简单晶体结构.ppt
合集下载
晶体结构(共78张PPT)
多为无色透明,折 射率较高
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
晶体的界面结构(共45张PPT)
2.半共格相界 假设两相邻晶体在相界面处的晶面间距相差较大,那么在相界面上不可能做到完全的一一对
应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子局部地保持 匹配,这样的界面称为半共格界面或局部共格界面。
从能量角度而言,以半共格界面代替共格界面更为有利。
3.非共格相界----两相在相界面处的原子排列相差很大。
位相角:θ〔沿坐标系中某一旋转轴的旋转角〕 方向角:φ〔晶界与另一晶粒的位相角〕
2.2 小角晶界
二、晶界自由度 三维晶界------有5个自由度
位相角:θ1 ,θ2, θ 3〔三个相邻晶粒的旋转角〕 方向角:φ1 ,φ2 〔晶界与另一晶粒的位相角〕
2.2 小角晶界
三、小角度晶界的位错模型
倾转晶界〔由刃型位错构成〕 1.对称倾斜晶界
共格晶界: 2种相的原子在界面处完全匹配,形 成完整格界面。
半共格晶界:晶面间距相差较大,在界面上将 产生一些位错,以降低界面的弹性应变能,这
时界面上两相原子局部地保持匹配 。 非共格晶界: 界面上两相原子无任何匹配关系
晶界分类
(1) 按两个晶粒之间夹角的大小来分:
小角度晶界 θ=0°→3~10°
错配度定义为
式中a 和b分别表示相界面两侧的 相和相的点阵常数,且a > a 。
由此可求得位错间距D为 D=α/δ
当δ很小时,可以近似为
D≈|b|/δ 当δ很小时,D很大,α和β相在相界面上趋于共格,即成为共格相 界;
当δ很大时,D很小,α和β相在相界面上完全失配,即成为非共格相 界,
完全共格相界
3. 扭转晶界〔由螺型位错构成〕
以下图表示两个简单立方晶粒的扭转晶界结构,图中〔001〕 平面是共同的平面,可见这种晶界是由两组螺型位错交叉网络所形 成。扭转晶界两侧的原子位置是互相不吻合的,但这种吻合可以集 中到一局部原子的位置上,其余的局部仍吻合,不吻合的局部是螺 型位错。
第二章 晶体结构ppt课件
1-1 晶向指数 [u v w]
建立步骤: ①建立坐标系。以某一阵点为坐标原点,三个棱边为 坐 标轴,并以点阵常数(a、b、c)作为各个坐标轴的单位长度; ②作 OP // AB ; ③确定P点的三个坐标值(找垂直投影); ④将坐标值化为互质的最小整数,并放入到[ ] 中,则 [uvw]即为所求;
1.晶体结构与空间点阵(续)
1-4 晶胞 ①定义:在空间点阵中,能够代表晶格中原子排列特征的最小单元体。 晶胞通常是平行六面体,将晶胞作三维的重复堆砌就构成了空间点 阵。 ②晶胞的选取原则:
几何形状与晶体具有同样的对称性; 平行六面体内相等的棱与角的数目最多; 当平行六面体棱间有直角时,直角数目最多; 在满足上述条件下,晶胞的体积应最小。
o o a a a c , 9 0 , 1 2 0 1 2 3
菱方:简单菱方 o a b c , 9 0
单斜:简单单斜 底心单斜
a b c ,
9 0
o
三斜:简单三斜
a b c ,
9 0
第二章 晶体结构
第一节 晶体的特征
各项异性 晶体由于具有按照一定几何规律排列的内 部结构,空间不同方向上原子排列的特征不同, 如原子间距及周围环境,因而在一般情况下, 单晶体的许多宏观物理量(如弹性模量、电阻 率、热膨胀悉数、折射率、强度及外表面化学 性质等)的大小是随测试方向的不同而改变的, 这个性质称为各项异性。晶体断裂的解理性就 是晶体具有各项异性的最明显例子。
晶体具有确定的熔点
熔点是晶体物质的结晶状态与非结晶状态互相转 变的临界温度,晶体熔化时发生体积变化。 晶体有一些其他共同特征:晶体中存在不完整性, 晶体内原子排列并不是理想的有序排列,而是有 缺陷的;晶体的原子周期排列促成晶体有一些共 同的性质,如均匀性、自限性和对称性等。
晶体学基础PPT课件
➢ 单位格子:只包含一 个点阵点的格子叫单 位格子 。
➢ 复单位:即每一个格 子单位分摊到一个以 上的点阵点。
点阵
图1-4 平面点阵单位 上图所示,平行四边形I和II都 只分摊到一个点阵点,故它们 都是单位格子;平行四边形III 分摊到两个点阵点,故它是复 单位。
点阵
3.三维点阵(空间点阵)
➢分布在三维空间的点阵叫空间点阵。 ➢空间点阵对应的平移群可用下式表示:
T m n m p n a p b ,m c ,n ,p 0 , 1 , 2 (1 .
图1-5 空间点阵单位
点阵
➢空间格子:空间点阵按确定的 平行六面体单位划分后所形成 的格子称为空间格子 。
➢基本单位:每个平行六面体格 子单位只分摊到1个点阵点, 称为空间点阵的基本单位 。
我们把所有阵点可用位矢(1.1)、(1.2)或(1.3) 来描述的点阵称为布拉菲点阵。
➢ 点阵的这两条基本性质也正是判断一组点是否 为点阵的依据。
点阵
三.直线点阵、平面点阵与空间点阵
点阵和平移群
➢ 能使一个点阵复原的全部平移矢量组成 的一个平移群(它符合数学上群的定义) 称为该点阵对应的平移群。
➢ 点阵和平移群有一一对应的关系。一个 点阵所对应的平移群能够反映出该点阵 的全部特征。
第一章 晶体学基础
内容提要
晶体的基本性质 晶体结构几何理论的历史发展简况 点阵 平面点阵与空间点阵的性质 晶体的点阵结构 晶胞 典型晶体结构举例 晶向指数与面指数 晶体结构的对称性
第一节 晶体的基本性质
一.晶体与非晶体在宏观性质上的区别
➢晶体具有固定的外形,各向异性,固定 的熔点。 • 微细单晶体的集合体,称为多晶体 • 取向杂乱的单晶体集合成的多晶体, 显示出各向同性 • 择优取向的多晶体呈现出各向异性
➢ 复单位:即每一个格 子单位分摊到一个以 上的点阵点。
点阵
图1-4 平面点阵单位 上图所示,平行四边形I和II都 只分摊到一个点阵点,故它们 都是单位格子;平行四边形III 分摊到两个点阵点,故它是复 单位。
点阵
3.三维点阵(空间点阵)
➢分布在三维空间的点阵叫空间点阵。 ➢空间点阵对应的平移群可用下式表示:
T m n m p n a p b ,m c ,n ,p 0 , 1 , 2 (1 .
图1-5 空间点阵单位
点阵
➢空间格子:空间点阵按确定的 平行六面体单位划分后所形成 的格子称为空间格子 。
➢基本单位:每个平行六面体格 子单位只分摊到1个点阵点, 称为空间点阵的基本单位 。
我们把所有阵点可用位矢(1.1)、(1.2)或(1.3) 来描述的点阵称为布拉菲点阵。
➢ 点阵的这两条基本性质也正是判断一组点是否 为点阵的依据。
点阵
三.直线点阵、平面点阵与空间点阵
点阵和平移群
➢ 能使一个点阵复原的全部平移矢量组成 的一个平移群(它符合数学上群的定义) 称为该点阵对应的平移群。
➢ 点阵和平移群有一一对应的关系。一个 点阵所对应的平移群能够反映出该点阵 的全部特征。
第一章 晶体学基础
内容提要
晶体的基本性质 晶体结构几何理论的历史发展简况 点阵 平面点阵与空间点阵的性质 晶体的点阵结构 晶胞 典型晶体结构举例 晶向指数与面指数 晶体结构的对称性
第一节 晶体的基本性质
一.晶体与非晶体在宏观性质上的区别
➢晶体具有固定的外形,各向异性,固定 的熔点。 • 微细单晶体的集合体,称为多晶体 • 取向杂乱的单晶体集合成的多晶体, 显示出各向同性 • 择优取向的多晶体呈现出各向异性
(完整版)固体物理课件ppt完全版
布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其
他格点的矢量 Rl 称为格矢量。可表示为
Rl
l1a1
l2a2
l3a3
,
a1,
a2 ,
a3为
一组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
2·堆积方式:AB AB AB……,上、下两个底面为A
层,中间的三个原子为 B 层
3·原胞:
a, 1
a 2
在密排面内,互成1200角,a3
沿垂直
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式
A
a
B c
六角密排晶格结构的典型单元
a3
a1
a2
六角密排晶格结构的原胞
4·注意: A 层中的原子≠ B 层中的原子 → 复式晶格
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞
所有晶格的共同特点 — 具有周期性(平移对称性)
描
用原胞和基矢来描述
述
方
位置坐标描述
式
1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
a1, a2 , a3 为晶格基矢
复式晶格:
l1, l2 , l3 为一组整数
每个原子的位置坐标:r l1a1 l2a2 l3a3
第1章晶体学PPT课件
.
34
点群
利用对称要素组合定律和结晶多面体的形态特 点可以推导出晶体的宏观对称性只有32种,称为32 种点群(或对称型),晶体只属于32种对称型中的一 种。
将32种对称性分为7种晶系 。 划分晶系的依据是特征对称性而不是晶胞参数。
.
35
32个宏观对称性(点群)
.
36
.
37
空间群
除了宏观对称要素之外,还有平移、平移与旋 转结合形成的螺旋对称轴、平移和反映结合形成的 滑移反映面等微观对称要素。
②把终点坐标减去起点坐标: u’=u2-u1, v’=v2-v1,w’=w2-w1;
③化为最小整数,给出指数u、
v、w。则[uvw]就是所求晶向 指数。
如OF: X Y Z ½½1
uvw 1 12
与晶面标定
方法不同
晶向[ 1 1 2]
.
50
注意: ①晶向指数[uvw]中如果某一个数字
为负,则将负号标注在该数的上方。 ②一个晶向指数并不表示一个晶向,而是一组相互平
.
9
空间点阵、晶格
阵点的两大特点: 排列的周期性 等同性
晶格
为了便于描述空间点 阵的图形,用许多组假想 的平行直线将阵点连接起 来构成空间格子,这些空 间格子称为晶格。
.
10
晶胞概念的由来
为了说明点阵排列的规律和特点,可以在空间点阵中取出一
个最有代表性的基本单元作为点阵的组成单元,其基本单元称为
空间点阵 + 结构基元
.
晶体结构
15
1.3 晶体的对称性
晶体多面体最 显著特点就是 对称,对于参 观者来说,对 称就是几何形 体中相同部分 有规律地重复 出现。
.
常见的晶体结构-PPT
Octahedral sites:
6
×
×
晶体结构中得空隙位(3): hcp
Tetrahedral sites
×
×
7c 8
1c
××
8
2 6 2 1 2 3 12 3
5c 8
3c 8
棱与中心线得1/4与3/4处
3、点阵常数与原子半径
R 2R
R RR
a0
a0 2R
a0
a0
2 2R 3
R 2R
图2-48 NaCL晶胞
图2-49 CsCL晶胞
Zn
0 75
(0, 0, 0), (1 , 1 , 0), (1 , 0, 1), (0, 1 , 1) 22 2 2 22
50 25
0
(1 , 1 , 1), ( 3 , 3 , 1), (1 , 3 , 3), ( 3 , 1 , 3) 444 444 444 444
(2
R
fcc
)
Center of tetrahedron, o,
oD = (3/4)DE
A D
B
rin
oD
R fcc
3 4
DE
R fcc
2Rfcc
rin
3 2
2 3
R
fcc
R fcc
(
3 2
1)R
fcc
o
C
A
E
B
rin 3 1 0.225
R fcc
2
晶体结构中得空隙位(2): bcc
Octahedral sites: Face and edge center sites
6 1 12 1 6
2
4
6
×
×
晶体结构中得空隙位(3): hcp
Tetrahedral sites
×
×
7c 8
1c
××
8
2 6 2 1 2 3 12 3
5c 8
3c 8
棱与中心线得1/4与3/4处
3、点阵常数与原子半径
R 2R
R RR
a0
a0 2R
a0
a0
2 2R 3
R 2R
图2-48 NaCL晶胞
图2-49 CsCL晶胞
Zn
0 75
(0, 0, 0), (1 , 1 , 0), (1 , 0, 1), (0, 1 , 1) 22 2 2 22
50 25
0
(1 , 1 , 1), ( 3 , 3 , 1), (1 , 3 , 3), ( 3 , 1 , 3) 444 444 444 444
(2
R
fcc
)
Center of tetrahedron, o,
oD = (3/4)DE
A D
B
rin
oD
R fcc
3 4
DE
R fcc
2Rfcc
rin
3 2
2 3
R
fcc
R fcc
(
3 2
1)R
fcc
o
C
A
E
B
rin 3 1 0.225
R fcc
2
晶体结构中得空隙位(2): bcc
Octahedral sites: Face and edge center sites
6 1 12 1 6
2
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
1.4. 3 六角密堆积(hcp)型结构
B
A
A
A
B
A、B层都是最密集的单 层,B层位于A层空隙上方, A 在垂直于层面方向作ABAB… 的周期性重复则得到 hcp 结 构.配位数:12
9
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
hcp结构原胞
复式格子 基元= Na+ + Cl-
NaCl晶体结构图
3
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
3. 具有面心立方结构的晶体举例
简单格子 许多金属: Ni, Al, Pb, Cu, Ag, Au 惰性元素晶体: Ne, Ar, Kr, Xe
复式格子
部分碱卤族化合物
部分 II-VI 族化合物, 如CaO, MgS
基元是O和O1处两个 A 原子(离子),这两处的
原子并不等价
B
晶胞包含原子数:
12×1/6+2×1/2+3=6;
A
晶胞包含基元数:6典型晶体举例
He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等
10
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
12
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
1.4. 4 金刚石型结构
B A
晶体结构=布拉维格子(面心立方)+ 基元(A+B)
A、B处原子虽同为碳原子,但两者的 几何环境不一样,并不等价;B位于立方体 对角线上距A为对角线长度的1/4
13
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
a1
(a2
a3 )
a3
/
2
体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等
7
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
3. 氯化铯型结构
Cs+ 和 Cl- 各自构成一 简单立方格子,两组简单 立方格子穿套而成
布拉维格子:简单立方 复式格子 基元= Cs+ + Cl-
氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等
位于顶角和体心处的 格点也是等价的
每个晶胞包含 8×1/8+1=2 个格点 晶胞体积为原胞体积的2倍
6
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
体心立方的原胞
a
ak
a1 a2
2 a 2 a
(i (i j
j k
k)
)
a1
a2 aj
ai
a3
a3 2 (i
原胞体积
j
Ω
k)
4
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
1.4. 2 氯化铯型结构
1. 简单立方结构(sc)
晶胞为简单立方,格点位 于晶胞的顶角上.配位数:6
简单立方的晶胞和原胞一致
5
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
2. 体心立方结构(bcc)
晶胞为体心立方,格 点位于晶胞的顶角和体心 上. 配位数:8
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
1.4. 1 氯化钠型结构
1. 面心立方结构(fcc)
晶胞为面心立方,格点位 于晶胞的顶角和面心上.配位 数:12
注意:位于顶角和面心处的格点完全等价
每个晶胞包含 8×1/8+6×1/2=4 个格点
晶胞体积为原胞体积的4倍
1
固体物理导论
第 1 章 晶体结构
最近邻原子数:4 次近邻原子数:12
0
1 2
0
3
1
4
4
1 2
0
1 2
1
3
4
4
0
1 2
0
原子位置分布图(投影)
硬球填充占总体积的比率:0.34
—— 一个字:空
14
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
1.4. 5 立方硫化锌(闪锌矿)型结构
将金刚石结构中的基元 置换成一对硫离子和锌离子
布拉维格子:面心立方
硫离子和锌离子各自
S
形成一面心立方格子
Zn
典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等
15
另一种密集型结构:面心立方
A
C
B
B
A
A、B、C层都是最密集的单层,B层位于A层 一类空隙正上方,C层位于A层另一类空隙正上方, 在垂直于层面方向作ABCABC…的周期性重复, 其实就是面心立方结构.配位数:12
11
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
六角密堆积和面心立方是两种最密 集的结构,配位数都是12,这是晶体中 最高的配位数,总体积被球占据的体积 比率都是0.74,空间使用率最高
1.4 简单晶体结构
面心立方的原胞
a
a1 2 j k
a2
a 2
k i
ak
a1
a2 a j a3
ai
a3
a 2
i
j
原胞体积
Ω
a1
(a2
a3 )
a3
/
4
恰为晶胞体积的1/4
2
固体物理导论
第 1 章 晶体结构
1.4 简单晶体结构
2. 氯化钠型结构
Na+ 和 Cl- 各自构成一 面心立方格子,两组面心 立方格子平行穿套而成