际也有一个很小转换时间Tud,小于20us)c)GP大小决定了支持小区半径的大小,LTE TDD最大可以支持100kmd)避免相邻基站间上下行干扰目前深圳F频段上下行时隙配比为1:3,特殊时隙为3:9:2(SA2,SSP5);D\E频段上下行时隙配比为2:2,特殊时隙为10:2:2(SA1,SSP7);15.LTE无线帧与TDS无线帧有什么区别,如何配置来降低LTE与TDS之间的干扰//为匹配TDS组网,TDL的时隙配比是多少?1. TDS现网采用4下2上结构,为了避免未来TD-LTE的干扰(或者相互干扰),TD-LTE采用3:1时隙配比,即6下2上的结构,加上2个特殊时隙正好一个10ms的无线帧。

相关文档
最新文档