八年级数学上册1.2第二节平行线的判定教案(1)新人教版
(八年级数学教案)平行线的判定导学案
平行线的判定导学案
八年级数学教案
年级八年级编号日期: 审批:
比一比,看谁表现最好!拼一拼,力争人人过关!
课题:平行线的判定设计者:八年级备课组
自研课(时段: 晚自习时间: 20分钟)
展示课(时段: 正课时间:40分钟)
【学习目标】1. 熟练掌握平行线的判定公理及定理。
2、能对平行线的判定进行灵活运用,并把它们应用于几何证明中【定向导学?互动展示?当堂反馈】
自研自探环节展示提升环节
质疑评价环节总结归纳环节
自学指导
( 内容?学法?时间) 展示方案
(内容?学法?时间) 随堂笔记
(成果记录?知识生成?)
【学法指导】
自研教材P172的内容特别是定理的推理过程,学着课本书写定理的数学转化、比如已知、求证、证明等。
思考一下,我们来感受一下:
1、公理、定理的区别?(导学员引导大家破解)。
2、两条直线在什么情况下互相平行呢?
全班互动型展示
方案预设一:
分析教材P172的“想一想”学会用刚才的知识加以解决?写。
八年级数学上册《平行线的判定》教案、教学设计
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。
人教版初中数学教案(最新6篇)
人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。
(二)难点使用符号语言进行推理。
(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。
六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。
初中平行线的判定教案
初中平行线的判定教案教学目标:知识与技能目标:理解平行线的定义,掌握平行线的判定方法,能够运用判定定理进行证明。
过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
教学重点:平行线的定义,平行线的判定方法。
教学难点:平行线的判定定理的理解和应用。
教学准备:三角板、直尺、橡皮擦、多媒体教学设备。
教学过程:一、导入新课1. 利用多媒体展示生活中含有平行线的图片,如教室的黑板、自行车的轮胎等,引导学生观察并说出平行线的特点。
2. 教师总结平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
二、探究平行线的判定方法1. 教师提出问题:如何判断两条直线是否平行?2. 学生分组讨论,教师巡回指导。
3. 各小组汇报讨论成果,教师总结并给出平行线的判定方法:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
三、例题讲解1. 教师出示例题,引导学生运用判定方法进行解答。
2. 学生独立思考,教师巡回指导。
3. 学生汇报解题过程,教师点评并总结。
四、练习巩固1. 教师出示练习题,学生独立完成。
2. 教师选取部分学生的作业进行点评,指出错误并讲解。
五、课堂小结1. 教师引导学生总结本节课所学内容,巩固平行线的定义和判定方法。
2. 学生分享学习收获,教师给予鼓励和评价。
六、课后作业1. 完成课后练习题。
2. 观察生活中的平行线,拍摄照片,下节课分享。
教学反思:本节课通过观察生活中的平行线,引导学生发现平行线的特点,从而引入平行线的定义。
在探究平行线的判定方法时,鼓励学生分组讨论,培养学生的合作意识。
在例题讲解和练习巩固环节,注重培养学生的逻辑思维能力和空间想象能力。
通过课堂小结和课后作业,使学生巩固所学知识,提高运用所学知识解决实际问题的能力。
整体来说,本节课教学目标明确,教学方法得当,学生参与度高,达到了预期的教学效果。
初中数学说课教案平行线的判定
初中数学说课教案:平行线的判定《平行线的判定》说课稿今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。
下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。
一、教学内容“平行线”是我们在日常生活中都经常接触到的。
它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。
在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。
在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。
经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。
因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。
它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。
在七年级的学习中,学生已经初步接触了简单的说理过程。
因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。
二、教学目标基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。
由此确定本节课的教学目标为:1、让学生通过直观认识,掌握平行线的判定方法;2、会根据判定方法进行简单的推理并能写出简单的说理过程;3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。
同时确定本节课的重难点:重点:在观察实验的基础上进行判定方法的概括与推导.难点:方法的归纳、提炼;例2教学中的辅助线的添加。
三、教学方法及手段布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。
人教版八年级教案-平行线的判定
7.3 平行線的判定學習目標:1.經歷學習的過程,探索歸納出平行線判定的方法,並能熟練運用。
2.通過對平行線判定的探究,獲得參與數學活動的體驗,增強學習熱情。
學習重點:平行線的判定及其運用。
學習難點:用數學語言表達簡單的說理過程。
學習方法:自主學習+合作探究。
課前延伸學案1、如圖,在同一平面內兩條直線a、b被第三條直線c所截,形成幾個角?其中“同位角”“內錯角”“同旁內角”有哪些?2、“若兩條直線a、b不相交它們就是平行線”這句話對嗎?為什麼?3、上圖中,若直線a∥b,你能得到那些相等或互補的角?說出你的理由。
課內探究學案【自主學習】1、如果有a、b兩條直線,如何判斷它們是否平行?2、按要求作圖:用直尺和三角板過點P做已知直線a的平行線b。
21C43baP ●a【合作探究】 能否由平行線的畫法找到判斷兩直線平行的條件?如圖,把直尺的一邊作為第三條直線,在畫平行線的過程中,始終保持什麼角相等? 由此你能猜想兩條直線平行的依據嗎?平行線判定公理:簡稱:你能用符號語言表述平行線判定公理嗎?∵ ( ) ∴ ( )【小試牛刀】21a bc 3 41、如圖③∵∠1=∠2,∴_______∥________()。
∵∠2=∠3,∴_______∥________()。
【合作交流】1、兩條直線被第三條直線所截形成“三線八角”,同時得到同位角、內錯角和同旁內角,由同位角相等可以判定兩直線平行,那麼,能否利用內錯角和同旁內角來判定兩直線平行呢?2、如圖2(1) ∠1=∠2時,a與b是什麼關係?(2) ∠2與∠3是什麼位置關係的角?(3)當∠2=∠3時,a與b平行麼?(4)當∠2+∠4=180°時,a與b平行麼?21MGAB CDEFH N通過以上你能總結出什麼結論?平行線判定方法2:簡稱:平行線判定方法3:簡稱:【知識運用】完成推理,寫出依據1、如圖④ ∵∠1=∠2,∴_______∥________( )。
八年级数学上册 1.3 平行线的性质(第2课时)教案
平行线的性质【教学目标】◆知识目标:明白得把握平行线的性质并能应用◆能力目标:培育学生形成观看分辨、逆向推理等数学方式,培育学生良好的制造性思维能力、逆向思维能力和周密的推理进程。
◆情感目标:通过量种教学活动,树立自信,自强,自主感,由此激发学习数学的爱好,增强学好数学的信心。
【教学重点、难点】 ◆重点:平行线的性质是重点 ◆难点:例4是难点 【教学进程】 一、知识回忆: 一、平行线的判定 二、平行线的性质 二、1.合作学习:如图,直线AB ∥CD ,并被直线EF 所截。
∠2与∠3相等吗?∠3与∠4的和是多少度? 试探以下几个问题: (1)图中有哪几对角相等?(2)∠3与∠1有什么关系?∠4与∠2有什么关系? 2.你发觉平行线还有哪些性质? 平行线的性质:两条平行线被第三条直线所截,内错角相等。
简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
简单地说,两直线平行,同旁内角互补。
4321F E DCBA 321FE DC BA3.做一做:如图,AB ,CD 被EF 所截,AB ∥CD (填空) 若∠1=120°,则∠2= ( ) ∠3= -∠1= ( )4.例3 如图1-14,已知AB ∥CD ,AD ∥BC 。
判定∠1与∠2是不是相等,并说明理由。
试探以下几个问题:(1)∠1与∠BAD 是一对什么的角?它们是不是相等?什么缘故?(2)∠2与∠BAD 是一对什么的角?它们是不是相等?什么缘故? (3)那么∠1与∠2是不是相等?什么缘故? 解:∠1=∠2 ∵AB ∥CD (已知)∴∠1+∠BAD=180°(两直线平行,同旁内角互补) ∵AD ∥BC (已知)∴∠2+∠BAD=180°(两直线平行,同旁内角互补) ∴∠1=∠2(同角的补角相等)讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”那个性质是不是能够解? 5.练一练:(P .14课内练习一、2)6.例4如图1-15,已知∠ABC+∠C=180°,BD 平分∠ABC 。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
(3)综合应用平行线的性质和判定定理解决几何问题。
2.根据课堂学习,同学们尝试自己设计一道关于平行线的性质或判定的几何题目,并给出解题步骤和答案。
3.结合生活中的实例,举例说明平行线的性质定理在实际中的应用,并简述其原理。
4.撰写一篇关于平行线性质定理和判定定理的学习心得,内容包括:
(4)情境教学:创设生活情境,让学生在实际问题中感受几何知识的应用价值。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如参与度、思维活跃度等,及时给予鼓励和指导。
(2)形成性评价:通过作业、测试等形式,了解学生对平行线性质定理和判定定理的掌握程度。
(3)综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评估学生的学习成果。
3.布置课后作业,巩固学生对平行线性质和判定方法的理解。
4.鼓励学生继续探索几何知识,激发他们对数学的兴趣和热情。
五、作业布置
为了巩固学生对平行线性质定理和判定定理的理解,以及提高学生的几何解题能力,特布置以下作业:
1.请同学们完成课本第十章第2节后的练习题,重点掌握以下题型:
(1)运用性质定理解决角度问题。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质定理,如同位角相等、内错角相等、同旁内角互补等。
2.学会使用直尺和圆规画平行线,掌握平行线的判定定理,如同位角相等、内错角相等、同旁内角互补等。
3.能够运用平行线的性质和判定定理解决几何图形中的相关问题,如求角度、证明线段平行等。
(1)自己在本节课中的收获和感悟。
(2)对平行线性质定理和判定定理的理解。
八年级数学上册平行线的判定课件人教新课标版
2=135º,判断l1 与 l2 是否平行,并说明
理由。
2
l3
3
1 l1
l2
练习1:已知直线 l1, l 2 被 l3 所截(如图) ,
1 2 180
平行,并说明理由.
判断 l1与l2 是否
2
1l3
3
l2
l1
练习2:已知直线 l1, l 2被 l3 所截(如图) , 1 2
即:同位角相等,两直线平行
几何语言:
∵∠1= ∠2
∴a∥b
1
a
(同位角相等,两直线平行)
2
b
c
A
若1=B,则_A_B_∥P_D_E_; ( 同位角相等,两直线平行 ) B
D 1C
若1=E,则_B_C_ ∥P_E_F等,两直线平行 )
例1、已知直线l1, l2被l3所截,1=45º,
A
60O
G
E
30O
CB
D
作业:必做:作业本,课时特训(基础知识)
选做:课时特训(综合提高)
1、某人骑自行车从A地出发,沿正东方向前进至B处 后,右转15°,沿直线向前行驶到C处(如图)。这 时他想仍按正东方向行驶,那么他应怎样调整行驶方 向?请画出他应继续行驶的路线,并说明理由。
A
B
1
15°
C2 E
练一练
1.如图,已知直线 l1, l2 被直线AB所截,AC l2于 点C.若 1 500 , 2 400 , 则 l1与 l2平行吗?
请说明理由.
A 1 l1
2
B C
l2
练一练
2、如图,AB⊥CD于点B,AE与BF相交于点
G,且∠FGE=60°, ∠ABG=30°。请判断
《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学
第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
浙教版-数学-八年级上册-1.2平行线的判定(1) 八上 教案
1.2平行线的判定(1)1、掌握平行线判定定理12、初步学会运用平行线判定定理1进行简单的推理证明3、培养学生从实际中提出问题的能力4、初步培养学生把实际问题抽象成数学问题的能力平行线判定定理及应用定理形成过程中的逻辑推理及其书面表达一、引课让学生回忆并叙述上节用三角板和直尺过一点P画已知直线AB的平行线的过程,你能发现这种画法实际上是画一对什么角相等吗?(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角,这又一次说明了大家公认的事实)。
教师示范画图二、新授1、1)怎样正确地叙述上面这个公认的事实呢?可先让学生试着说一下,然后教师总结并板书:平行线判定公理公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为“同位角相等,两直线平行”。
2)结合图形,引导学生用符号语言表述平行线判定公理:∵∠DHG=∠BGF∴AB ∥CD(进行文字语言翻译为符号语言的训练,教师给出板书,同时为公理的应用奠定基础。
)2、根据右图,完成下面的推理过程。
∵∠____=∠____ ∴a∥b(本题有四种答案,设计此问既帮助学生熟悉判定公理,又使学生知道,只要有一对同位角相等,就可以判定两直线平行。
)3、问题:用平行线判定公理判定某个图形中的两条直线平行,需要什么条件?首先要在这个图形(可能是复杂图形或变式图形)中找出同位角,其次这两个角大小要相等。
比如由∠1=∠2,可判定PM∥QN。
学生容易误认为由∠3=∠4,也可判定PM∥QN。
而事实上,∠3与∠4不是同位角。
4、例题讲解:例1、如图,BE是AB的延长线,DF是AD的延长线,∠CBE=∠A=∠C。
1).由∠CBF=∠A,可以判定哪两条直线平行?依据是什么?2).由∠CBE=∠C,可以判定哪两条直线平行?依据是什么?3).要证明AF∥BC需要哪些角相等?4).要证明AE∥DC需要哪些角相等?例2、已知直线l1,l2被l3所截,(如图),∠1=450,∠2=1350。
平行线及判定定理和平行性质教案
平行线及判定定理和平行性质教案第一节:导入与概念解释(10分钟)1.导入:老师可以在白板上画两根不平行的线段,引发学生对“平行”概念的探究。
2.概念解释:平行线是指在同一平面内永不相交的两条直线。
同一平面内,如果两条直线不相交,那么这两条直线就是平行线。
在几何学中,平行线的性质非常重要,我们将在今天的课上学习一些与平行线相关的定理和性质。
第二节:平行线的判定方法(15分钟)1.直观理解:学生可以观察两条平行线的特性,并尝试总结出一些判定方法。
2.重要定理:介绍平行线的判定定理:a.两条直线被一条过这两条直线的平面所截,如果平面上的直线和被截直线的其中一边的内角之和等于180°,那么这两条直线平行。
b.如果两条直线与一条截它们的直线所成的内角之和等于180°,那么这两条直线平行。
c.同位角相等:如果两条直线被一条截它们的直线所形成的内角相等,那么这两条直线平行。
d.两个相交直线的内角和等于180°,那么这两条直线平行。
第三节:平行性质(20分钟)1.首先引入平行线与直线的交角,并提出一个问题:“相交的两条直线与平行于它们一边的直线所成的相对角相等吗?”2.引入同位角的概念:同位角指的是两条直线被一条截它们的直线所形成的内角。
3.同位角的性质:同位角对应角相等,内错角互补,补角互补。
4.根据同位角的性质,可以引出平行线的性质:a.两条平行线与一条截它们的直线所形成的同位角相等。
b.平行线的内错角互补。
c.平行线的补角互补。
d.平行线的同位角对应角相等。
第四节:练习与总结(15分钟)1.练习:让学生通过练习题巩固所学内容。
2.总结:学生根据今天的课程内容,总结平行线的判定方法和性质。
第五节:拓展与应用(20分钟)1.拓展:介绍平行四边形、矩形和平行线性质在几何证明中的应用。
如利用平行线性质证明两个三角形相似等。
2.应用:出示一些与平行线相关的实际问题,让学生通过运用所学知识解决问题,并帮助学生发现平行线的应用场景。
初中两直线平行教案
初中两直线平行教案教学目标:1. 理解两直线平行的概念,掌握平行线的性质和判定方法。
2. 能够运用平行线的性质解决实际问题。
3. 培养学生的逻辑思维能力和图形直观感知能力。
教学重点:1. 两直线平行的概念及性质。
2. 平行线的判定方法。
教学难点:1. 理解并运用平行线的性质解决实际问题。
2. 熟练掌握平行线的判定方法。
教学准备:1. 教学课件或黑板。
2. 直尺、三角板等绘图工具。
教学过程:一、导入(5分钟)1. 利用日常生活实例,如双轨铁路、尺子等,引导学生思考:什么是平行线?2. 学生分享对平行线的理解,教师总结并板书平行线的定义。
二、新课讲解(15分钟)1. 利用PPT或黑板,展示直线和平行线的图像,引导学生观察并思考:平行线有哪些性质?2. 学生分享观察结果,教师总结并板书平行线的性质。
3. 讲解平行线的判定方法,引导学生通过画图实践并理解判定方法。
三、课堂练习(15分钟)1. 学生独立完成练习题,教师巡回指导。
2. 选取部分学生的作业进行讲解和评价。
四、应用拓展(10分钟)1. 出示实际问题,如道路设计、建筑设计等,引导学生运用平行线的性质解决问题。
2. 学生分组讨论并展示解题过程,教师点评并总结。
五、课堂小结(5分钟)1. 学生总结本节课所学内容,教师补充并强调重点。
2. 布置课后作业,巩固所学知识。
教学反思:本节课通过导入、新课讲解、课堂练习、应用拓展和课堂小结等环节,使学生掌握了两直线平行的概念、性质和判定方法。
在教学过程中,注意调动学生的积极性,鼓励学生分享自己的思考,培养学生的逻辑思维能力和图形直观感知能力。
同时,通过实际问题的解决,使学生能够将所学知识应用于生活实际,提高学生的解决问题的能力。
在今后的教学中,要继续关注学生的学习情况,针对不同学生的特点进行有针对性的辅导,使全体学生都能达到教学目标。
同时,注重培养学生的数学思维,提高学生的数学素养。
初中平行线的判定教案
教案初中平行线的判定教学目标:1. 学生能够理解平行线的定义及性质。
2. 学生能够运用平行线的判定方法解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 平行线的定义及性质。
2. 平行线的判定方法。
教学难点:1. 理解平行线的判定方法。
2. 运用平行线判定方法解决实际问题。
教学准备:1. 教学课件或黑板。
2. 直尺、圆规等绘图工具。
3. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的平行线。
2. 学生分享观察到的平行线,并简单描述其特点。
二、新课导入1. 教师引导学生回顾平行线的定义及性质。
2. 学生分享平行线的定义及性质。
三、探究活动1. 教师出示探究活动一:如何判定两条直线是否平行?2. 学生分组讨论,探究平行线的判定方法。
四、实际应用1. 教师出示实际应用题目,引导学生运用平行线的判定方法解决问题。
2. 学生独立完成题目,教师巡回指导。
五、课堂小结2. 学生分享学习心得。
六、课后作业(布置作业)1. 教师布置相关练习题,巩固平行线的判定方法。
2. 学生完成课后作业。
教学反思:本节课通过观察、探究、实际应用等环节,让学生深入理解平行线的判定方法。
在教学过程中,教师要注意引导学生的观察、分析、推理能力,鼓励学生积极参与讨论,培养学生的合作意识。
同时,教师要及时点评学生的表现,给予鼓励和指导,提高学生的学习兴趣和自信心。
教案探索分数的基本性质教学目标:1. 学生能够理解分数的基本性质。
2. 学生能够运用分数的基本性质解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 分数的基本性质。
2. 分数的基本性质在实际问题中的应用。
教学难点:1. 理解分数的基本性质。
2. 运用分数的基本性质解决实际问题。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的分数。
2. 学生分享观察到的分数,并简单描述其特点。
初中数学认识平行线教案
初中数学认识平行线教案一、教学目标:1. 知识与技能:使学生掌握平行线的定义、性质和判定,能运用平行线的知识解决一些实际问题。
2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。
3. 情感、态度、价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生逐步养成言之有理的习惯。
二、教学内容:1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所成的角相等。
3. 平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
三、教学重点与难点:1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的性质和判定。
四、教学过程:1. 导入:利用实物展示,如黑板、书桌等,引导学生观察并发现其中的平行线,激发学生的兴趣。
2. 新课导入:介绍平行线的定义,通过图示和实例使学生理解平行线的概念。
3. 性质讲解:(1)利用教具演示,引导学生发现平行线上的对应角相等。
(2)通过实际操作,使学生理解平行线之间的夹角相等。
(3)利用几何画板或实物,展示平行线与截线所成的角相等。
4. 判定讲解:(1)利用图示和实例,引导学生理解同位角相等,两直线平行。
(2)通过实际操作,使学生明白内错角相等,两直线平行。
(3)利用几何画板或实物,展示同旁内角互补,两直线平行。
5. 练习与巩固:布置一些相关的练习题,让学生独立完成,检验学生对平行线知识的掌握程度。
6. 总结与拓展:对本节课的内容进行总结,强调平行线的性质和判定,并引导学生思考如何运用平行线的知识解决实际问题。
五、教学反思:通过本节课的教学,学生应掌握平行线的定义、性质和判定。
在教学过程中,要注意引导学生观察、操作、推理,培养学生的空间观念和逻辑思维能力。
同时,要关注学生的学习兴趣,激发学生对数学的热爱,使学生在轻松愉快的氛围中学习。
1.2平行线的判定(第2课时)教案(浙教版初中数学八年级上册)
1.2平行线的判定(2)〖教学目标〗◆1、使学生掌握平行线的第二、三个判定方法.◆2、能运用所学过的平行线的判定方法,进行简单的推理和计算.◆3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法. 〖教学重点与难点〗◆教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用. ◆教学难点:问题的思考和推理过程是难点. 〖教学过程〗一、从学生原有认知结构提出问题如图,问21l l 与平行的条件是什么?在学生回答的基础上再问:三线八角分为三类角, 当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.(板书课题)学生会跃跃欲试,动脑思考.教师引导学生:将内错角或同旁内角设法转化为利用同位角相等. 二、运用特殊和一般的关系,发现新的判定方法 1.通过合作学习,提出猜想.①若图中,直线AB 与CD 被直线EF 所截,若∠3=∠4,则AB 与CD 平行吗? 你可以从以下几个方面考虑:⑴我们已经有怎样的判定两直线平行的方法? ⑵有∠3=∠4,能得出有一对同位角相等吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二: 两条直线被第三条直线所截,如果内错角相等,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠3=∠4∴AB ∥CD (内错角相等,两条直线平行)EF4 A B CD13 21 2 3EFG AB C D1 3 2H然后,完成“做一做”∠1=121°, ∠2=120°,∠3=120°。
说出其中的平行线,并说明理由。
②若图中,直线AB 与CD 被直线EF 所截,若∠2+∠4=180°,则AB 与CD 平行吗? 你可以由类似的方法得到正确的结论吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三: 两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠2+∠4=180°∴AB ∥CD (同旁内角互补,两条直线平行)当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行. 2.例题教学,体验新知例2.如图,∠C+∠A=∠AEC 。
(八年级数学教案)平行线的判定(导学案)
平行线的判定(导学案)八年级数学教案平行线的判定(导学案)学习目标: 1、掌握直线平行的条件,并会进行简单的应用。
2、领悟归纳和转化的数学思想方法。
学习重点: 运用平行线的判定方法判断两直线平行学习难点: 运用平行线的判定方法进行简单的推理。
●一、复习回顾:1、证明几何命题的步骤是什么呢?2、两条直线被第三条直线所截,如果同位角相等,那么这两条直线______。
(简记为:同位角相等,两直线________。
)●二、探索新知:(1)平行线判定定理一证明:平行线的判定定理一:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(简记为:内错角相等,两直线平行。
1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。
已知:求证:证明:(2)平行线判定定理二证明:平行线判定定理二:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(简记为:同旁内角互补,两直线平行。
)1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。
已知:求证:证明:三、应用新知:1、如图,填空:(1)∠A与_________互补,则AB∥_______( )(2)∠A与_________互补,则AD∥_______( )2、如图:∠5=∠CDA=∠ABC, ∠1=∠4, ∠2=∠3, ∠BAD+∠CDA=180°,填空:∵∠BAD+∠CDA=180°(已知)∴_____∥_____( , )∵∠5=∠CDA(已知), ∠5+∠BCD=180°( ),∠CDA+∠______=180°( )∴∠BCD=∠6 ( )∴_____∥_____( , )3、已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°( )∠2=∠3( )∴∠1+∠3=180°( )∴_____∥_____( , )四、课堂练习:1、请你说说用直尺和平移三角尺画出两条直线平行的理由。
人教版八年级教案-平行线的判定(1)
7.3平行線的判定1.瞭解並掌握平行線的判定公理和定理;(重點)2.瞭解證明的一般步驟.(重點)一、情境導入我們知道,光線從空氣中進入水中會發生折射現象,光線從水中進入空氣中,同樣也會發生折射現象.如圖為光線從空氣中進入水中,再從水中進入空氣中的示意圖.由於折射率相同,因此有∠1=∠4,∠2=∠3,那麼你能說明光線c 與d平行嗎?二、合作探究探究點一:平行線的判定【類型一】平行線的判定公理如圖,直線l1、l2、l3、l4兩兩相交,且∠1=∠2=∠3.求證:l1∥l2,l3∥l4.解析:∠1和∠2是直線l1、l2被直線l3所截得的同位角,∠2和∠3是直線l3、l4被直線l2所截得的同位角,所以由∠1=∠2可以判定l1∥l2,由∠2=∠3可以判定l3∥l4.證明:∵∠1=∠2(已知),∴l1∥l2(同位角相等,兩直線平行).∵∠2=∠3(已知),∴l3∥l4(同位角相等,兩直線平行).方法總結:利用平行線的判定公理進行推理證明的關鍵是分清同位角是哪兩條直線被第三條直線所截構成的.【類型二】平行線的判定定理1如圖,已知AB,CD與直線EF分別相交於點B,C,且∠ABE=∠DCF.求證:AB∥CD.解析:由等角的補角相等可知∠ABC=∠BCD.再由平行線的判定定理1即可得到結論.證明:因為∠ABC+∠ABE=∠DCB+∠DCF=180°(鄰補角的定義),∠ABE=∠DCF(已知),所以∠ABC=∠DCB(等角的補角相等),所以AB∥CD(內錯角相等,兩直線平行).方法總結:要證明兩條直線平行,主要是指出圖形中兩條直線被第三條直線所截的角,觀察是否有同位角相等、內錯角相等、同旁內角互補或由角的數量關係推得同位角相等、內錯角相等、同旁內角互補.【類型三】平行線的判定定理2如圖,直線AE,CD相交於點O,如果∠A=110°,∠1=70°,就可以說明AB∥CD,這是為什麼?解析:由題意可知∠1=∠AOD=70°,又因為∠A=110°,所以∠A+∠AOD=180°,故AB∥CD.解:因為∠1=∠AOD(對頂角相等),∠1=70°,所以∠AOD=70°.又因為∠A=110°,所以∠A+∠AOD=180°(等式的性質),所以AB∥CD(同旁內角互補,兩直線平行).方法總結:(1)本題運用數形結合思想,平行線的判定是由角之間的數量關係到“形”的判定.要判定兩直線平行,可圍繞截線找同位角、內錯角或同旁內角,若同位角相等、內錯角相等或同旁內角互補,則兩直線平行.(2)若題中的結論能用同位角相等、內錯角相等或同旁內角互補中的一個方法說明兩直線平行時,一般都要通過結合對頂角、互補角等知識來說明.探究點二:平行線的判定公理、定理的綜合應用如圖,已知DE,BF分別平分∠ADC和∠ABC,∠1=∠2,∠ADC=∠ABC,因此可推出圖中哪些線段平行?為什麼?解析:結合圖形以及已知條件,能證明DE∥BF,DF∥BE和AD∥BC.解:DE∥BF,DF∥BE,AD∥BC.理由如下:(1)DE∥BF.∵∠1=∠2(已知),∴DE∥BF(同位角相等,兩直線平行).(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內錯角相等,兩直線平行).(3)AD ∥BC.由(2)知∠3=∠1,又∵DE 平分∠ADC(已知),∴∠ADE =∠3(角平分線定義),∠ADE =∠1(等量代換).∴∠A =180°-∠ADE -∠1=180°-2∠ADE =180°-∠ADC =180°-∠ABC(三角形內角和為180°及等量代換),即∠A +∠ABC =180°,∴AD ∥BC(同旁內角互補,兩直線平行).方法總結:解此類題應首先結合圖形猜測結論,然後證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內錯角相等,同旁內角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)⎩⎪⎨⎪⎧判定公理:同位角相等,两直线平行判定定理⎩⎪⎨⎪⎧内错角相等,两直线平行同旁内角互补,两直线平行本節課通過經歷探索平行線的判定方法的過程,發展學生的邏輯推理能力,逐步掌握規範的推理論證格式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 平行线的判定
【教学目标】
1.知识与技能:(1)理解平行线的判定方法一:同位角相等,两直线平行。
(2)会用“同位角相等,两直线平行”进行简单的几何推理,培养推理
能力。
2.过程与方法:经历平行线判定方法一的发现过程,体验数学语言进行推理的简洁性。
3.情感态度与价值观:让学生体会用数学实验得出几何规律的重要性与合理性。
【重点难点】
重点:利用“同位角相等,两直线平行”判定两条直线平行。
难点:用数学语言表达几何的推理过程。
【教学过程】
过程中,有哪些量保持不变?
l1。