第2章 自动控制系统的数学模型

合集下载

自动控制理论-第二章 控制系统的数学模型

自动控制理论-第二章 控制系统的数学模型
a y+a
(n) 0 (m) 0 ( n −1 ) 1
y +L+ a y + a y &
n −1 n m −1
=b x+b
( m −1 )
1
Y (s) b s + b s + L + b s + b 两边拉氏变换 G ( s ) = = X (s) a s + a s + L + a s + a x +L+ b x + b x &
4 微分环节 微分环节的传递函数为:
G(s) = C (s) = Ts R( s)
5 二阶环节
二阶环节又称为振荡环节,其的传递函数为
G (s) =
6 延迟环节
G(s) =
C (s) K = R( s) T s + s + 1
2 2
延迟环节的传递函数为:
C ( s) =e R( s)
−τs
第四节 用方块图表示的模型
2
由此可得
X (s) = 1 1 1 1 = = − s + 5s + 4 ( s + 1)( s + 4) 3( s + 1) 3( s + 4)
2
再对 X ( s) 进行逆拉氏变换,可得
e e x(t ) = − 3 3
−t −4 t
第二节 系统输入-输出的传递函数描述
• 传递函数是在控制理论中表示定常系统输入输出关 系的最常用方法,一般只适用于线性定常系统。 • 线性定常系统的传递函数,定义为初始条件为零时, 输出量的拉普拉氏变换与输入量的拉普拉氏变换之比。 • 微分方程与传递函数转变关系:

自动控制系统的数学模型

自动控制系统的数学模型
[线性定常系统和线性时变系统]:可以用线性定常(常系数)微分方程描述 的系统称为线性定常系统。如果描述系统的微分方程的系数是时间的函数, 则这类系统为线性时变系统。
宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的质量随着燃料 的消耗而变化)。
[非线性系统]:如果不能应用叠加原理,则系统是非线性的。
下面是非线性系统的一些例子:
d2x dt 2
( dx)2 dt
x
Asin t,
d2x dt 2
(x2
1)
dx dt
x
0,
d2x dt 2
dx dt
x
x3
0
古典控制理论中(我们所正在学习的),采用的是单输入单输出描述方 法。主要是针对线性定常系统,对于非线性系统和时变系统,解决问题的能 力是极其有限的。
Tm
Ra J CeCm
分别称为电磁时间常数和机电时间常数
Ku
1 Ce

Km
Ra CeCm
分别是转速与电压传递系数和转速与负载
传递系数。这里已略去摩擦力和扭转弹性力。
3.线性系统微分方程的编写步骤:
⑴确定系统和各元部件的输入量和输出量。 ⑵对系统中每一个元件列写出与其输入、输出量有关的物理的方程。
⑶对上述方程进行适当的简化,比如略去一些对系统影响小的次要因素, 对非线性元部件进行线性化等。
4、线性方程的求解:
研究控制系统在一定的输入作用下,输出量的变化 情况。方法有经典法,拉氏变换法和数字求解。 在自动系统理论中主要使用拉氏变换法。
[拉氏变换求微分方程解的步骤]: ①对微分方程两端进行拉氏变换,将时域方程转换为s域的代数方程。 ②求拉氏反变换,求得输出函数的时域解。
M c 上的负载转矩Mc,输出是转速

自控原理课件 第2章-自动控制系统的数学模型

自控原理课件  第2章-自动控制系统的数学模型

第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即

自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数

自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数
(1)单位脉冲 (2)单位阶跃 (3)单位斜坡 (4)单位加速度 (5)指数函数 (6)正弦函数 (7)余弦函数
f (t)
(t)
1(t )
t t2 2
e at
sin t cos t
F (s)
1
1s 1 s2 1 s3
1 (s a)
(s2 2) s (s2 2)
2.2 线性定常微分方程的求解 拉普拉斯反变换:部分分式展开法
时域 差分方程
解析式模型
状态方程
复域
传递函数 结构图-信号流图
图模型
频域 频率特性
数学模型是一个反应变量之间关系的表达式,在不同的域中有不同的表现形式!
1.引言
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(例如阶跃信号、单位脉冲信号、正弦信 号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
k 1 v n1
s
l 1 n2
(Ti s 1)

(T
2 j
s2

2Tj
s

1)
i 1
j 1
适用于 频域分

3.2 传递函数的基本概念 传递函数的标准形式
K:增益
K*=根轨迹增益
K与K*的关系:
两者关系
m
zj
K K*
j 1 n
pi
i 1
3.3 典型环节及其传递函数
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子就称为典型环节。常见 的几种形式有:
Y (s)
R(s)
Y (s)

02 自动控制原理—第二章

02 自动控制原理—第二章
Tm J
Tm
d dt
K u u a K m (Ta
dM c dt
Mc)
电感La较小,故电磁时间常数Ta可以忽略 ,则
Tm
d dt
K uua K m M c
如果取电动机的转角 (rad)作为输出,电枢电压ua (V),考 虑到 d ,可将上式改写成
2.举例 ①一个自变量:励磁电流成正 比,但if增加到某个范围后,磁路饱和,发电机的电势与励磁电流呈 现一种连续变化的非线性函数关系。 设:x—励磁电流, y—发电机的输出电势。 y=f(x)
设原运行于某平衡点(静态工作点) A点:x=x0 , y=y0 ,且y0=f(x0) B点:当x变化△ x, y=y0+△ y 函数在(x0 , y0 )点连续可微,在A 点展开成泰勒级数,即
y k x
df ( x ) k dx x x0
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f y f ( x10 , x 20 ) ( x1 x10 ) ( x 2 x 20 ) ( x1 x10 ) 2 ( x1 x10 )( x 2 x 20 ) ( x 2 x 20 ) 2 2 2 x 2! x x 2 x1x 2 x 2 1 1
例2-2
解 设回路电流i1和i2为中间变量。根据基尔霍夫电压定律对前一回 路,有
u i R1i1
对后一回路,有
1 C1
(i
1
i 2 ) dt
1 C2

自动控制系统的数学模型

自动控制系统的数学模型
(3)消去中间变量后得到描述输出量与输入量(包括扰动量) 关系的微分方程,即元件的数学模型。
注:通常将微分方程写成标准形式,即将与输 入量有关的各项写在方程的右边,与输出量有 关的各项写在方程的左边。方程两边各导数项 均按降阶顺序排列。
2.1.1 机械系统
• 机械系统指的是存在机械运动的装置,它们遵循物理学的力 学定律。机械运动包括直线运动(相应的位移称为线位移) 和转动(相应的位移称为角位移)两种。
2.为什么要建立数学模型:对于控制系统的性能,只 是定性地了解系统的工作原理和大致的运动过程是不 够的,希望能够从理论上对系统的性能进行定量的分 析和计算。要做到这一点,首先要建立系统的数学模 型。它是分析和设计系统的依据。
另一个原因:许多表面上看来似乎毫无共同之 处的控制系统,其运动规律可能完全一样,可以 用一个运动方程来表示,我们可以不单独地去研 究具体系统而只分析其数学表达式,即可知其变 量间的关系,这种关系可代表数学表达式相同的 任何系统,因此需建立控制系统的数学模型。
黑盒
输出
但实际上有的系统还是了解一部分的,这时称为灰盒, 可以分析计算法与工程实验法一起用,较准确而方便地建立 系统的数学模型。
实际控制系统的数学模型往往是很复杂的,在一般情况 下,常常可以忽略一些影响较小的因素来简化,但这就出现 了一对矛盾,简化与准确性。不能过于简化,而使数学模型 变得不准确,也不能过分追求准确性,使系统的数学模型过 于复杂。一般应在精度许可的前提下,尽量简化其数学模型。
TmddtKuuaKmM c
TmddtKuuaKmM c
如 果 取 电 动 机 的 转 角 θ ( rad ) 作 为 输 出 , 电 枢 电 压 ua
md2xFf dxkx
dt2

自动控制原理_第二章

自动控制原理_第二章

Gk ( s) G ( s) H ( s)
B( s) G1 ( s)G2 ( s) H ( s) E ( s)
注意:这里的开环传递函数是针对闭环系统而言的,而不是指开环系 统的传递函数。
解:首先对小车进行受力分析,在水平方向应 用牛顿第二定律可写出:
dy(t ) d 2 y (t ) F (t ) f Ky (t ) m dt dt 2

2
T
m f , 可得 K 2 mK
图2 弹簧-质量-阻尼器系统图
d 2 y( t ) dy(t ) F (t ) T 2 T y ( t ) dt 2 dt K
用解析法列写系统或元部件微分方程的一般步骤是:
(1)根据系统的具体工作情况,确定系统或元部件的输
入、输出变量;
(2)从输入端开始,按照信号的传递顺序,依据各变量 所遵循的物理(或化学)定律,列写出各元部件的动态方程, 一般为微分方程组; (3)消去中间变量,写出输入、输出变量的微分方程; (4)将微分方程标准化。即将与输入有关的各项放在等 号右侧,与输出有关的各项放在等号左侧,并按降幂排列。
以工作点处的切线代替曲线,得到变量在工作点的增量方程, 经上述处理后,输出与输入之间就成为线性关系。
二、复频域模型 – 传递函数
(1)利用时域卷积获得:
如果已知系统单位脉冲响应为g(t),则任意输入r(t)的响应输出c(t):
c( t )


r ( ) g(t )d
c(t ) r ( ) g(t )d
0 t
考虑到物理可实现性,上式改为: 对上式做拉氏变换得:
C ( s) R( s)G( s) G( s)
C ( s) R( s )

自动控制原理:第二章 控制系统数学模型

自动控制原理:第二章  控制系统数学模型

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

自动控制原理第二章自动控制原理控制系统的数学模型

自动控制原理第二章自动控制原理控制系统的数学模型

第二章 控制系统的数学模型2-1 控制系统的时域模型一、建立系统微分方程的基本步骤(P23,第二自然段):⑴ 分析系统工作原理、各变量之间的关系,确立系统的输入变量和输出变量; ⑵ 依据支配系统工作的基本规律,逐个列写出各元件的微分方程;⑶ 消去中间变量,列写出只含有输入和输出变量以及它们的各阶导数的微分方程; ⑷ 将方程写成规范形式。

例2-1:系统输入i u ,输出o u ;从输入到输出顺序列写各元件方程, td id Lu L =,i R u R =,⎰=t id C u o 1,及o R L i u u u u ++=利用输出电压与回路电流的关系消去中间变量,t d u d C i o =,22t d u d C t d id o =;o o o i u t d u d RC td u d LC u ++=22 写成规范的微分方程(标准形式):i o o o u u td u d RC t d u d LC =++2;或 i o u u p T p T =++)1(221,其中LC T =1,RC T =2,t d dp =。

“系统初始条件均为零”是指在零时刻以前系统的输入和输出及他们的各阶导数均为零。

在复数域,复变量s 对应微分算子,而s /1对应积分运算。

“输出对输入的响应” 是指,初始条件为零时,系统输出的运动情况。

因此,可以直接列写控制系统在复数域的方程。

就本例而言有:)()(s sI L s U L =,)()(s I R s U R =,)(1)(s I sC s U o =,及 )()()()(s U s U s U s U o R L i ++=; 消去中间变量)()(s U s C s I o ⋅=,得()()1(221U s U s T s T i o =++例2-2:系统输入F ,输出x ;力平衡方程:)()()()(2s X K s f s F s X ms +-=;整理得,)()()(2s F s X K s f ms =++。

自动控制系统的数学模型

自动控制系统的数学模型

i1 nN
• K为系统增益或开环S N 放j1 (大S 倍Pj ) 数,
第二章 自动控制系统的数学模型
• 分子多项式根,系统零点(开环), • 分母多项式根,系统极点(开环)。
m
K Ti
Kg
i1 nN
Tj
j1
第二章 自动控制系统的数学模型
• 三、关于传递函数,有如下几点说明: • ⑴ 传递函数表征了系统对输入信号的传递
第二章 自动控制系统的数学模型
• 2.3 典型环节传函分析 • 自动控制系统是由不同功能的元器件构成
的。从物理结构上看,控制系统的类型很 多,相互差别很大,似乎没有共同之处。 在对控制系统进行分析研究时,我们更强 调系统的动态特性。具有相同动态特性或 者说具有相同传递函数的所有不同物理结 构,不同工作原理的元器件,我们都认为 是同一环节。
dt t0
Tc
T t0
c
• 可从图上求出 Tc
第二章 自动控制系统的数学模型
• 过渡过程时间,根据定义,为输出到达稳 定值的95%(98%)所需的时间。 Ts=3T(Ts=5T)
• 一个流出水箱的水流量由阀门控制的蓄水 箱就是一个惯性环节的实例。无源RC网络、 单溶液槽、盲室压力系统和无套管热电偶 系统等也都是典型的惯性环节。
第二章 自动控制系统的数学模型
• 建立数学模型的目的有如下几点: • 1.可以定量分析系统动静态性能,看是否能
满足生产工艺要求。 • 2.可以用于定量的控制计算,对系统行为进
行预测,并加以控制。控制精度与模型精度 有关。 • 3.利用模型可以进行有关参数的寻优
第二章 自动控制系统的数学模型
• 建模的方法大概有三种: • 1.机理分析法(适用于机理已知的系统),也

自动控制原理第2章

自动控制原理第2章
传递函数是在拉氏变换基础上的复域中的数学模型。
※传递函数不仅可以表征系统的动态特性,而且可以
用来研究系统的结构或参数变化对系统性能的影响。
微分方程 t (时域)
L
L
1
F
F 1
系统
传递函数
s j
j
频率特性
s
(复域)

s
(频域)
2.3.1拉氏变换相关知识
2.3.2传递函数的定义
线性定常系统在零初始条件下,输出量的拉氏变换
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f 2 ( x1 x10 ) 2 y f ( x10 , x20 ) ( x1 x10 ) ( x2 x20 ) ( x1 x10 )(x2 x20 ) 2 ( x2 x20 ) 2 x 2! x x2 x1x2 x2 1 1
例2.5试建立如图2.4所示系 统的微分方程。
R1
解:根据克希霍夫电压定律, 可写出下列方程组
u1
R2
ur
i1
C1 图2.4
i2
C2
uc
1 ur R1i1 C (i1 i2 )dt 1 1 1 (i1 i2 )dt R2i2 i2 dt C2 C1 1 uc i2 dt C2
用台劳级数展开为
df ( x) 1 d 2 f ( x) y f ( x) f ( x0 ) ( ) x 0 ( x x0 ) ( ) x 0 ( x x0 ) 2 ... dx 2! dx 2

第二章自动控制系统的数学模型

第二章自动控制系统的数学模型

第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。

本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。

内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。

为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。

而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。

这种描述系统各变量之间关系的数学表达式称为系统的数学模型。

系统数学模型的建立主要有解析法和实验法。

解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。

如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。

系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。

第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。

当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。

一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。

2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。

联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。

3.将方程整理成标准形式。

即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。

二、举例说明例2-1求图2-1所示RC网络的微分方程。

解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。

自控第二章

自控第二章

Fi 0
式中:Fi是作用于质量块上
f
的主动力,约束力以及惯性
力。
将各力代入上等式,则得
K M y(t)
d2 y(t) dy(t) m dt2 f dt Ky(t) F (t)
(2 1 6)
式中:y——质量块m的位移(m);
f——阻尼系数(N·s/m);
K ——弹簧刚度(N/m)。
将式(2-1-6)的微分方程标准化
加若干倍,这就是叠加原理。
2-3 传递函数
传递函数的定义:
线性定常系统在零初始条件下,输出
的拉氏变换与输入的拉氏变换之比。
•传递函数是在拉氏变换基础上引申出来的复数域数 学模型。传递函数不仅可以表征系统的动态特性, 而且可以用来研究系统的结构或参数变化对系统性 能的影响。经典控制理论中广泛应用的根轨迹法和 频域法,就是以传递函数为基础建立起来的。因此 ,传递函数是经典控制理论中最基本也是最重要的 数学模型.
自动控制原理
第二章 自动控制系统的数学模型
第二章 自动控制系统的数学模型
主要内容 2-1 控制系统微分方程的建立 2-2 非线性微分方程的线性化 2-3 传递函数 2-4 动态结构图 2-5 系统的脉冲响应函数 2-6 典型反馈系统传递函数
基本要求 1.了解建立系统动态微分方程的一般方法。 2.熟悉拉氏变换的基本法则及典型函数的拉 氏变换形式。 3.掌握用拉氏变换求解微分方程的方法。 4.掌握传递函数的概念及性质。 5.掌握典型环节的传递函数形式。
K s
1 Ts
K——比例系数 T——积分时间常数
可以应用在一些信号转换电路上,比如关于X轴对称的方波 经过积分电路处理后,输出三角波。
3.微分环节
• 理想的微分环节,其输出与输入量的导数成比例。

自动控制原理第二章

自动控制原理第二章

1 ui (t ) 1(t ), U i ( s) s Ui 0.1s 0.2 1 1 u0 (t ) L [U 0 ( s )] L [ 2 2 ] s s 1 s s 1 1 0.1s 0.2 1 L [ 2 ] 2 s ( s s 1) s s 1
m=10, f=1, k=1
m=10, f=1, k=5
输入: Fi 1(t )
m=10, f=1, k=1
m=10, f=1, k=5
相似系统
RLC无源网络和弹簧-质量-阻尼器机械系 统的数学模型均是二阶微分方程,为相似 系统。 相似系统便于用一个简单系统去研究与其 相似的复杂系统,也便于控制系统的计算 机数字仿真。
化的过程。
4、线性系统的基本特性 叠加性:系统在几个输入信号同时作用 下的总响应,等于这几个输入信号单独 作用的响应之和。
如果元件输入为: r1(t)、r2(t)、r(t) ,
对应的输出为: c1(t)、c2(t)、c(t) 。
如果 r(t)=r1(t)+r2(t) 时, c(t)=c1(t)+c2(t) 满足叠加性。

满足齐次性。
满足叠加性和齐次性的元件才是线性元件
例如 y=kx 是线性元件
输入 x1 输出 y1=kx1 x2 输入x1 +x2 C为常数, Cx1 y2=kx2 y1 + y2 满足迭加性 Cy1 满足齐次性
所表示的元件 为线性元件
线性方程不一定满足迭加性和齐次性
y=kx+b(b为常数 0)线性方程,所表示的元件不是 线性元件 . 输入 x1y1 输出 y1= kx1+b x2 y2 y2 =kx2+b 输入 x1 + x2 输出 y=k(x1 + x2)+b =k x1 +kx2+b y1 +y2 不满足迭加性 k为常数 :kx1输出y=k(kx1)+b=k2x1+b ky1=k(kx1+b)= k2x1+kb yky1 不满足齐次方程。 所表示的元件不是线性元件。

自动控制原理(数学模型)精选全文完整版

自动控制原理(数学模型)精选全文完整版

ur
获得微分方程的步骤
1.根据各元件的工作原理及其在控制系统中的作用,确定输入、输 出。
2.根据元件的工作原理,列出相应的微分方程。 3.消去中间变量,得到输出、输入之间关系的微分方程。
控制系统微分方程的建立: 控制系统的微分方程和前面没有什么区别,但是 一般来说控制由许多子系统组成: 1.一级一级传送; 2.前后两个连接的两个元件中,后级对前级有否负载效应。
i: 特征根(极点) ei:t 相对于i 的模态
用留数法分解部分分式
一般有 设
F(s)
B(s) A( s )
bm s m ansn
bm 1s m 1 ... b0 an1sn1 ... a0
(n m)
A( s) an s n an1s n1 ... a0 ( s p1 )( s p2 ) ( s pn )
电磁力矩: M m cm i
— 安培定律
力矩平衡: J m m fmm M—m 牛顿定律
m m
消去中间变量 i, Mm , Eb 可得:
Tm m m K m ur
Tmm m K m ur
Tm J m R /( R fm ce cm K m cm /( R fm ce cm )
lim df (t) estdt lim s F (s) f (0)
s0 0 dt
s0
左 df (t) limestdt 0 dt s0
t
df (t) lim df (t)
0
t 0
lim f (t) f (0) 右 lims F(s) f (0)
t
s0
例11 F (s)
t 0
s
证明:由微分定理 df (t) estdt s F (s) f (0)

自动控制原理-控制系统的数学模型可编辑全文

自动控制原理-控制系统的数学模型可编辑全文
23
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn

《自动控制原理》第2章自动控制系统的数学模型

《自动控制原理》第2章自动控制系统的数学模型

dt
t 0
[
d
nf dt
(t
n
)
]
snF(s)
sn1
f
(0)
sn2
f
(1) (0)...
f
(n1) (0)
定理4 积分定理
2021年2月
t
[
f ( )d ] F (s)
0
s
自动控制原理
定理6 初值定理
设F(s)为f(t)的拉氏变换,且
lim
s
sF
(s)
存在
lim f (t) lim sF(s)
实验求取
2021年2月
自动控制原理
例2-1试列写图2-1所示电路
输入量 u r (t) 与输出量 u c (t) 的微分方程。
1. 确定输入、输出量 2. 列写与输入、输出有
关的微分方程
L
di(t) dt
Ri(t)
u
c
(t)
u
r
(t)
i(t) C du c (t)
dt
3. 消去中间变量
LC
d
2u c (t) dt 2
G(s) Ks1 Ks2 ... Ksn
s s1 s s2
s sn

Ks1 [(s
….
si )G(s)]ss1
(s2
Q( s1 ) s1)(s3 s1)...(sn
s1)
2021年2月
自动控制原理
例:已知函数
1 设因式展开为 G(s) s(s 1)3 (s 2)
G(s) K1 K2 K3 K4 K5 s s 2 s 1 (s 1)2 (s 1)3
u(c’t)
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。
自动控制理论以自动控制系统为研究对象, 无论是对控制系统进行分析还是对校正装置进 行综合,都需要建立控制系统的数学模型。 所谓数学模型是指能够描述系统变量之间 关系的数学表达式。工程系统一般都是动态系 统,时域内连续时间集中参数系统的数学模型 是反映系统输入量和输出量之间关系的微分方 程。
描述控制系统输入、输出变量以及内部各 变量之间关系的数学表达式,称为系统的数 学模型。常用的数学模型有微分方程、差分 方程、传递函数、脉冲传递函数和状态空间 表达式等。建立合理的数学模型,对于系统
5.传递函数式可表示成
( s z1 )( s z 2 ) ( s z m ) G ( s ) Kg ( s p1 )( s p 2 ) ( s p n )
式 中 p1,p2……pn 为 分 母多项式的根,称为传 递 函 数 的 极 点 ; z1、 z2、… zn 为分子多项式
R(s)
G(s)
C(s)
2.2.2 传递函数的特点
1.作为一种数学模型,传递函数只适用于线性 定常系统,这是由于传递函数是经拉普拉斯变 换导出的,而拉氏变换是一种线性积分运算。
2.传递函数是以系统本身的参数描述的线性定 常系统输入量与输出量的关系式,它表达了系 统内在的固有特性,只与系统的结构、参数有 关,而与输入量或输入函数的形式无关。
3.传递函数可以是无量纲的,也可以是有量纲的, 视系统的输入、输出量而定,它包含着联系输入量 与输出量所必须的单位,它不能表明系统的物理特 性和物理结构。许多物理性质不同的系统,有着相 同的传递函数,正如一些不同的物理现象可以用相 同的微分方程描述一样。 4.传递函数只表示单输入和单输出(SISO)之间的关 系,对多输入多输出(MIMO)系统,可用传递函数 阵表示。
的分析研究是至关重要的。系统数学模型的
建立,一般采用解析法或实验法。
以数学模型为依据控制系统可以被分 类为连续系统和离散(时间)系统、线性 系统和非线性系统、定常系统和时变系统 等。控制系统的数学模型不是惟一的,根 据不同的建模目的可以建立不同的数学模 型,即使对于相同的建模目的也可以建立 不同形式的数学模型,对于工程上常见的 线性定常连续系统,常用的数学模型有微 分方程和传递函数等 .
duC 由③式有: i=C dt
④ ⑤
duC 将④式代入②式有:uR=RC dt duC 将⑤式代入①式有RC dt
(4)标准化: 令RC=T,即该电路的充放电时间常数,代入⑥式有:
duC T +uC= ur dt
+uC= ur

1、输入量(激励) 2、输出量(响应) 3、被控制量 4、控制量(控制作用) 5、反馈 6、干扰(扰动) 7、自动调节系统
线性系统的微分方程
(1)分析系统工作原理,将系统划分为若干环节, 确定系统和环节的输入、输出变量,每个环节可 考虑列写一个方程; (2)根据各变量所遵循的基本定律(物理定律、 化学定律)或通过实验等方法得出的基本规律,列 写各环节的原始方程式,并考虑适当简化和线性 化; (3)将各环节方程式联立,消去中间变量,最后 得出只含输入、输出变量及其导数的微分方程; (4)将输出变量及各阶导数放在等号左边,将输 入变量及各阶导数放在等号右边,并按降幂排列, 最后将系统归化为具有一定物理意义的形式,成 为标准化微分方程。
则系统的传递函数为
C ( s ) b0 s m b1 s m 1 bm 1 s bm G (s) R ( s ) a 0 s n a1 s n 1 a n 1 s a n
或写为
C (s) M (s) G (s) R(s) N (s)
传递函数与输入、输出之间的关系,可用图表示。
建立控制系统数学模型的方法有解析法和 实验法两种。解析法也称机理分析法,属于理 论建模的范畴,是通过分析控制系统的工作原 理,利用系统各组成部分所遵循的物理学基本 定律来建立变量之间的关系式。实验法也称实 验辨识法,是通过实验对系统在已知输入信号 作用下的输出响应数据进行测量,利用模型辨 识方法,来建立反映输入量和输出量之间关系 的数学方程。
第2章 线性系统的数学模型
内容提要
实际存在的自动控制系统可以是电气的、 机械的、热力的、化工的,甚至是生物学的、 经济学的等等,然而描述这些系统的数学模 型却可以是相同。本章介绍了系统的各类数 学模型如微分方程,传递函数,方框图,信 号流图的求取以及它们之间的相互关系。
知 识 要 点
线性系统的数学模型,拉普拉斯变换, 传递函数的定义,方框图的简化
2.1.1 微分方程的建立
电气系统中最常见的是由电阻元件、电容元件、 电感元件以及运算放大器等组成的无源或有源电路, 也称电气网络。
例2-1 图2-1所示为典型 的RLC串联电路,以ui(t)为 输入量, uo(t)为输出量。 列写该电路的微分方程。
解:引入回路电流作为中间变量,列写变量关系方程
令 T m/k
称为时间常数;
f /( 2 mk ) 称为阻尼比;
K 1/ k

称为放大系数。
d 2 y (t ) dy (t ) T2 2 T y (t ) K F (t ) 2 dt dt
例2-4考虑图2-4所示液位控制系统,其中水箱水 位H为被控量,忽略次要因素,引起水箱水位变化 的物理量主要是输入流量Q1和负载流量Q2。试确 定该系统,节流阀开度一定时水箱水位与输入流量 的关系方程。
其中F1(t)和F2(t)可由弹簧、阻尼器特性写出
F1 (t ) ky(t )
dy (t ) F 2 (t ) f dt
式中 k —— 弹簧系数 f —— 阻尼系数
整理且标准化
m d 2 y (t ) f dy (t ) 1 y (t ) F (t ) 2 k dt k dt k
解:根据物质守恒定律,列出液位系统流体过程的 关系方程 (2-17)
式中,A为容器截面积。当节流阀开度一定时,通过包 含连接导管和容器的液体流量为 (2-18)
式中,K为节流阀的流量系数。 将式(2-18)代入(2-17)中可得水箱水位与进水 流量的关系方程 ——非线性微分方程
一般情况下,描述线性定常系统输入与输 出关系的微分方程为 :
图 2-4 CR串联电路
第2章 线性系统的数学模型
第2章 线性系统的数学模型
四、积分环节
1、表达式: c(t)=k∫r(t)dt 2、特点:输出量与输入量的积分成比例。 3、实例 uj=常数 ua 例2-6 如图2-7所示,他激 直流电动机转轴角位移θ为 输出,电框电压ua为输入, 加恒定直流激励,并忽略电 枢回路的时间常数(即认为 电枢电流是瞬时增长到稳定 值),有:θ=k∫uadt
2.1数学模型的建立与定义方法
一、定义 系统的数学模型是描述系统的输入与输出变量,以及内 部各变量之间关系的数学表达式、图表、曲线。 二、数学模型的建立 1、方法 (1)解析法:依据系统及元件各变量之间所遵循的物理化 学定律,列出变量间的数学表达式。 (2)实验方法:通过实验求出系统或元件各变量之间的关 系 2、型式 微分方程、传递函数、结构图、状态变量表达式 3、说明 数学模型的建立应该在模型的准确性和简化性之间作折衷 考虑。
的根,称为传递函数的
零点;
6.传递函数分母多项式称为特征多项式,记为
D ( s ) a 0 s a1 s
式中c(t)为输出量,r(t)为输入量 。
设c(t)和r(t)及其各阶导数初始值均为零,对式 (2-47)取拉氏变换,得
( a 0 s n a1 s n 1 a n 1 s a n )C ( s ) (b0 s m b1 s m 1 bm 1 s bm ) R ( s )

d n i c (t ) m d m j r (t ) ai dt ni b j dt m j i 0 j 0
相关文档
最新文档