一个有趣的组合恒等式猜想的证明

合集下载

组合数的恒等式

组合数的恒等式

组合数的恒等式组合数的恒等式是组合数学中常用的一种等式,它在解决组合计数问题中起着重要的作用。

组合数的恒等式主要包括二项式系数公式、加法原理和乘法原理等。

下面将分别介绍这些恒等式的概念和应用。

一、二项式系数公式:二项式系数公式是组合数学中最基本的恒等式之一,它描述了两个元素的组合方式。

具体而言,对于非负整数n和k,二项式系数C(n,k)表示从n个元素中选取k个元素的组合数。

二项式系数公式的表达式为:C(n,k) = C(n-1,k-1) + C(n-1,k)。

这个公式的意义在于,从n个元素中选取k个元素的组合数可以通过从n-1个元素中选取k-1个元素和从n-1个元素中选取k个元素来获得。

这个公式在组合计数问题中经常被使用,例如计算排列组合、二项式定理等。

二、加法原理:加法原理是组合计数中常用的一种方法,它用于计算多个事件的总数。

加法原理的核心思想是将多个互斥事件的计数相加,得到总计数。

具体而言,对于互斥事件A和事件B,它们的计数之和等于事件A和事件B的并集的计数。

加法原理可以推广到多个事件的情况,即对于互斥事件A1、A2、...、An,它们的计数之和等于事件A1、A2、...、An的并集的计数。

加法原理在解决组合计数问题中经常被使用,例如计算排列组合、集合的计数等。

三、乘法原理:乘法原理是组合计数中常用的一种方法,它用于计算多个独立事件的总数。

乘法原理的核心思想是将多个事件的计数相乘,得到总计数。

具体而言,对于独立事件A和事件B,它们的计数之积等于事件A和事件B的交集的计数。

乘法原理可以推广到多个独立事件的情况,即对于独立事件A1、A2、...、An,它们的计数之积等于事件A1、A2、...、An的交集的计数。

乘法原理在解决组合计数问题中经常被使用,例如计算排列组合、多个条件下的计数等。

组合数的恒等式包括二项式系数公式、加法原理和乘法原理等。

它们在解决组合计数问题中起着重要的作用,能够帮助我们计算各种组合方式的总数。

组合恒等式的证明方法与技巧

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C-+-+...+(-1)=00123n nn n n n n C C C C C (5)例2:求证:-++3...+n =n 123n 122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:k kn C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =n n 12-.例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得i m i 1C ++=i m i C ++i 1m i C -+ (i ∈N ) 即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+ =1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+- =-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n ii n ab C - 的形式出现,这样自然会联想到二项式定理.证:设n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23nn 2n n n 212nn n n 2C C C (n ≧2)分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i)’’=i(i-1)x i-2由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2)技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x 比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有nx 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则nn-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ② ①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题 例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C 又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC k n k n k n k n k n k n下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数)的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图 1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y 证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,n 步的不同方法的总数为2n ,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k k kn x C∑∞=+01<x现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i ikk nk n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111 分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k xx f C =()k n k k n kx x C ∑=--111=()x x n---11=()()x x n----1111 =()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k k f kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下· 证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k kmmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =xC k k k kn k 112-+∞=∑两边同乘x 得:()()()()()x x n x x n n n n 22311121-----++-++=xC kkk kn k +∞=∑12=A(x)由定理1=-=xx A x B 1)()(()()()()()x x n x x n n n n 32411121-----++-++ 由⑴式得()41---n x 中2-n x的系数为Cn n 212-+,()3-1--n x 中1-n x的系数为Cn n 112-+.因此)(x B 展开式中nx 的系数为 =n b ()()()121112212++++-+-+n n n C C n n n n =()()()3211123+++++n n n n Cn n因此Ck kkn nk +=∑12=()()()3211123+++++n n n n Cn n14 牛顿公式法相关定理及定义:定义1 设(){}0≥n n f 为任一数列,令△()()()n f n f n f -+=1 () ,2,1,0=n△()n f k =△()11+-n f k -△()n f k 1- () ,2,1,0=n这里△成为差分算子.定义2 设(){}0≥n n f 为任一数列,令()()1+=n f n Ef () ,2,1,0=n()n f E k ()()k n f n f E k +=+=-11 () ,2,1,0=n这里称E 移位算子定义3 设(){}0≥n n f 为任一数列,令()()n f n If = () ,2,1,0=n()()()n f n f I n f I k k ==-1 () ,2,1,0=n这里称I 为恒等因子.定理1 设(){}0≥n n f 为任一数列,R b a ∈,,则△()()()=+n bg n af a △()n f +b △()n g ,约定:△I I E ===000定理2 (牛顿公式)n E =(△+I )∑==nj j n n C 0△j△()()j j n jn n j n n EI E C -=∑-=-=01例14 ()l f =m m l a l a a +++ 10(其中0≠m a ,R a i ∈ ,N l ∈),有()()C kn n k k n l f ∑-=-01={nm a m n m m =<,!0,证明:由牛顿公式()()=∑-=-C j n n j j n l f 11()∑-=-n j j n 11,()=-j l f E C jj n △f n ,实际上是证明△f n ={nm a m n m m =<,!,0 ⑴对()f ∂用数学归纳法证明当()n f <∂时,有△()l f n=0 当()1=∂f 时,令()b al l f +=(0≠a )△()l f ()()=-+l f l f 1()()a b al b l a =+-++1,△()02=-=a a l f 假设()m f <∂时命题成立,当()m f =∂且n m <时,令()m m l a l a a l f +++= 10△()=l f ()()()m m m m l a l a a l a l a a +++-+++++ 101011 显然∂(△()l f )11-<-≤n m ,由归纳法设△()l f n=△1-n (△()l f )=0 ⑵设()=l f n n l a l a a +++ 10(其中0≠n a )对n 用归纳法证明△()n n a n l f !=当()1=∂f 时,令()b al l f += ()0≠a△()=l f ()()l f l f -+1=()()a b al b l a =+-++1假设()m f <∂时命题成立当()m f =∂时△()=l f ()()()=+++-+++++m m m m l a l a a l a l a a 101011()l g l ma m m +-1()2-≤∂m l g ,由⑴有 △()01=-l g m由归纳假设有 △11-m -m l =()!1-m 因此 △()=l f m △1-m (△()l f )=△()11--m m m l ma +△()l g m 1-=m ma △11--m m l =m a m !因此,命题成立.结束语关于组合恒等式的证明方法还有很多,例如,倒序求和法,二项式反演公式法,母函数等等.本文介绍的主要是几种方法中,大多是以高中知识为基础,也可以说是组合恒等式证明的初等方法,也有大学学的方法,比较深入,不是很好理解.通过学习,我们要学会具体问题具体分析和解决问题多样化的思想.顺便指出,以上例题的解法不是唯一的,本文也有提及.细心的话也可以留意到,各种方法之间也存在着一定的联系,在这里就不再累赘了.参考文献⑴陈智敏,组合恒等式新的证明方法,广州大学学报,2006(04).⑵侯为波、卓泽强,古典概型在排列组合恒等式证明中的应用,淮北师范大学学报,1996(04).⑶概率在证明组合恒等式中的应用,淮南师范大学学报,2004(02).⑷周棉刚,关于组合恒等式的几种证法,黔南民族师范学院学报,2003(3).⑸何宗祥,漫谈组合恒等式的证明,中国数学月刊1994(2).⑹几何法,数学教学,1989(01).⑺杨青文,有关组合恒等式的几种证法,青海师专学报,1995(2).⑻杜庆坤,组合恒等式的证明技巧,临沂师范学报,2003(12).⑼曹汝成,组合数学,华南理工大学出版社,广州,2011⑽卢开澄,组合数学,清华大学出版社(第二版),北京.。

证明以下组合等式

证明以下组合等式

证明以下组合等式组合数是数学中一个重要的概念,其计算方法多种多样,但有许多的组合等式都需要掌握。

下面,我将通过详细的证明,为大家介绍几个常见的组合等式。

一、二项式定理$(a+b)^n=\sum\limits_{k=0}^nC_k^na^{n-k}b^k$证明:对于任意一个正整数n,都有$(a+b)^n=\underbrace{(a+b)(a+b)\cdots (a+b)}_{n}$。

展开式子后,我们发现一个单独的项可以看做形如$a^{n-k}b^k$,其中$k$表示$a$的次数,$n-k$表示$b$的次数。

由于每个$a$或$b$的系数均为1,而该项的系数则为组合数$C_k^n$,因为每次选取的项数均为$k$个,所以展开式子后,第$k$次项的系数恰好应该是$C_k^n$个。

因此:$(a+b)^n=\sum\limits_{k=0}^nC_k^na^{n-k}b^k$二、组合数恒等式$C_n^k=C_n^{n-k}$证明:我们有两种方法,一种是利用组合数的公式$C_n^k=\dfrac{n!}{k!(n-k)!}$来直接计算,发现结果相等;另一种方法是考虑组合数的意义。

组合数$C_n^k$表示从$n$个元素中任选$k$个元素组成组合的方案数,而$C_n^{n-k}$则表示从$n$个元素中选出$n-k$个元素未被选中的组合数。

由于$n$个元素任选$k$个元素,等价于$n$个元素中不选$n-k$个元素,而从剩下的$k$个元素中进行组合,两者方案数完全相等。

因此:$C_n^k=C_n^{n-k}$。

三、组合数恒等式$\sum\limits_{k=0}^nC_k^n=2^n$证明:观察式子左侧和式$\sum\limits_{k=0}^nC_k^n$的意义,其表示在$n$个元素中选出至少一个元素的组合方案数。

因此,我们可以考虑将其转化为计算不选任何元素的方案数加上选取至少一个元素的方案数,即:$\sum\limits_{k=0}^nC_k^n=\sum\limits_{k=1}^nC_k^n+C_0^n $接下来,我们考虑如何计算$c_k^n$。

组合恒等式的证明方法与技巧

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!…11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C?-+-+...+(-1)=00123n nn n n n n C C C C C (5) 例2:求证:-++3...+n =n 123n122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:kk n C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =nn 12-.、例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得im i 1C ++=i m i C ++i 1m i C -+ (i ∈N )即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+=1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+-—=-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值;例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n i in a b C - 的形式出现,这样自然会联想到二项式定理.证:设 n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.;3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23n n 2n n n 212nn n n 2C C C (n ≧2) 分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i )’’=i(i-1)x i-2 由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2) 技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法·比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是 2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x ,比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式 n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有n x 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则n n-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ②:①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题(例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C[因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C)又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC kn k n k n k n k n k n、下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.…9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数) 的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图…1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,<n 步的不同方法的总数为2n,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k kkn x C∑∞=+01<x 现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i i kk n k n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011%比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k x x f C =()k n k k nk x x C ∑=--111=()x x n---11=()()x x n----1111 ;=()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k kf kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下··证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法}首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k k mmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n;证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =x C k k k k n k 112-+∞=∑两边同乘x 得: ()()()()()x x n x x n n n n 22311121-----++-++=x C k k k k n k +∞=∑12=A(x) 由定理1。

组合恒等式的几种证明方法

组合恒等式的几种证明方法

组合恒等式的几种证明方法
恒等式是数学中常用的定理之一,其特点就是它的左右两边的数值必须相等,
可用来进行组合数学推导。

组合恒等式的证明方法有两种,分别是实验法和论证法。

实验法指的是将恒等式的两边的特征分别用实验的手段进行测试和试验,以得
出它们的实验情况相同,结果同时一致,可以确定恒等式两边对等。

论证法是指证明恒等式两边对等的理论依据,根据公理、定理以及数学性质,从理论层面对恒等式进行证明,从而得出结论,即两边的数值必须相等。

实验法一般用于证明经验性的恒等式,而论证法则适用于证明抽象结构的恒等式。

实验法要求两边实地考察,力求获取准确信息,然后根据实地测试,得出最终结论,证明两边对等;论证法则要求有规范的推导流程,要求先获取准确的逻辑性学习经验,然后以此为基础进行立足缜密的推理,以证明恒等式的有效性。

因此,实验法与论证法都能有效证明组合恒等式。

两种方法各具特色,有各
自的适用领域:实验法更擅长证明实践性问题和具体实例;论证法则更具有泛泛性,更倾向于阐释抽象结构和理论推导等问题。

一个奇妙的组合恒等式的两种证明

一个奇妙的组合恒等式的两种证明

发现上述恒等式的: 设集合A={la , , , a,2… a }
如 果 从 的所 有子 集 中 选 出 k( ∈ N 且 k ≤ k n一 1 个 子 集 1 ) 、 2 … 、 、 1 2 …
有多 少 种?
且 满 足
, 么这 样 的选 法 共 那
为 了解决 这 一 问题 , 构造 这 样 一个 组合 模 型: 首 先 为 解 题 需 要 和 方 便 起 见 , 妨 记 = Ao 不 、 A = Ak 1 们把 l 2 + .我 、 、… 、 、Ak 1 + 看
1 2 ・ 、 、 一、 、 + 之 间 出现 了 1 相 等 l 次 的填法 数 目为 + ・ . ]k 再 来 考 虑 出现 了 2 相 等 ( 至 少 出现 J2 次 指 ,

构 造 组 合模 型 证 明
事 实 上 笔 者 是 在 研 究 下 面 这 个 集 合 问题 时
k 1, 0 i j I 且 r ∈A + , -, ̄a ∈ + )贝 ∈A + , 上 a j 2 ・ -] i k
的填法数 目为 + ・ 】( 一1 . )
同理可以得知, 当 【 1 2 ・ ¨ 】 、 、 、 一、
南 且 a ∈A + ( , i k 1 如图所示) 这 样得到 的每一 , 种填法都对应着 1 2 、 、… 、 的唯一一种 选 法 , 满 足 0 且 1 2… Ak 1 +.
Ak 1 间 出 现 了 次 相 等 ( 至 少 出 现 , +之 指 rr次 r∈ N r≤ ) 则 相 当于 可 填 放 的 空 格 相 且 时,
3 ~
数 学教 学

2 1 年第 3 01 期
应地减少 了7 由原来的 -1 ' 个, 4 个变为 +1 - 一 个, 所以把集合 中的礼 个元 素逐个按上述规则 填放到 +1 个空格中去有 ( 一 十l ) 种填 —r 法.而出现 r 次相等 的所有可能情况共有 + 种, 于是 在 o 1 2 、 、 、… 、 、 + 之 间出 1

如何利用二项式定理证明组合恒等式

如何利用二项式定理证明组合恒等式

如何利用二项式定理证明组合恒等式在组合数学中,组合恒等式是一类关于组合数的等式,通常涉及到二项式系数的相加或相乘。

而二项式定理,是一种展开二项式系数的方法。

本文将讨论如何利用二项式定理来证明组合恒等式。

首先,我们需要了解二项式定理和组合数的基本概念。

二项式定理表述如下:$(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k$其中,$a$和$b$是任意实数,$n$是一个非负整数,$\binom{n}{k}$表示从$n$个元素中取$k$个元素的组合数。

组合数的计算公式为:$\binom{n}{k} = \frac{n!}{k!(n-k)!}$接下来,我们将通过一些具体的例子来演示如何利用二项式定理证明组合恒等式。

例子1:证明组合恒等式 $\binom{n}{k} = \binom{n}{n-k}$利用二项式定理展开$\binom{n}{k}$,我们有:$\binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k}1^k$注意到在组合数的定义中有 $\binom{n}{k} = \binom{n}{n-k}$,令$m=n-k$,则上式可以写成:$\binom{n}{k} = \sum_{m=0}^{n} \binom{n}{m} 1^{n-m}1^{n-m-k}$注意到$1^{n-m-k}$等于1,因此上式可以简化为:$\binom{n}{k} = \sum_{m=0}^{n} \binom{n}{m} 1^{n-m}$再次利用二项式定理,上式可以进一步化简为:$\binom{n}{k} = \sum_{m=0}^{n} \binom{n}{m} (1+1)^{n-m}$根据二项式定理的展开式,上式进一步化简为:$\binom{n}{k} = \sum_{m=0}^{n} \binom{n}{m} \sum_{i=0}^{n-m} \binom{n-m}{i} 1^{n-m-i} 1^i$注意到 $\binom{n-m}{i}$ 等于 $\binom{n}{i}$,上式可以继续化简为:$\binom{n}{k} = \sum_{m=0}^{n} \sum_{i=0}^{n-m} \binom{n}{m} \binom{n}{i}$由于组合数是交换的,我们可以交换$m$和$i$的求和顺序,上式可以进一步化简为:$\binom{n}{k} = \sum_{i=0}^{n} \sum_{m=0}^{n-i} \binom{n}{m} \binom{n}{i}$注意到 $\binom{n}{m}$ 等于 $\binom{n}{n-m}$,上式可以再次化简为:$\binom{n}{k} = \sum_{i=0}^{n} \sum_{m=0}^{n-i} \binom{n}{n-m} \binom{n}{i}$由于求和顺序不影响结果,上式可以化简为:$\binom{n}{k} = \sum_{i=0}^{n} \sum_{m=0}^{n-i} \binom{n}{n-i}\binom{n}{i}$根据组合数的性质 $\binom{n}{n-i} = \binom{n}{i}$,上式可以进一步简化为:$\binom{n}{k} = \sum_{i=0}^{n} \sum_{m=0}^{n-i} \binom{n}{i}\binom{n}{i}$注意到求和两个变量时可以合并为一个,上式可以进一步化简为:$\binom{n}{k} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{i}$最后,由于组合数相乘等于组合数的平方,上式可以进一步化简为:$\binom{n}{k} = \sum_{i=0}^{n} \binom{n}{i}^2$而根据组合数的性质,$\binom{n}{k} = \binom{n}{n-k}$,因此我们证明了组合恒等式 $\binom{n}{k} = \binom{n}{n-k}$。

竞赛数学中的组合恒等式

竞赛数学中的组合恒等式

竞赛数学中的组合恒等式
《竞赛数学中的组合恒等式》
嘿,小伙伴们!你们知道竞赛数学里有个超级有趣的东西叫组合恒等式吗?反正我刚接触的时候,那叫一个迷糊啊!
就拿那个“二项式定理”来说吧,它就像一个神秘的魔法咒语。

(“这到底是啥呀?”我当时就这么想。

)老师在黑板上写了一堆公式,我的脑袋都快变成浆糊啦!
有一次,我和同桌小明一起讨论这个。

我问他:“小明,你说这组合恒等式咋就这么难呢?就像走在一个迷宫里,怎么都找不到出口!”小明眨眨眼说:“别着急嘛,咱们慢慢琢磨。


后来老师给我们讲了一个例子,说组合恒等式就像搭积木,每一块积木都有它特定的位置和作用。

(这比喻是不是很形象?)我当时就有点明白了。

再后来,做练习题的时候,我还是会经常出错。

(哎呀,我这脑子!)有一道题,我算了好几遍都不对,急得我直跺脚。

我就跑去问学习委员小红,我说:“小红,这道题我怎么都算不对,你快帮我看看!”小红看了看,笑着说:“你呀,这里少乘了一个系数。


经过不断地努力,我慢慢发现组合恒等式也不是那么可怕啦!它就像一个藏着宝藏的神秘盒子,只要你找到了打开它的钥匙,就能收获满满的惊喜。

你们说,数学是不是很神奇?就像探险一样,充满了未知和挑战。

(难道不是吗?)竞赛数学里的组合恒等式虽然难,但是当你真正搞懂它的时候,那种成就感,简直无法形容!
所以呀,我觉得面对竞赛数学中的组合恒等式,咱们可不能害怕,要勇敢地去探索,去发现其中的奥秘!(这就是我的想法,你们觉得呢?)。

高中数学:组合恒等式证明方法

高中数学:组合恒等式证明方法

高中数学:组合恒等式证明方法二项式系数可以组成许多有趣的组合恒等式,这些等式可以通过简捷的组合分析得到证明。

一、公式法例1、求证:。

证明:由,,…,,,,整理即。

小结:运用基本组合数公式进行转换,如:,等是处理组合恒等式的常用方法,同时,在上述恒等式中,取n=1,2,…可以推出一系列新等式,如(1)由,得1+2+…+,(2)由得等,可见本题的结论具有示范作用。

二、二项式定理法例2、求证:。

证明:因为,令,得,故。

小结:对二项式定理自身作乘法、赋值和求积等运算获得一些恒等式,根据二项展开式的特性,赋予x以不同的值,常能使问题迎刃而解。

三、倒序求和法例3、求证:。

证明:令,故,。

小结:恒等式可逆用二项式定理获求。

四、组合分析法例4、求证:。

证明:构造等式左边的等价数学模型:m名男生n名女生,从中取n人参加数学竞赛可分为n+1类,男生0人、1人、…、n人,女生对应分别为n、n-1人、…,0人,共有选法为种,又由组合数定义知所求选法为种,命题成立。

小结:对等式两端所代表的组合含义进行分析,说明等式两端恰好是对同一组合模型进行计数,或是对已经建立一一对应关系的两个组合模型进行计数即得。

五、比较系数法例5、求证:。

证明:由于,其中含有项的系数为。

而,其中含有项的系数为,同时,故。

点评:由多项式恒等对应项系数相等获求。

在本题中,对m,n,k取特殊关系有(1)时,;(2)时,等。

六、递推公式法例6、求证:。

证明:设右边,则由恒等式得,故,整理即,而,故有。

小结:本题由递推关系及初始条件进行证明,其中数列的递推思想得到了体现。

七、求导法例7、求证:。

证明:对两边的x求导得,上式两边乘以x后再求导得,取得,即证。

小结:导数是一个重要的数学工具,寻找原模型进行求导自然流畅。

八、概率法例8、求证:。

证明:设一个袋子中有n个白球和n个黑球,从中任取n个,求P(A)=P(至少有一个白球),一方面,不取白球的概率为,有P(A);另一方面,取到k个白球的概率为,故有P (A)=,同乘移项即证。

组合恒等式的证明方法与技巧

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C-+-+...+(-1)=00123n nn n n n n C C C C C (5)例2:求证:-++3...+n =n 123n 122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:k kn C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =n n 12-.例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得i m i 1C ++=i m i C ++i 1m i C -+ (i ∈N ) 即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+ =1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+- =-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n ii n ab C - 的形式出现,这样自然会联想到二项式定理.证:设n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23nn 2n n n 212nn n n 2C C C (n ≧2)分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i)’’=i(i-1)x i-2由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2)技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x 比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有nx 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则nn-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ② ①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题 例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C 又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC k n k n k n k n k n k n下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数)的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图 1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y 证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,n 步的不同方法的总数为2n ,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k k kn x C∑∞=+01<x现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i ikk nk n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111 分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k xx f C =()k n k k n kx x C ∑=--111=()x x n---11=()()x x n----1111 =()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k k f kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下· 证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k kmmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =xC k k k kn k 112-+∞=∑两边同乘x 得:()()()()()x x n x x n n n n 22311121-----++-++=xC kkk kn k +∞=∑12=A(x)由定理1=-=xx A x B 1)()(()()()()()x x n x x n n n n 32411121-----++-++ 由⑴式得()41---n x 中2-n x的系数为Cn n 212-+,()3-1--n x 中1-n x的系数为Cn n 112-+.因此)(x B 展开式中nx 的系数为 =n b ()()()121112212++++-+-+n n n C C n n n n =()()()3211123+++++n n n n Cn n因此Ck kkn nk +=∑12=()()()3211123+++++n n n n Cn n14 牛顿公式法相关定理及定义:定义1 设(){}0≥n n f 为任一数列,令△()()()n f n f n f -+=1 () ,2,1,0=n△()n f k =△()11+-n f k -△()n f k 1- () ,2,1,0=n这里△成为差分算子.定义2 设(){}0≥n n f 为任一数列,令()()1+=n f n Ef () ,2,1,0=n()n f E k ()()k n f n f E k +=+=-11 () ,2,1,0=n这里称E 移位算子定义3 设(){}0≥n n f 为任一数列,令()()n f n If = () ,2,1,0=n()()()n f n f I n f I k k ==-1 () ,2,1,0=n这里称I 为恒等因子.定理1 设(){}0≥n n f 为任一数列,R b a ∈,,则△()()()=+n bg n af a △()n f +b △()n g ,约定:△I I E ===000定理2 (牛顿公式)n E =(△+I )∑==nj j n n C 0△j△()()j j n jn n j n n EI E C -=∑-=-=01例14 ()l f =m m l a l a a +++ 10(其中0≠m a ,R a i ∈ ,N l ∈),有()()C kn n k k n l f ∑-=-01={nm a m n m m =<,!0,证明:由牛顿公式()()=∑-=-C j n n j j n l f 11()∑-=-n j j n 11,()=-j l f E C jj n △f n ,实际上是证明△f n ={nm a m n m m =<,!,0 ⑴对()f ∂用数学归纳法证明当()n f <∂时,有△()l f n=0 当()1=∂f 时,令()b al l f +=(0≠a )△()l f ()()=-+l f l f 1()()a b al b l a =+-++1,△()02=-=a a l f 假设()m f <∂时命题成立,当()m f =∂且n m <时,令()m m l a l a a l f +++= 10△()=l f ()()()m m m m l a l a a l a l a a +++-+++++ 101011 显然∂(△()l f )11-<-≤n m ,由归纳法设△()l f n=△1-n (△()l f )=0 ⑵设()=l f n n l a l a a +++ 10(其中0≠n a )对n 用归纳法证明△()n n a n l f !=当()1=∂f 时,令()b al l f += ()0≠a△()=l f ()()l f l f -+1=()()a b al b l a =+-++1假设()m f <∂时命题成立当()m f =∂时△()=l f ()()()=+++-+++++m m m m l a l a a l a l a a 101011()l g l ma m m +-1()2-≤∂m l g ,由⑴有 △()01=-l g m由归纳假设有 △11-m -m l =()!1-m 因此 △()=l f m △1-m (△()l f )=△()11--m m m l ma +△()l g m 1-=m ma △11--m m l =m a m !因此,命题成立.结束语关于组合恒等式的证明方法还有很多,例如,倒序求和法,二项式反演公式法,母函数等等.本文介绍的主要是几种方法中,大多是以高中知识为基础,也可以说是组合恒等式证明的初等方法,也有大学学的方法,比较深入,不是很好理解.通过学习,我们要学会具体问题具体分析和解决问题多样化的思想.顺便指出,以上例题的解法不是唯一的,本文也有提及.细心的话也可以留意到,各种方法之间也存在着一定的联系,在这里就不再累赘了.参考文献⑴陈智敏,组合恒等式新的证明方法,广州大学学报,2006(04).⑵侯为波、卓泽强,古典概型在排列组合恒等式证明中的应用,淮北师范大学学报,1996(04).⑶概率在证明组合恒等式中的应用,淮南师范大学学报,2004(02).⑷周棉刚,关于组合恒等式的几种证法,黔南民族师范学院学报,2003(3).⑸何宗祥,漫谈组合恒等式的证明,中国数学月刊1994(2).⑹几何法,数学教学,1989(01).⑺杨青文,有关组合恒等式的几种证法,青海师专学报,1995(2).⑻杜庆坤,组合恒等式的证明技巧,临沂师范学报,2003(12).⑼曹汝成,组合数学,华南理工大学出版社,广州,2011⑽卢开澄,组合数学,清华大学出版社(第二版),北京.。

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法组合恒等式是组合数学中的重要概念之一,其表达了同一个集合中的元素分组的不同方法的数量相等。

组合恒等式可以通过多种方法进行证明,本文将介绍六种常用的证明方法。

首先我们来看第一种证明方法,数学归纳法。

数学归纳法是一种常见的证明方法,它分为两个步骤,即证明基础情况和归纳假设。

对于组合恒等式来说,我们可以使用数学归纳法证明其成立。

首先,我们验证当n=1时恒等式成立。

然后,假设当n=k时恒等式成立,我们可以证明当n=k+1时恒等式也成立。

通过数学归纳法的证明,我们可以得出组合恒等式成立的结论。

接下来我们来看第二种证明方法,图形法。

通过使用图形来表示两边的数量,我们可以更直观地看到它们是相等的。

例如,我们可以使用方格来表示一边的数量,并用另一种方式填充这些方格以表示另一边的数量。

通过对两边数量进行图形化表示,我们可以清楚地看到它们是相等的,从而证明组合恒等式成立。

第三种证明方法是代数法。

代数法通过对两边的符号或式子进行代数变换,从而证明它们是相等的。

例如,我们可以通过展开组合式、使用恒等式和化简等代数运算,将一个式子转化为另一个式子,从而得到它们是相等的。

通过代数法的证明,我们可以明确地看到两边的值是相等的,从而证明组合恒等式成立。

第四种证明方法是计数法。

计数法是一种直接计算两边数量的方法。

例如,我们可以将组合式分成几种情况,然后分别计算每种情况下的数量,并将它们加起来。

通过计数法的证明,我们可以得到两边的数量是相等的,从而证明组合恒等式成立。

第五种证明方法是逻辑法。

逻辑法通过使用逻辑推理证明恒等式成立。

例如,我们可以使用逻辑推理来说明两边的元素是一一对应的,从而证明组合恒等式成立。

通过逻辑法的证明,我们可以推导出两边的元素是一一对应的,从而证明组合恒等式成立。

第六种证明方法是双射法。

双射法通过构造一个一一映射(双射)来证明组合恒等式成立。

例如,我们可以构造一个映射,将一个集合中的元素映射到另一个集合中的元素,并证明这是一个一一映射。

组合恒等式证明的几种方法

组合恒等式证明的几种方法

1 引言组合恒等式是组合数学的一个重要部分.它在数学的各个分支中都有广泛应用,而且它的证明方法多种多样,具有很强的灵活性.下面通过几个实例具体讲述一下,几种证法在组合恒等式中的运用.2 代数法通常利用组合恒等式的一些性质进行计算或化简,使得等式两边相等,或者利用二项式定理∑0==+nr rn r r n n y x C )y x (在展开式中令x 和y 为某个特定的值,也可以先对二项式定理利用幂级数的微商或积分后再代值,得出所需要的恒等式.例1 11122m m m m n n n n C C C C n m +-++++=>, .分析:这个等式两边都很简单,我们可以利用一些常用的组合恒等式去求证.证明:1+2+11+=2++m n m n m n m n C C C Cmnm n m n m n C mn m C ,C m m n C 1+=1+=11+ )mn m m m n (C m n 2+1++1+∴左边= 2()11m n n m m C m n m+++++-=2(2)(1)()(1)(1)m nn m n m m m C m n m +++-++=++-232()(1)(1)(2)(1)()(1)(1)m nmn n n C m n m n n C m n m ++=++-++=++-右边=()12(2)!(2)(1)!(1)!1!(1)(1)()!!m n n n n n C n m m m n m n m m +++++==+-+++--(1)(2)(1)(1)m nn n C n m m ++=+-+左边=右边 即证.例2 求证:n n n n n n n n nn C C C C 20112211233333=+++++--- . 分析:看到上式,很容易想到二项式的展开式,尝试利用二项式定理去做. 证明:由二项式定理建立恒等式,1122211(3)3333n n n n n n nn n n n C x C x C x x ----+=+++++令1x =,即得2112214233331n n n n n n n n n C C C ---==+++++即证.例3(1)设n 是大于2的整数,则0)1(32321=-+++-nn n n nnC C C C . (2)n 为正整数,则)12(111131211131-+=++++++n n n n n n C n C C . 分析:观察上面两式的系数,很容易想到它们和微分积分有关,我们可以尝试利用求积分或微分的方法去解决这道题目.证明:(1)0122(1)n n nnn n n x C C x C x C x +=++++等式两边对x 求导,1121(1)2n n n n n n n x C C x nC x--+=+++令0x =得, 1231023(1)n nn n n nC C C nC -=-+++-即证.(2)由二项式定理有,0122(1)n n nn n n n x C C x C x C x+=++++上式两边对x 积分,有110122111010(1)()1(1)1111(21)11n n nn n n n k nn k nk nn knk x dx C C x C x C x dxx x C n k C n k +=+=+=+++++=++-=++⎰⎰∑∑即12111111(21)2311nn n n n C C C n n +++++=-++.此类方法证明组合恒等式的步骤是先对恒等式0()nni n i ini a x C a x -=+=∑两边对x 求一阶或二阶导数,或者积分,然后对x 取特殊值代入,得到所需证明的等式.我们也可以利用组合恒等式的性质,证明一些恒等式,例如利用1222m m C C m +=,求证:222112(1)(21)6n n n n +++=++证明:左边22211123122()()n n C C C C C C =+++++++322321123332223212(1)(1)2n n n nC C C C C C C C C C +=++++-+++++-=+()2(1)!(1)2!3!21(1)(21)6n n n n n n n +-=+-=++.同样的道理利用331166m m m m C C C =++,可以证明2333(1)122n n n -⎡⎤+++=⎢⎥⎣⎦.3 组合分析法所谓组合分析法就是通过构造具体的组合计数模型或模型实例,利用不同的方法解得的结果应该相同,从而得到恒等式相等.例5 证明:111r r r r r r n n C C C C ++++++=.证明:11r n C ++是1n +元集{}12,,1,n A a a a +=中1r +元子集的个数,这些子集可以分为1n +类.第0类:1r +元子集中含有1a ,则共有r n C 个. 第1类:不含1a ,但含2a 的1r +元子集共有1r n C -个; ,第n 类:不含12,,,n a a a 但含1n a +的1r +元子集共有0r C 个. 由加法原理得10111r r r r r r r r n n C C C C C C ++++++++=.但是0,r k C k r =<当时, 所以有111r r r r r r n n C C C C ++++++=.例6 求证:001122()m m mmn m n m n m n m n C C C C C C C C C n m +++++=>.证明:构造组合模型,假设一个班有m 个男生,有n 个女生,现在要选m 个人,组成一组,那么有多少种选法.选法一:不区分男女生时,共有m n +个人,选出m 人,共有选法mm n C +;选法二:选出的男生人数为k 个,0,1,2,,k m =,男生的选法共有km C ,女生的选法共有n k n C -,完成事件的选法共n k kn m C C -种, 于是n k k m n m m n C C C -+=, 又因为n k kn n C C -=. 所以k k m n m m n C C C +=,0,1,2,,k m =.即001122()m m mmn m n m n m n m n C C C C C C C C C n m +++++=>.当n m =时,即有122222()()()n nnn n n C C C C +++=.4 比较系数法主要是利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.一般情况下,用比较系数法证明所需辅助函数利用幂的运算性质:(1)(1)(1)m n m n x x x ++=++,其中m ,n 为任意实数,然后利用二项式定理的展开得到两个多项式,再通过比较同次幂的系数得到所证的恒等式.上题也可以利用比较系数法证明:0101(1)(1)()()m n m m n nmm m n n n x x C C x C x C C x C x ++=++++++001001011()()m m m m m n m n m n m n m n m n m m n mm n C C C C C C x C C C C C C x C C x-+=+++++++++所以mx 的系数为0110m m m m n m n m n C C C C C C -+++,又因为i m im m C C -=.所以0110001122m m m m mm n m n m n m n m n m n m nC C C C C C C C C C C C C C -+++=++++,又因为,01(1)(1)(1)m n m n m mm n n mm n m n m n m n x x x C C x C x C x+++++++++=+=+++++ 所以001122()m m mmn m n m n m n m n C C C C C C C C C n m +++++=>.即证.例 7 求证 122222()()()n nnn n n C C C C +++=.证明:(1)(1)n n x x ++展开式中n x 的系数为:011n n n n n n n n nC C C C C C -+++00112212222()()()n nn n n n n n n nn n nnC C C C C C C C C C C =++++=+++又2(1)(1)(1)n n n x x x ++=+;2(1)n x +展开式中n x 的系数为2n n C ,所以即有 122222()()()n nnn n n C C C C +++=.5 数学归纳法我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.组合恒等式是与自然数有关的命题,因此,数学归纳法也就成为证明组合恒等式的常用方法之一.例8 求证 : np n n p n n n n n C C C C 11++++=+++ , p 为自然数.分析:这里有一个变量p ,可以利用数学归纳法. 证明:(1)当1p =时,1111++++=+n n n n n n C C C 显然成立.(2)假设p k =时成立,即111n nn n n n n k n k C C C C ++++++++=.当1p k =+时,即上式两边同时加上11n nn nn n n k n k C C C C ++++++++11112.n nn k n k n n k C C C++++++++=+=即当1p k =+时也成立.由(1)(2)知命题对任意自然数p 皆成立.例9 证明:00111(-1)(-1)(-1)=(-1)m m m mnn n n C C C C -+++证明:当0m =时,上式显然成立, 当1m =时,有左边=0011(-1)(-1)nn C C +1111n n C C -=-=-=右边所以原式成立. 假设当m k =时成立,即00111(-1)(-1)(-1)=(-1)k k k kn n n n C C C C -+++.当1m k =+时,左边=001111(-1)(-1)(-1)(-1)k k k k nn n n C C C C ++++++()()()()()11111(1)!!(1)(1)1!!1!(1)!(1)!(1)(1)1!!1(1)!(1)(1)(1)1!!1(1)!(1)2!(1)!(1)k k kkk k k n n n n k k n k k n nn k k k n n k n k k k n n k k C ++++--=-+-----+-=----+----=---+-=---+=-即当1m k =+时,命题也成立.由(1),(2)知,命题对任意自然数皆成立.结论关于组合恒等式证明的方法还有很多,例如,微积分法,二项式反演公式法,几何法等.本文介绍的主要是几种常见的方法,以上的方法是以高中知识为基础,也可以说是组合恒等式证明的初等方法.通过学习,我们学会用具体问题具体分析和解决问题多样化的思想.以上例题的解法大多不是唯一的,本文也有提及.但各种方法之间也存在一定的联系.有时一道题可以同时使用几种方法,思路很活!参考文献[1] 孙淑玲,许胤龙.组合数学引论[M].合肥,中国科学技术大学出版社,1999.[2] 吴顺唐.离散数学[M].上海,华东师范大学出版社出版发行,1997:79-138.[3] 孙世新,张先迪.组合原理及其运用[M].北京,国防工业出版社,2006.[4] 陈镇邃,浅谈证明组合恒等式的几种方法[J].数学教学通讯,1986,02:15-16.[5] 张红兵,浅谈组合恒等式的证明方法[J].高等函授学报,2005,19(13):37-42.[6] 柳丽红,证明组合恒等式的方法与技巧[J].内蒙古电大学刊,2006,86:86-87.[7] 李士荣, 组合恒等式的几种证法及应用[J].重庆工学院学报(自然科学版),2007,21(5):72-74.致谢本论文是在沈邦玉老师的悉心指导下完成的。

容斥原理组合恒等式

容斥原理组合恒等式

容斥原理组合恒等式
容斥原理是组合数学中一个重要的计数方法,它可以用来解决一些复杂的计数问题。

在这个原理中,我们通过计算不重叠的事件的数量来计算整个事件的数量。

为了更好地理解容斥原理,我们可以通过一个简单的例子来说明。

假设有一个班级,里面有5个男生和4个女生。

我们现在想要从这个班级中选择出3个学生组成一个小组。

我们可以使用容斥原理来计算有多少种不同的组合方式。

我们可以计算出选择3个学生的总数。

根据组合数的定义,可以得到:C(9,3) = 84。

这表示我们从9个学生中选择3个学生的不同组合方式总共有84种。

接下来,我们需要计算出只选择男生或者只选择女生的组合方式数量。

只选择男生的组合方式数量为C(5,3) = 10,只选择女生的组合方式数量为C(4,3) = 4。

但是我们注意到,我们同时计算了既选择男生又选择女生的组合方式数量。

为了避免重复计算,我们需要从总数中减去这部分重复的组合方式数量。

根据容斥原理,我们得到最终的计算公式为:C(9,3) - C(5,3) - C(4,3) = 84 - 10 - 4 = 70。

所以,从这个班级中选择出3个学生组成一个小组的不同组合方式总共有70种。

通过这个简单的例子,我们可以看到容斥原理在解决组合问题中的作用。

它可以帮助我们避免重复计算,从而得到准确的计数结果。

在实际应用中,容斥原理经常被用来解决各种计数问题,尤其是在组合数学和概率论中。

无论是求解组合数,还是计算事件的概率,容斥原理都是一个非常有用的工具。

立方和公式的一个组合数学证明

立方和公式的一个组合数学证明

观察下面几个式子:13 = 1; (1)2 = 113 + 23 = 9; (1 + 2)2 = 913 + 23 + 33 = 36; (1 + 2 + 3)2 = 3613 + 23 + 33 + 43 = 100; (1 + 2 + 3 + 4)2 = 100…… ……大家应该可以猜到,事实上,对于任意正整数 n ,下述等式永远成立:13 + 23 + … + n3 = (1 + 2 + … + n)2这个恒等式的证明方法有很多很多,今天我看到了一种有趣的组合证明方法,来源于《Proofs that Really Count》的第 8 章。

首先,让我们考虑所有这样的数列:它由 0 到 n 之间的整数组成,长度为 4 ,并且最后一个数严格大于前面所有的数。

我们把所有满足要求的数列所组成的集合叫做集合 A 。

也就是说:A = {(a, b, c, d) | 0 ≤ a, b, c < d ≤ n}集合 A 里面有多少元素呢?我们可以这样来计算:最后一个数 d 的值可以从 1 到 n 当中选择,只要 d 选定了,前面的数都可以从 0 到 d -1 之间任意选择,这一共会产生 d3种选法。

于是,集合 A 的元素个数就是 13 + 23 + … + n3。

接下来,让我们考虑所有这样的数列:它由 0 到 n 之间的整数组成,长度为 4 ,并且第 2 个数严格大于第 1 个数,第 4 个数严格大于第 3 个数。

我们把所有满足要求的数列所组成的集合叫做集合 B 。

也就是说:B = {(x, y, z, w) | 0 ≤ x < y ≤ n 并且 0 ≤ z < w ≤ n}集合 B 里面有多少元素呢?我们可以按照下面这种方式来计算。

如果 x 选的是 n - 1,那么 y 有 1 种选法;如果 x 选的是 n - 2,那么 y 有2 种选法……如果 x 选的是 0,那么 y 有 n 种选法。

另辟蹊径证明组合恒等式

另辟蹊径证明组合恒等式
上 从 点 o o,)到 点 ( 0
3 6
福 建 中学数 学
2 1 第 2期 00年
显 然 ,从点 o o 0 到点 An r r 的格点路 ( ,) (— ,) 径 数 由两 部 分 组 成 :一 部 分 是 从 o o 0 到 点 ( ,)
8n r r ) ( — , 一1的路径 再 向 Y轴 的正方 向走一 步 ; 另一 部分 是点 o o,) ( 0 到点 C n 一 ,) ( 一 1 r 的路 径
解析 如 图 1 所示 , 无论 怎样走 法 ,在 X 方 向上总 共走 m步 ,在 Y方 向上 总共走 步 .若 用

块相对独立的内容 , 学好这部分知识对提高学生 的数学 思维能 力 有积极 的促 进作 用 , 解 决这类 而 问题 的思考 方法 与其它 代 数 内容 有 所不 同 ,不能 仅 靠代 数 的逻 辑推 理 . 合恒 等 式是组 合教 学 的 组
1 .预备 知识 定理 1在 个 不 同 的元 素 中取 r 进 行 组 个 合 ,其组合 数 为 C . : 定理 2 允许 元素 重复 出现 的排 列 , 叫做 有重 复 的排列 .包 括 以下两 种情 形 : 上述 定理 3可 推广 到一 般 :如 图 2所示 ,设 C ≥a≥0 d≥b , ≥0则 ( 6 到 ( , ) 最 短 路 径 a,) c d 的 为 :c- )( 1 C +
m+ n元 的 无 重 排 列 , 由定 理 2可 知 ,则 共 有

c +路径 数 . m
容 ,其 技巧性 强 ,解 题 方法独 特 ,因此 学 生解决
这类 问题往 往 感到 困难 .本文 将运 用格 点路 径法
( 蚁爬格 法 ) 蚂 ,去探 讨若 干组 合恒 等式 ,期望 能 帮 助 读 者体 会 具 体 问题 具 体 分 析 和 解 决 问题 多样 化 的思想 .

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法组合恒等式是组合数学中的重要概念,指的是形如$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$的等式。

这个等式表明,在$n$个元素中选择$k$个元素的方法数等于在$n-1$个元素中选择$k-1$个元素的方法数与选择$k$个元素的方法数之和。

在这篇文章中,我们将介绍六种常见的证明组合恒等式的方法。

方法一:基于组合的定义将组合数的定义应用到恒等式的两边可以得到证明。

根据组合数的定义,$\binom{n}{k}$表示从$n$个不同元素中选择$k$个元素的方法数,即$\binom{n}{k}=\frac{n!}{k!(n-k)!}$。

同样地,$\binom{n-1}{k-1}$表示从$n-1$个不同元素中选择$k-1$个元素的方法数,$\binom{n-1}{k}$表示从$n-1$个不同元素中选择$k$个元素的方法数。

可以利用这些定义将等式两边都表示成组合数的形式,然后将它们相减,最后通过化简得到恒等式的正确性。

方法二:递推法递推法是证明组合恒等式的常见方法之一、递推法的思想是,通过利用等式的递推关系,将一个组合数表示成另一个组合数的和的形式。

在这个例子中,等式$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$可以被看作是递推关系。

通过递推关系,我们可以将$\binom{n}{k}$表示成$\binom{n-1}{k-1}$和$\binom{n-1}{k}$的和的形式。

递推法的证明可以采用数学归纳法,从$n=1$和$k=1$的情况开始,递推到$n$和$k$的一般情况。

方法三:二项式定理二项式定理是一个重要的数学定理,可以用于证明组合恒等式。

二项式定理的表述是$(x+y)^n=\sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^k$。

在这个定理中,将$x$和$y$分别替换为$1$和$-1$,则可以得到组合恒等式的形式。

构造组合模型巧证组合恒等式

构造组合模型巧证组合恒等式

构造组合模型巧证组合恒等式导读:本文构造组合模型巧证组合恒等式,仅供参考,如果觉得很不错,欢迎点评和分享。

构造组合模型巧证组合恒等式证明组合恒等式,一般是利用组合数的性质、数学归纳法、二项式定理等,通过一些适当的计算或化简来完成。

但是,很多组合恒等式,也可直接利用组合数的意义来证明。

即构造一个组合问题的模型,把等式两边看成同一组问题的两种计算方法,由解的唯一性,即可证明组合恒等式。

例1证明Cnm=Cnm-1+Cn-1m-1.分析:原式左端为m个元素中取n个的组合数。

原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法。

一类为必取a1有Cn-1m-1种取法。

由加法原理可知原式成立。

例2证明Cnm·Cpn=Cpm·Cn-pm-p.分析:原式左端可看成一个班有m个人,从中选出n个人打扫卫生,在选出的n个人中,p人打扫教室,余下的n-p人打扫环境卫生的选法数。

原式右端可看成直接在m人中选出p人打扫教室,在余下的m-p人中再选出n-p人打扫环境卫生。

显然,两种算法计算的是同一个问题,结果当然是一致的。

以上两例虽然简单,但它揭示了用组合数的意义证明组合恒等式的一般思路:先由恒等式中意义比较明显的一边构造一个组合问题的模型,再根据加法原理或乘法原理对另一边进行分析。

若是几个数(组合数)相加的形式,可以把构造的组合问题进行适当分类,如例1,若是几个数(组合数)相乘的形式,则应进行适当的分步计算,如例2,当然,很多情况下是两者结合使用的。

例3证明Ckm+n=C0mCkn+C1mCk-1n+C2mCk-2n+…+CkmC0n,其中当p>q时Cpq=0.证明:原式左边为m+n个元素中选k个元素的组合数。

今将这m+n个元素分成两组,第一组为m个元素,剩下的n个元素为第二组,把取出的k个元素,按在第一组取出的元素个数i(i=0,1,2,…,k)进行分类,这一类的取法数为CimCk-in.于是,在m+n个元素中取k个元素的取法数又可写成-in.故原式成立。

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法
作者:赵文安
来源:《中学教学参考·中旬》 2013年第12期
甘肃会宁县郭城农业中学(730726)赵文安
组合恒等式的证明是学生学习排列组合与二项式定理这一部分内容时经常遇到的题型,其证法多种多样,灵活性强且有一定的难度.下面将给出在中学数学范围内六种常用的证明方法.
一、利用组合数的定义证明
【例1】证明Cmn+1=Cmn+Cm-1n(组合数性质2).
证明:从n+1个不同的元素a1,a2,…,an+1中取出m个的组合数是Cmn+1,这些组合可以分成两类:一类含有a1,一类不含a1.含有a1的组合是从a2,a3,…,an+1这n个元素中取出m-1个元素与a1组成的,共有Cm-1n个,不含a1的组合是从a2,a3,…,an+1这n个元素中取出m个元素组成的,共有Cmn个.根据分类计数原理,得
Cmn+1=Cmn+Cm-1n.
二、利用组合数计算公式证明
∴原式成立.
五、利用数学归纳法证明
【例5】证明C0n+C1n+1+C2n+2+…+Cm-1n+m-1=Cm-1n+m.
这说明当n=k+1时,等式也成立.
由(1)、(2)可知,等式对任何正整数n都成立.
六、利用复数的性质证明
以上介绍的六种方法,它们均以高中数学知识为基础,是证明组合恒等式的常用方法,当然证明组合恒等式还有其他的方法,限于篇幅,这里就不一一赘述了.
(责任编辑金铃)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
38
中学数 学
2006 年第6 期
初等数学
一个 有趣 的组合 恒 等式 猜想 的证明
435003 湖北省黄石二中 杨志明 叶济宇
= n 22 2 + ( 2。一 1)C}12[ 2 <2。一 1) 一 。一 , .一 2 ( 。一 1) ]
= n 22 2. 0-
在 第 三 届 全 国不 等 式 学 术 年 会 上 , 苏 江 的褚 小光老 师提 出 了如 下 猜 想 : n 2 . + (二一 1 ) 2 1 + (,一 2 ) 2 2 + … C2 C Cn
2n(2二 一1) 名Ck 2 s-2 -2
=
22 一 C,w ,
- - - - 二一 二

州 ti n . — 卜
_
22 , 2C ---' , "- 一 N

州 卜
2n ( 2 n 一 1 )
22 一 一 C2--z 一 2C'. 2, 。2 . : 2
[2+ 6 n(2 一 2-2- 含。+ n+ n 1)]2" 。。
12nq 刀1 + 2n ( 2,一 1) (C2 -1 + 2C2 22) J . 2
= (”+ 2 ) ( 2n + 1 ) 2" - ' _ 、 2 2 1 一 2C ,"- , "-1,

。 Ck 一2n(2。 艺C2一+ , 2 Z 。 一1) 二 、
2n(2。 一1) 艺Ck-2 2 a

(2“ 一1)C. 1C + 6 + ” 2(” 2育 + 一1)J
= (n 一 2 ) ( 2n + D 22 2 一 n-
1

, _
一 1 ) C. 公与 一 n 0u i 二 一 L n t i n ,
. 、 。一
, 。.
, , 。
一 1 )
(C .22 + ZC生 z) } } 2Cz--2
1 ) (” +
1)
CZ 刀2.
(收稿 日 :20050720) 期
艺ON+ 6n云Ck 7 r-1+ 2n(2n 一1) 艺Ck-2 -1 2 n -2 艺C2 + 6n习Ck一+ 2n(2n 一1) 艺C2一 Ck . 2, , 。 2
众 o E
孟今 0 乏今 0
。 Ck 一(2。 习kCk , z E 二 一1) 2 a+
艺k(k 一1)C2 .
、 Ck 一2n(2n 一1) 艺Ck-1+ , 2 Z 。 2 a -1
= ( 。+ 2 ) ( 2n + 1 ) 22 2 一 r_ 、。__ ,。 1 . _ 二 _ ‘、 ,
2n ( 2n 一 1 )
22 2 一 CZ_: 一 2Ci.Z2 "2
= [ ( 2n , 2n ( 2n 一 1) + n ( 2。一 1) ] 22 2 + 一 "代 . 一 , 4n kZn 二
= 习(。 k)2 . 一 C2
盛 o =
. - 1
证明
翻一 1
左边= 艺(k + 1)2 n CZ
几 0 =
艺(、一2nk + k2)Cz, ,
习[k(k 一1) + 3k + 1jCk 2 a
, 。 , 一2n云kCk 习k2 2 习CZ 2 a+ Ck .
名Ck 3Z kCZ 名‘ 一1)Cz z a+ a+ (k a
万kzn 一 1八.S 十 4n 一 1)U-- ,2 n一 i
( n + 2 ) ( 2n + 1 ) 2" - ' 一
( 2 n 一 1 ) ( 3n +

1 , _
_ 、, , . _

, 。. _ , 、
= n2" 合 n一 C.2 z-2+ [4(2 1)z :-1 1)C 2 '2 z
2n ( 2,一 1) C ". ': 一 2n ( 2,一 1) C 2 s .-'2 4 ( ,一 1 ) ( 2。一 1) C z. l 2) ]
n2 z + (,一 1) 2 , + (,一 2 ) 2 乳 Co . Ci C
C么+ … + 22 i.-2 + 12 1 = 。 22 2. C C; .-
= (”一 2) ( 2n + 1)
( 2, 一 1 ) O n +

22 2 一 .1)
1 ) ( 二+
C S _2. ;
+ … + 22 - 2+ 12 Cz. C护
+ 22 - 2 + 12 Cz. C2}1 = n
22 2. .-
类似 可 得 到 定理 2 12 CL + 22 y, + 32 2 + 一 + C Cn (n 一 1) 2 2 + n 2 s. 1 C} C0
经探 讨 发 现 , 猜 想 成 立 , 此 即有
定理 1
证明
. - 1
n2 + (二一1) 2 + (,一2) 2 Co Ci.
= 拄 ‘. .-
2 n 一 1 r , __,
.一 万 z
t ,‘2 二
22 一 e . "
二- - - - 一 2 刀CZn 一 2 + 2n ( 2,一 1 ) C" 12 .-' 2
寸~
+ 4 ( 。一 1 ) ( 2二一 1 )Ci.121
相关文档
最新文档