一元二次方程典型例题整理版

合集下载

一元二次方程典型例题整理版

一元二次方程典型例题整理版

一元二次方程典型例题整理版一元二次方程专题一:一元二次方程的定义典例分析:1.下列方程中是关于x的一元二次方程的是()2.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()3.关于x的一元二次方程(a-1)x²+x+a²-l=0的一个根是。

则a的值为( )4.若方程(m-1)x²+m·x=1是关于x的一元二次方程,则m的取值范围是。

5.关于x的方程(a+a-2)x+a·x+b=0是一元二次方程的条件是()专题二:一元二次方程的解典例分析:1.关于x的一元二次方程(a-2)x²+x+a²-4=0的一个根为-2,则a的值为。

2.已知方程x²+kx-10=0的一根是2,则k为-5,另一根是-8.3.已知a是x²-3x+1=0的根,则2a²-6a+3=0.4.若方程ax²+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是1和-1.5.方程(a-b)x²+(b-c)x+c-a=0的一个根为1,则另一个根为-b/c。

课堂练:1.已知一元二次方程x²+3x+m=0的一个根为-1,则另一个根为-2-m。

2.已知x=1是一元二次方程x²+bx+5=0的一个解,则b=-6,另一个根为-5.3.已知2y²+y-3=2,则4y²+2y+1=11/2,xy=-3/2.4.已知关于x的一元二次方程ax²+bx+c=(a≠0)的系数满足a+c=b,则此方程必有一根为1.专题三:一元二次方程的求解方法典例分析:1.直接开平方法:(1-x)²-9=0,解得x=-2或4.2.配方法:x²-2x+3>0,解得x∈(-∞,1)∪(3,+∞)。

难度训练:1.如果二次三项式x²-(2m+1)x+16是一个完全平方式,那么m的值是1.2.试用配方法说明x²-2x+3的XXX大于2.3.已知x²+y²+4x-6y+13=0,x、y为实数,求xy的值。

(完整版)一元二次方程计算题及答案

(完整版)一元二次方程计算题及答案

6X2-7X+1=06X2-7X=-1X2- ( 7/6)X+ ( 7/12 )2=-1 /6 +( 7/12 )2 (X-7 /12 )2=25 /144•••X-7 /12= ±5/12•••X1=1,X2=1/ 65X2-18=9X5X2-9X=18X2-1.8X=3.6(X-0.9 )2=4.41•••X-.9= ±2.1•••X1=3,X2=-1.24X 2-3X=52解:X2- ( 3/4 ) X=13(X-3 / 8 )2=13•••X-3 /8= ±29 /8•••X1=4,X2 =-13 / 45X 2=4-2X5X 2+2X=4X2+0.2X=0.8(X+0.1 )2 =0.81X+0.1= ±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x A2-9x+8=0 答案:x1=8 x2=1⑵ xA2+6x-27=0 答案:x1=3 x2=-9⑶ xA2-2x-80=0 答案:x仁-8 x2=10⑷ xA2+10x-200=0 答案:x1=-20 x2=10(5)xA2-20x+96=0 答案:x仁12 x2=8⑹xA2+23x+76=0 答案:x1=-19 x2=-4(7)xA2-25x+154=0 答案:x1=14 x2=11(8)xA2-12x-108=0 答案:x仁-6 x2=18(9)xA2+4x-252=0 答案:x1=14 x2=-18(10)xA2-11x-102=0 答案:x仁17 x2=-6(11)xA2+15x-54=0 答案:x1=-18 x2=3(12)xA2+11x+18=0 答案:x仁-2 x2=-9(13)xA2-9x+20=0 答案:x1=4 x2=5(14)xA2+19x+90=0 答案:x1=-10 x2=-9(15)xA2-x1=13 x2=1225x+156=0 答案:(16)xA2-22x+57=0 答案:x1=3 x2=19(17)xA2-5x-176=0 答案:x仁16 x2=-11(18)xA2-x1=7 x2=1926x+133=0 答案:(19)xA2+10x-11=0 答案:x1=-11 x2=1(20)xA2-3x-304=0 答案:x1=-16 x2=19(21)xA2+13x-x1=7 x2=-20140=0 答案:(22)xA2+13x-48=0 答案:x1=3 x2=-16(23)xA2+5x-176=0 答案:x1=-16 x2=11(24)x A2+28x+171=0 答案:x仁-9 x2=-19(25)x A2+14x+45=0 答案:x仁-9 x2=-5(26)xA2-9x-136=0 答案:x仁-8 x2=17(27)xA2-15x-76=0 答案:x仁19 x2=-4(28)xA2+23x+126=0 答案:x仁-9 x2=-14(29)xA2+9x-70=0 答案:x1=-14 x2=5(30)xA2-1x-56=0 答案:x1=8 x2=-7(31)xA2+7x-60=0 答案:x1=5 x2=-12(32)xA2+10x-39=0 答案:x1=-13 x2=3(33)xA2+19x+34=0 答案:x1=-17 x2=-2(34)xA2-6x-160=0 答案:x仁16 x2=-10(35)xA2-6x-55=0 答案:x仁11 x2=-5(36)xA2-7x-144=0 答案:x仁-9 x2=16(37)xA2+20x+5 仁0 答案:x仁-3 x2=-17(38)xA2-9x+14=0 答案:x1=2 x2=7(39)xA2-29x+208=0 答案:x1=16 x2=13(40)xA2+19x-20=0 答案:x1=-20 x2=1(41)xA2-13x-48=0 答案:x仁16 x2=-3(42)xA2+10x+24=0 答案:x仁-6 x2=-4(43)xA2+28x+180=0 答案:x1=-10 x2=-18(44)xA2-8x-209=0 答案:x1=-11 x2=19(45)xA2+23x+90=0 答案:x1=-18 x2=-5(46)x A2+7x+6=0 答案:x仁-6 x2=-1(47)x A2+16x+28=0 答案:x1=-14 x2=-2(48)xA2+5x-50=0 答案:x1=-10 x2=5(49)xA2+13x-14=0 答案:x1=1 x2=-14(50)xA2-23x+102=0 答案:x仁17 x2=6(51)xA2+5x-176=0 答案:x1=-16 x2=11(52)xA2-8x-20=0 答案:x仁-2 x2=10(53)xA2-16x+39=0 答案:x1=3 x2=13(54)xA2+32x+240=x1=-20 x2=-120 答案:(55)xA2+34x+288=x1=-18 x2=-160 答案:(56)xA2+22x+105=x仁-7 x2=-150 答案:(57)xA2+19x-20=0 答案:x1=-20 x2=1(58)xA2-7x+6=0 答案:x1=6 x2=1(59)xA2+4x-22 仁0 答案:x仁13 x2=-17(60)xA2+6x-9 仁0 答案:x1=-13 x2=7(61)xA2+8x+12=0 答案:x1=-2 x2=-6(62)xA2+7x-120=0 答案:x1=-15 x2=8(63)xA2-18x+17=0 答案:x1=17 x2=1(64)xA2+7x-170=0 答案:x1=-17 x2=10(65)xA2+6x+8=0 答案:x仁-4 x2=-2(66)x^2+13x+12=0 答案:x仁-1 x2=-12(67)xA2+24x+119=0 答案:x仁-7 x2=-17(68)x A2+11x-42=0 答案:x1=3 x2=-14(69)x A20x-289=0 答案:x仁17 x2=-17(70)xA2+13x+30=0 答案:x仁-3 x2=-10(71)xA2-24x+140=0 答案:x1=14 x2=10(72)xA2+4x-60=0 答案:x1=-10 x2=6(73)xA2+27x+170=0 答案:x1=-10 x2=-17(74)xA2+27x+152=0 答案:x1=-19 x2=-8(75)xA2-2x-99=0 答案:x仁11 x2=-9(76)xA2+12x+11=0 答案:x1=-11 x2=-1(77)xA2+17x+70=0 答案:x1=-10 x2=-7(78)xA2+20x+19=0 答案:x1=-19 x2=-1(79)xA2-2x-168=0 答案:x1=-12 x2=14(80)xA2-13x+30=0 答案:x1=3 x2=10(81)xA2-10x-119=0 答案:x仁17 x2=-7(82)xA2+16x-17=0 答案:x1=1 x2=-17(83)xA2-1x-20=0 答案:x1=5 x2=-4(84)xA2-2x-288=0 答案:x仁18 x2=-16(85)xA2-20x+64=0 答案:x仁16 x2=4(86)xA2+22x+105=0 答案:x仁-7 x2=-15(87)xA2+13x+12=0 答案:x仁-1 x2=-12(88)x^2-4x-285=0 答案:x仁19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x A2-17x+16=0 答案:x1=1 x2=16(91)x A2+3x-4=0 答案:x1=1 x2=-4(92)xA2-14x+48=0 答案:x1=6 x2=8(93)xA2-12x-133=0 答案:x仁19 x2=-7(94)xA2+5x+4=0 答案:x仁-1 x2=-4(95)xA2+6x-9 仁0 答案:x1=7 x2=-13(96)xA2+3x-4=0 答案:x仁-4 x2=1(97)xA2-13x+12=0 答案:x1=12 x2=1(98)xA2+7x-44=0 答案:x1=-11 x2=4(99)xA2-6x-7=0 答案:x仁-1 x2=7 (100)xA2-9x-90=0 答案:x仁15 x2=-6(101)xA2+17x+72=x仁-8 x2=-9 0 答案:(102)xA2+13x-14=0 答案:x1=-14 x2=1 (103)xA2+9x-36=0 答案:x1=-12 x2=3 (104)xA2-9x-90=0 答案:x仁-6 x2=15(105)xA2+14x+13=x仁-1 x2=-13 0 答案:(106)xA2-16x+63=0 答案:x1=7 x2=9 (107)xA2-15x+44=0 答案:x1=4 x2=11 (108)xA2+2x-168=0 答案:x1=-14 x2=12 (109)xA2-6x-216=0 答案:x1=-12 x2=18 (110)xA2-6x-55=0 答案:x仁11 x2=-5(111)x A2+18x+32=0 答案:x1=-2 x2=-16。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析一、单选题(共7题;共14分)1.如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC则由抛物线的特征写出如下结论()A. abc>0B. 4ac-b2>0C. a-b+c>0D. ac+b+1=02.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2﹣4ac<0C. a﹣b+c<0D. 2a+b=03.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.4.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为( )A. 27B. 23C. 22D. 185.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB 绕点O逆时针旋转90°,点B的对应点的坐标是()A. B. C. D.6.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A. B. 2 C. 2 D. (1+2 )二、填空题(共2题;共2分)8.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n 30 75 130 210 480 856 1250 2300发芽数m 28 72 125 200 457 814 1187 21850.9333 0.9600 0.9615 0.9524 0.9521 0.9509 0.9496 0.9500发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是________(结果精确到0.01). 9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是________.三、作图题(共1题;共5分)10.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.①画出关于原点成中心对称的,并写出点的坐标;②画出将绕点按顺时针旋转所得的.四、综合题(共13题;共178分)11.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.12.已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4)(1)求b,c满足的关系式(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式(3)若该函数的图象不经过第三象限,当-5sx≤1时,函数的最大值与最小值之差为16,求b的值13.已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.14.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?15.如图所示・二次函数的图像与一次函数的图像交于A、B两点,点B 在点A的右側,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图像的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.16.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标。

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。

一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是():A。

2x^2+11x-2=0B。

ax^2+bx+c=DC。

2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。

针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。

3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。

m=n=2B。

m=2.n=1C。

n=2.m=1D。

m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。

根的概念可用于求代数式的值。

典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。

例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。

一元二次方程配方法例题20道

一元二次方程配方法例题20道

一元二次方程配方法例题20道例题 1: 求解方程:x^2 - 5x + 6 = 0解法: 分解因式:(x - 2)(x - 3) = 0,所以 x = 2 或 x = 3。

例题 2: 求解方程:x^2 - 8x + 15 = 0解法: 分解因式:(x - 3)(x - 5) = 0,所以 x = 3 或 x = 5。

例题 3: 求解方程:x^2 + 7x + 12 = 0解法: 分解因式:(x + 3)(x + 4) = 0,所以 x = -3 或 x =-4。

例题 4: 求解方程:x^2 - 10x + 25 = 0解法: 分解因式:(x - 5)^2 = 0,所以 x = 5。

例题 5: 求解方程:x^2 + 6x + 8 = 0解法: 分解因式:(x + 2)(x + 4) = 0,所以 x = -2 或 x =-4。

例题 6: 求解方程:x^2 - 4x - 5 = 0解法: 分解因式:(x - 5)(x + 1) = 0,所以 x = 5 或 x = -1。

例题 7: 求解方程:x^2 - 2x - 3 = 0解法: 分解因式:(x - 3)(x + 1) = 0,所以 x = 3 或 x = -1。

例题 8: 求解方程:x^2 + 5x - 6 = 0解法: 分解因式:(x - 1)(x + 6) = 0,所以 x = 1 或 x = -6。

例题 9: 求解方程:x^2 - 7x + 12 = 0解法: 分解因式:(x - 3)(x - 4) = 0,所以 x = 3 或 x = 4。

例题 10: 求解方程:x^2 + 8x + 15 = 0解法: 分解因式:(x + 3)(x + 5) = 0,所以 x = -3 或 x =-5。

例题 11: 求解方程:x^2 - 9x + 20 = 0解法: 分解因式:(x - 4)(x - 5) = 0,所以 x = 4 或 x = 5。

例题 12: 求解方程:x^2 + 4x + 3 = 0解法: 分解因式:(x + 1)(x + 3) = 0,所以 x = -1 或 x =-3。

(完整版)一元二次方程经典习题及深度解析

(完整版)一元二次方程经典习题及深度解析

一元二次方程及解法经典习题及解析知识技能: 一、填空题:1.下列方程中是一元二次方程的序号是 .42=x ① 522=+y x ② ③01332=-+x x 052=x ④5232=+x x ⑤ 412=+x x⑥ x x x x x x 2)5(0143223-=+=+-。

⑧⑦ ◆答案:⑤④③①,,,◆解析:判断一个方程是否是一元二次方程,要根据一元二次方程的定义,看是否同时符合条件 ①含有一个未知数;②未知数的最高次数是③;2整式方程.若同时符合这三个条件的就是一元次方程,否则缺一不可.其中方程②含两个未知数,不符合条件①;方程⑥不是整式方程,lil 不符合条件③;方程⑦中未知数的最高次数是3次,不符合条件②;方程⑧经过整理后;次项消掉,也不符合条件②. 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a◆答案:5-=/◆解析:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数 的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程.◆答案:2±◆解析:方程05)3()4(22=+-+-x k x k 不是关于2的一元二次方程,则二次项系数.042=-k 故.2±=k4.解一元二次方程的一般方法有 , , , ·◆答案:直接开平方法;配方法;公式法;因式分解法 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: .◆答案:◆解析:此题不可漏掉042≥-ac b 的条件.6.(2004·沈阳市)方程0322=--x x 的根是 .◆答案:3.1-◆解析:.4)1(,412,032222=-=+-=--x x x x x 所以.3,121=-=x x7.不解方程,判断一元二次方程022632=+--x x x 的根的情况是 .◆答案:有两个不相等的实数根◆解析:原方程化为,02)26(32=++-x x,04864348234)]26([422>-=-=⨯-+-=-ac b.‘.原方程有两个不相等的实数根.8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .◆答案:425≤k ◆解析:‘..方程有实根,⋅≤∴≥-=-∴425,045422k k ac b 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.◆答案:43≥◆解析:..‘方程0)2()12(22=-+++m x m x 有实数根.⋅≥∴≥-=-+-++=--+=-∴43,0152016164144)2(4)12(42.2222m m m m m m m m ac b 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 .◆答案:无实根 ◆解析:,)2(4)44(4162044)4)(1(4)2(422242422222+-=++-=---=++--=-k k k k k k k k k ac b∴<-∴>+∴≥,04,02,0222ac b k k 原方程无实根. 二、选择题:11.(2004·北京市海淀区)若a 的值使得1)2(422-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2◆答案:C◆解析:,341441)2(222++=-++=-+x x x x x a 的值使得,3,341)2(4222=∴++=-+=++a x x x a x x 故C 正确.12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( )3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D◆答案:C ◆解析:方程x x 332-=-化为.0332=-+x x 故.3.3.1-===c b a 故C 正确. 13.方程02=+x x 的解是( )x A .=土1 0.=x B 1,0.21-==x x C 1.=x D◆答案:C◆解析:运用因式分解法得,0)1(=+x x 故.1,021-==x x 故C 正确.14.(2006·广安市)关于X 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )1.->k A 1.>k B 0.=/k C 1.->k D 且0=/k ◆答案:D◆解析:由题意知⎩⎨⎧>+=/.044,0k k 解得1->k 且.0=/k15.(2006·广州市)一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D◆答案:C16.解方程.251212;0)23(3)32(;0179;072222x x x x x x x =+=-+-=--=-④③②① 较简便的方法是( )A .依次为:开平方法、配方法、公式法、因式分解法B .依次为:因式分解法、公式法、配方法、直接开平方法①.C 用直接开平方法,②④用公式法,③用因式分解法 ①.D 用直接开平方法,②用公式法,③④用因式分解法 ◆答案:D17.(2004·云南省)用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D ◆答案:B18.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k◆答案:B◆解析:‘.‘方程有两个不相等的实根4)2(4,22--=-∴ac b(1,048)1()>-=-⨯-k k 2<∴k 且,1=/k 故B 正确.19.下列方程中有两个相等的实数根的方程是( )09124.2=++x x A 032.2=-+x x B 02.2=++x x C 072.2=-+x x D ◆答案:A◆解析:只有A 的判别式的值为零,故A 正确.20.(2004·大连市)一元二次方程0422=++x x 的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆答案:D◆解析:∴<-=⨯-=-,012442422ac b 方程没有实数根,故D 正确 21.下列命题正确的是( )x x A =22.。

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

一元二次方程的典型例题

一元二次方程的典型例题

一元二次方程的典型例题一元二次方程是数学中一种常见且重要的方程式,其形式为ax² + bx + c = 0(a ≠ 0)。

求解此类方程的方法有多种,包括因式分解法、配方法和公式法。

例题 1:因式分解法解方程:x² - 5x + 6 = 0步骤:1. 寻找两个数,它们的乘积为 6,和为 -5。

这些数为 -2 和-3。

2. 将方程分解为:x² - 2x - 3x + 6 = 03. 将前两项和后两项分别因式分解:x(x - 2) - 3(x - 2) = 04. 因式出 (x - 2):(x - 2)(x - 3) = 05. 令括号中的每一项都等于零:x - 2 = 0 或 x - 3 = 06. 求解每个方程:x = 2 或 x = 3例题 2:配方法解方程:x² + 6x + 8 = 0步骤:1. 将线性项系数的一半平方:3² = 92. 在方程两边加上 9:x² + 6x + 9 = 9 + 83. 左边是完全平方三项式:(x + 3)² = 174. 开方得x + 3 = ±√175. 移项并求解:x = -3 ± √17例题 3:公式法解方程:2x² - 5x - 3 = 0步骤:1. 确定 a、b 和 c:a = 2,b = -5,c = -32. 代入一元二次方程公式:x = (-b ± √(b² - 4ac)) / 2a3. 计算:x = (-(-5) ± √((-5)² - 4(2)(-3))) / 2(2)4. 简化:x = (5 ± √37) / 4总结一元二次方程的求解方法包括因式分解法、配方法和公式法。

每种方法都有其适用性,根据方程的具体形式选择合适的方法非常重要。

一元二次方程(经典例题)

一元二次方程(经典例题)

班级小组姓名成绩(成绩150)一、认识一元二次方程(一)一元二次方程定义(本组10分,共4小题,每题2.5分)例1.下列方程中是关于x 的一元二次方程的是().A.210x += B.21y x += C.210x += D.211x x+=例1变式1.下列方程中不是一元二次方程的是()A.2270x += B.2210x ++= C.2540x y ++= D.)23110x x +++=例1.变式2.下列方程中一定是一元二次方程的有().①23x =;②253(1)x x =-;③20ax bx c ++=;④2154x =;⑤()()252521x x x x -=+-;⑥24510x x-+=.A.2个 B.3个 C.4个 D.5个例1.变式3.若()2110a x --=是一元二次方程,则不等式20a -<的解集为()A.11a a <≠或 B.21a a <≠或 C.2a ≠ D.2a <(二)一元二次方程一般形式(本组10分,共4小题,每题2.5分)例2.把一元二次方程x x x 425)3(22-=-+化成一般形式,并指出它的二次项系数、一次项系数和常数项.例2.变式1.若关于x 的方程()()()0ax b d cx mac +-=≠的二次项系数是ac ,则常数项为()A.mB.bd- C.bd m- D.()bd m --例2.变式2.若方程014)2=++-mx x m m(是关于x 的一元二次方程,则=m .例2.变式3.当=m 时,关于x 的一元二次方程()()223920m x m x m +--++=的一次项系数为0.(三)一元二次方程的应用(本组10分,共4小题,每题2.5分)例3.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是()A.()24381389x += B.()23891438x += C.()38912438x += D.()43812389x +=例3.变式1.小明将500元压岁钱存入银行,参加教育储蓄,两年后本息共计615元,若设年利率为x ,则列方程为.例3.变式2.园丁用86米长的篱笆围了一块面积为432平方米的矩形园地,设园地的长为x 米,则宽为米,可列方程,化为一般形式为.例3.变式3.如下图所示,将边长为4的正方形,沿两边剪去两个边长为x 的矩形,剩余部分的面积为9,可列出方程为.(化简为一般形式)(四)一元二次方程的解(本组10分,共4小题,每题2.5分)例4.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值为()A.3-B.3C.0D.03或例4.变式1.已知关于x 的方程20x bx a ++=一个根为()0a a -≠,则a b -的值为()A.1-B.0C.1D.2例4.变式2.用22cm 长的铁丝,折成一个面积为15cm ²的矩形,设矩形一边长为x cm ,则x 的大致范围为()A.0x > B.01x << C.12x << D.23x <<例4.变式3.某大学为改善校园环境,计划在一块长80m 、宽60m 的长方形场地的中央建一个长方形网球场,网球场占地面积为3500m ²,四周为宽度相等的人行走道,如图所示,若设人行走道的宽为x m.(1)你能列出相应的方程吗?(2)x 可能小于0吗?说说你的理由;(3)x 可能大于40吗?可能大于30吗?说说你的理由;(4)你知道人行走道的宽x 是多少吗?二、用配方法求解一元二次方程(一)直接开平方法(本组10分,共4小题,每题2.5分)例5.用直接开平法解方程(1)223)8x +=((2)()()22142x x +=-例5.变式1.一元二次方程()212x -=的解是().A.1211x x =--=-+ B.1211x x =-=+ C.123,1x x ==- D.121,3x x ==-例5.变式2.若为a 方程(2100x -=的一根,b 为方程()2417y -=的一根,且,a b 都是正数,则a b -的值为().A.5B.6C. D.10-例5.变式3.如果方程()2230x m +-=有一个解是7x =,那么它的另一个解是.(二)完全平方式(本组10分,共4小题,每题2.5分)例6.如果多项式2121x mx ++能分解成一个二项式的平方的形式,那么m 的值为()A.11B.22C.11± D.22±例6.变式1.用配方法解下列方程时,配方有错误的是()A.()2229901100x x x --=-=化为B.()22890425x x x ++=+=化为C.227812740416t t t ⎛⎫--=-=⎪⎝⎭化为D.22210342039x x x ⎛⎫--=-= ⎪⎝⎭化为例6.变式2.用配方法解下列方程时,配方正确的是()A.方程2650x x --=,可化为()234x -=B.方程2220150y y --=,可化为()212015y -=C.方程2890a a ++=,可化为()2425a +=D.方程22670x x --=,可化为232324x ⎛⎫-=⎪⎝⎭例6.变式3.已知方程2260x x q -+=可以配方成()27x p -=的形式,那么2262x x q -+=可以配方成下列的()A.()25x p -= B.()29x p -= C.()229x p -+= D.()225x p -+=(三)配方法解一元二次方程(本组10分,共4小题,每题2.5分)例7.完成下列的解题过程:用配方法解方程:()22149x x -=+.解:整理,得;移项,得;二次项系数化为1,得;配方,得;开平方,得;1x =,2x =.例7.变式1.用配方法解一元二次方程(1)01992=+-x x (2)6)3)(1(=-+x x 例7.变式2.用配方法解一元二次方程(1)241210x x --=(2)2213x x+=例7.变式3.用配方法解关于x 的方程20x mx n ++=.(四)配方法的应用(本组10分,共4小题,每题2.5分)例8.某大学为了把一个长100m 、宽60m 的游泳池扩建成一个周长为600m 的大型水上综合运动场,把游泳池的长增加x m ,那么x 等于多少时,运动场的面积为20000m ²?例8.变式1.用配方法说明161232-+-x x 的值恒小于0;例8.变式2.试证明:无论x 取何实数值,代数式18822+-x x 的值不小于10.例8.变式3.已知直角三角形的三边,,a b c ,且两直角边,a b 满足等式()()222222150a b a b +-+-=,求斜边c 的值.三、用公式法求解一元二次方程(一)用公式法求解一元二次方程(本组10分,共4小题,每题2.5分)例9.方程2215x x -=的24b ac -的值为()A.39- B.33- C.17- D.33例9.变式1.()230c +=,试求方程20ax x c -+=的根.例9.变式2.用公式法解一元二次方程(1)2380x x --=(2)1)3(4532-+=+x x x x (3)22810y y +-=例9.变式3.先化简,再求值:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.(二)利用求根公式判断方程根的情况(本组10分,共4小题,每题2.5分)例10.用24b ac -的值判别一元二次方程根的情况.(1)2540x x --=(2)2476x x +=(3)2230x -+=例10.变式1.如果2112x +与2435x x --互为相反数,求x 的值.例10.变式2.关于x 的一元二次方程0432=+-x mx 有实数根,求m 的取值范围.例10.变式3.关于x 的方程0432=+-x mx 有实数根,求m 的取值范围.四、用因式分解法求解一元二次方程(本组10分,共4小题,每题2.5分)例11.用分解因式法解下列方程.(1)()()231213y y -=-(2)()()22419210x x +--=例11.变式1.用适当的方法解方程.(1)2315210x x x+=--(2)221290x x -+=例11.变式2.下列方程中不适合用因式分解法求解的是()A.()22210x x --= B.()88x x += C.()233x x x -=- D.254x x=例11.变式3.若一个三角形的边长均满足方程()()240x x --=,求此三角形的周长.五、一元二次方程根与系数的关系(1)一元二次方程根与系数的关系(本组10分,共4小题,每题2.5分)例12.一元二次方程230x kx +-=的一个根为1x =,则另一个根为()A.3B.1- C.3- D.2-例12.变式1.已知方程220x mx --=的两根互为相反数,则=m .例12.变式2.有两个不相等的实数根,且两根异号,其中正根绝对值大的方程是()A.2430x -= B.23548x x -+-= C.20.5430x x --= D.220x +-=例12.变式3.已知m 与n 是方程22630x x -+=的两根,(1)填空:m n +=;mn =;(2)计算11m n+的值.(2)根与系数的关系的综合运用(本组10分,共4小题,每题2.5分)例13.已知关于x 的方程()2223410x k x k k --+--=.(1)若这个方程有实数根求k 的取值范围;(2)若这个方程有一个根为1,求k 的值.例13.变式1.已知方程22210x kx k +-+=的两个实数根的平方和是294,求k 的值.例13.变式2.已知斜边长为5的直角三角形的两直角边,a b 的长是关于的一元二次方程()()221410x m x m --+-=的两个根,求m 的值.例13.变式3.关于x 的一元二次方程2210x x k +++=的实数根是1x 和2x .(注:12b x x a +=-,12cx x a=)(1)求k 的取值范围;(2)如果12121x x x x +-<-,且k 为整数,求k 的值.六、应用一元二次方程(一)用一元二次方程解决代数问题(本组10分,共4小题,每题2.5分)例14.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,则方程为()A.()()2241044x x x x +-=-+-B.()2241044x x x x ++=+--C.()()2241044x x x x ++=++-D.()()2241044x x x x ++=+--例14.变式1.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳This manuscript was revised by the office on December 22, 2012一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。

2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。

4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。

5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。

2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。

3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.3.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳一传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人;2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支;3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛;4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛;5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学6.7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人8.9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台二平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为 ;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是 ;3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率;4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.三商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.3.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R、P与x的关系式分别为R=500+30X,P=170—2X;1当日产量为多少时每日获得的利润为1750元2若可获得的最大利润为1950元,问日产量应为多少4.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元5.6.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元7.8.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克;另外,每天的房租等固定成本共24元;该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元9.6. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出350-10a件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件每件商品应定价多少四面积问题判断清楚要设什么是关键1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,两条直角边的长分别是 ;2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是 ;3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是 ;结果保留小数点后一位4.为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;5.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为 cm.6.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,所截去的小正方形的边长是 ;7.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了是元钱8.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为是 ;9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m;①鸡场的面积能达到150m2吗②鸡场的面积能达到180m2吗如果能,请你给出设计方案;如果不能,请说明理由;3若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用五动态几何问题例9 如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s 的速度移动.1如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米2点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.趣味问题一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗。

1元2次方程题型

1元2次方程题型

1元2次方程题型题型一:利润问题【常用公式】【例题】某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施。

经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?【解析】假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。

解:设每件衬衫应降价x元,根据题意,得(40- x)(20+2x)=1200解得X1=10,X2=20。

因尽快减少库存,故取x =20答:每件应降价20元。

题型二:利息问题【常用公式】【例题】某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行。

若存款的利率不变,到期后本金和利息共1320元。

求这种存款方式的年利率(本题不计利息税)?【解析】假设这种存款方式的年利率为x,2000元存一年后本息和为2000(1+x)元,支取1000元后,还剩[2000(1+x)-1000]元。

将所剩[2000(1+x)-1000]元再存入银行一年,到期后本息共1320元。

根据本息和=本金×(1+利率)等量关系可列出方程。

解:设这种存款方式的年利率为x。

根据题意得,[2000(1+x)-1000](1+ x)=1320整理可得:2000x2+3000x-320=0解得:x1=-1.6(舍去),x2=0.1=10%答:这种存款方式的年利率为10%。

题型三:与几何图形的面积问题①几何图形的面积问题【等量关系】面积公式是此类问题的等量关系。

【例题】如图1-1所示,某小区规划在一个“长为40m,宽为26m”的矩矩形场地A B C D上修建三条同样宽的道路,使其中两条与A B平行,另一条与A D平行,其余部分种草。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

一元二次方程应用题总结分类及经典例题

一元二次方程应用题总结分类及经典例题

一元二次方程应用题总结分类及经典例题(一)传播问题1.有一人得了流感,通过两轮传染后共有121人得了流感,每轮传染中平均一个人传染了个人。

2.某种植物的骨干长出假设干数量的支干,每一个支干又长出一样数量的小分支,骨干、支干和小分支的总数是91,每一个支干长出小分支。

3.参加一次足球联赛的每两队之间都进行两次竞赛,共竞赛90场竞赛,共有个队参加竞赛。

4.生物爱好小组的学生,将自己搜集的标本向本组其他成员各赠送一件,全组共互赠了182件,那个小组共有多少名同窗?5.某种电脑病毒传播超级快,若是一台电脑被感染,通过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?假设病毒得不到有效操纵,3轮感染后,被感染的电脑会可不能超过700台?(二)平均增加率问题转变前数量×(1 x)n=转变后数量1.青山村种的水稻2001年平均每公顷产7200千克,2003年平均每公顷产8450千克,水稻每公顷产量的年平均增加率为。

2.某种商品通过两次持续降价,每件售价由原先的90元降到了40元,求平均每次降价率是。

3.某药品经两次降价,零售价降为原先的一半,已知两次降价的百分率相同,求每次降价的百分率?4.为了绿化校园,某中学在2007年植树400棵,打算到2020年末使这三年的植树总数达到1324棵,求该校植树平均每一年增加的百分数。

(三)商品销售问题:售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发觉这种商品天天的销售量P(件)与每件的销售价X(元)知足关系:P=100-2X销售量P,假设商店天天销售这种商品要取得200元的利润,那么每件商品的售价应定为多少元?天天要售出这种商品多少件?2.西瓜经营户以2元/千克的价钱购进一批小型西瓜,以3元/千克的价钱出售,天天可售出200千克。

为了促销,该经营户决定降价销售。

一元二次方程解法例题

一元二次方程解法例题

一元二次方程解法例题一、配方法例题1. 例题:解方程x^2+6x + 4 = 0。

- 首先呢,我们要把这个方程变成完全平方式的样子。

对于x^2+6x这部分,我们知道完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=x,2ab = 6x,那b就是3。

- 我们就在方程两边加上3^2,同时为了保持等式成立,也要在右边减去3^2。

方程就变成了x^2+6x+3^2+4 - 3^2=0。

- 也就是(x + 3)^2+4 - 9 = 0,进一步得到(x + 3)^2=5。

- 然后呢,开平方可得x+3=±√(5)。

- 最后解得x=-3±√(5)。

2. 再看一个例子,解方程2x^2-5x+1 = 0。

- 先把二次项系数化为1,方程两边同时除以2,得到x^2-(5)/(2)x+(1)/(2)=0。

- 对于x^2-(5)/(2)x这部分,按照完全平方公式,2ab =-(5)/(2)x,a = x,所以b=-(5)/(4)。

- 方程两边加上(-(5)/(4))^2,同时右边也要减去(-(5)/(4))^2,就变成x^2-(5)/(2)x+(-(5)/(4))^2+(1)/(2)-(-(5)/(4))^2=0。

- 也就是(x-(5)/(4))^2+(1)/(2)-(25)/(16)=0,化简得到(x-(5)/(4))^2=(25)/(16)-(8)/(16)=(17)/(16)。

- 开平方得x-(5)/(4)=±(√(17))/(4)。

- 解得x=(5±√(17))/(4)。

二、公式法例题1. 例题:解方程x^2-3x - 4 = 0。

- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-3,c = - 4),有个求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 先算判别式Δ=b^2-4ac,把a = 1,b=-3,c = - 4代入,得到Δ=(-3)^2-4×1×(-4)=9 + 16=25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程专题一:一元二次方程的定义典例分析:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .2-≠mD .2±≠m3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。

则a 的值为( )A 、 1B 、-lC 、 1 或-1D 、 124、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

5、关于x 的方程0)2(22=++-+b ax x a a 是一元二次方程的条件是( )A 、a ≠1B 、a ≠-2C 、a ≠1且a ≠-2D 、a ≠1或a ≠-2专题二:一元二次方程的解典例分析:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。

5、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -课堂练习:1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根.3、已知322-+y y 的值为2,则1242++y y 的值为 。

4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

专题三:一元二次方程的求解方法典例分析:一、直接开平方法();0912=--x二、配方法.难度训练:1、如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是_______________.2、试用配方法说明322+-x x 的值恒大于0。

3、已知,x、y y x y x 0136422=+-++为实数,求y x 的值。

4、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

三、公式法1、0822=--x x2、01522=+-x x四、因式分解法1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x五、整体思维法例:()()=+=-+-+2222222,06b 则a b ab a 。

变式1:若()()032=+--+y x y x ,则x+y 的值为 。

变式2:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。

变式3:已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。

专题四:一元二次方程中的代换思想(降次)典例分析:1、已知0232=+-x x ,求代数式()11123-+--x x x 的值。

2、如果012=-+x x ,那么代数式7223-+x x 的值。

3、已知βα,是方程012=--x x 的两个根,那么=+βα34 .4、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。

专题五:根的判别式典例分析:1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

2、关于X 的方程0162=+-x kx 有两个不相等的实数根,则k 的取值范围是( )A 、k >9B 、k <9且k ≠0C 、k <9D 、k ≤9且k ≠0 3、关于x 的一元二次方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m 4、对于任意实数m ,关于x 的方程一定( )A. 有两个正的实数根B. 有两个负的实数根C. 有一个正实数根、一个负实数根D. 没有实数根课堂练习:1、已知关于x 的方程02)12(22=++++m x m x 有两个不等实根,试判断直线x m y )32(-=74+-m 能否通过A (-2,4),并说明理由。

2、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。

3、已知关于x 的方程有两个相等的正实数根,则k 的值是( ) A.B.C. 2或D.4、已知a 、b 、c 为ABC ∆的三边,且关于x 的一元二次方程()()()04322=---++c a x c a x b c 有两个相等的实数根,那么这个三角形是 。

5、如果关于x 的方程()05222=+++-m x m mx 没有实数根,那么关于x 的方程()()02252=++--m x m x m 的实根个数是 。

6、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。

专题六:根与系数的关系(韦达定理)典例分析:一、常见变形1、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y3、甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8和2,乙看错一次项系数,解得两根为-9和-1,则这个方程是4、已知m 、n 是方程0719992=++x x 的两个根,则=++++)82000)(61998(22n n m m ( ) A 、1990 B 、1992 C 、-1992 D 、19995、方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________.6、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

7、设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( ) A.32-B.—2C.92D.—928、设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .9、若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .10、已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或特殊技巧:1、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:若0122=--a a ,0122=--b b ,则abb a +的值为 。

变式:已知实数a 、b 满足b b a a 22,2222-=-=,且a ≠b ,求abb a +的值。

变式:若ab ≠1,且有0520119092011522=++=++b b a a ,求ba 的值。

变式:若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1111--+--b a a b 的值是( )A 、-20B 、2C 、2或-20D 、21大题突破:1、已知一元二次方程(1)当m 取何值时,方程有两个不相等的实数根? (2)设是方程的两个实数根,且满足,求m 的值。

2、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x , (1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不 存在,请说明理由。

3、已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =. 4、已知关于x 的一元二次方程2(41)210x m x m +++-=.(1) 求证:不论为任何实数,方程总有两个不相等的实数根;(2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值. 5、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.6、已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.巩固提高:1、(2010•南充)关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根. 2、(2011•南充)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2. (1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。

3、(2012•南充)关于x 的一元二次方程x 2+3x+m ﹣1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.4、(2013四川南充,20,8分)关于x 的一元二次方程为(m-1)x 2-2mx +m+1=0 (1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?根.(1)求实数m 的最大整数值;(2)在(1)的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值.6、已知关于x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求242(1)4a a a++⋅-的值。

7、已知关于x 的方程()0132=++-kx x k 。

相关文档
最新文档