MT48LC4M32B2B5-6A IT_L
MT48LC4M32B2中文数据手册
SDR SDRAM128Mb: x32 SDRAMFeatures 型号:MT48LC4M32B2 – 1 Meg x 32 x 4 Banks特征:1.pc100-兼容;2.完全同步;所有信号都记录在系统时钟的上升沿;3.内部流水线操作;每一个时钟周期,可以改变列地址;4.内部块能够隐藏行访问/预充电;5.可编程突发长度:1,2,4,8,或整页;6.可自动预充电,包括并发自动预充电;和自动刷新模式;7.自刷新模式(不适用于AT器件);8.自动刷新—64ms, 4096-cycle refresh(商业和工业)—16ms, 4096-cycle refresh(汽车)9.LVTTL-兼容输入和输出;10.单个3.3V±0.3V电源供电;11.支持CAS1,2,和3延时(CL)。
选项标号1. 配置--4 Meg x 32 (1 Meg x 32 x 4 banks);4M32B2 2. 封装-OCPL--86-pin TSOP II (400 mil) TG--86-pin TSOP II (400 mil) Pb-free P--90-ball VFBGA (8mm x 13mm) F5--90-ball VFBGA (8mm x 13mm) Pb-free B53.定时(周期)–6ns (166 MHz) -6 A的平方–6ns (166 MHz) -6的3次方- 7ns (143 MHz) -7的3次方4.装订:G/:L5.工作稳定范围:-商业(0°C to +70°C) None-工业(–40°C to +85°C) IT-汽车(–40°C to +105°C) AT4注意:1. 偏离中心的分型线。
2. 仅适用于L版。
3. 仅适用于G版。
4.可用性接触微米。
表1:关键时序参数CL = CAS延迟(读)表2:地址表表3:128MB(X32)SDR产品型号。
MEMORY存储芯片MT48LC32M16A2P-75IT中文规格书
DDR2 SDRAMMT47H512M4 – 64 Meg x 4 x 8 banks MT47H256M8 – 32 Meg x 8 x 8 banks MT47H128M16 – 16 Meg x 16 x 8 banksFeatures•V DD = 1.8V ±0.1V, V DDQ = 1.8V ±0.1V•JEDEC-standard 1.8V I/O (SSTL_18-compatible)•Differential data strobe (DQS, DQS#) option•4n-bit prefetch architecture•Duplicate output strobe (RDQS) option for x8•DLL to align DQ and DQS transitions with CK •8 internal banks for concurrent operation •Programmable CAS latency (CL)•Posted CAS additive latency (AL)•WRITE latency = READ latency - 1 t CK •Programmable burst lengths: 4 or 8•Adjustable data-output drive strength•64ms, 8192-cycle refresh•On-die termination (ODT)•Industrial temperature (IT) option•RoHS-compliant•Supports JEDEC clock jitter specification Options1Marking •Configuration–512 Meg x 4 (64 Meg x 4 x 8 banks)512M4–256 Meg x 8 (32 Meg x 8 x 8 banks)256M8–128 Meg x 16 (16 Meg x 16 x 8 banks)128M16•FBGA package (Pb-free) – x16–84-ball FBGA (11.5mm x 14mm) Rev. A HG •FBGA package (Pb-free) – x4, x8–60-ball FBGA (11.5mm x 14mm) Rev. A HG •FBGA package (Pb-free) – x16–84-ball FBGA (9mm x 12.5mm) Rev. C RT •FBGA package (Pb-free) – x4, x8–60-ball FBGA (9mm x 11.5mm) Rev. C EB •FBGA package (Lead solder) – x16–84-ball FBGA (9mm x 12.5mm) Rev. C PK •Timing – cycle time– 1.875ns @ CL = 7 (DDR2-1066)-187E– 2.5ns @ CL = 5 (DDR2-800)-25E– 2.5ns @ CL = 6 (DDR2-800)-25– 3.0ns @ CL = 5 (DDR2-667)-3•Self refresh–Standard None •Operating temperature–Commercial (0°C ื T C ื +85°C)None–Industrial (–40°C ื T C ื +95°C;–40°C ื T A ื +85°C)IT •Revision:A/:CNote: 1.Not all options listed can be combined todefine an offered product. Use the PartCatalog Search on forproduct offerings and availability.2Gb: x4, x8, x16 DDR2 SDRAMFeaturesFunctional DescriptionThe DDR2 SDRAM uses a double data rate architecture to achieve high-speed opera-tion. The double data rate architecture is essentially a 4n -prefetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O balls. A single READ or WRITE operation for the DDR2 SDRAM effectively consists of a single 4n -bit-wide, two-clock-cycle data transfer at the internal DRAM core and four corresponding n -bit-wide, one-half-clock-cycle data transfers at the I/O balls.A bidirectional data strobe (DQS, DQS#) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR2 SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs. The x16 offering has two data strobes, one for the lower byte (LDQS, LDQS#) and one for the upper byte (UDQS,UDQS#).The DDR2 SDRAM operates from a differential clock (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Com-mands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS as well as to both edges of CK.Read and write accesses to the DDR2 SDRAM are burst-oriented; accesses start at a se-lected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVATE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVATE command are used to select the bank and row to be accessed. The ad-dress bits registered coincident with the READ or WRITE command are used to select the bank and the starting column location for the burst access.The DDR2 SDRAM provides for programmable read or write burst lengths of four or eight locations. DDR2 SDRAM supports interrupting a burst read of eight with another read or a burst write of eight with another write. An auto precharge function may be en-abled to provide a self-timed row precharge that is initiated at the end of the burst ac-cess.As with standard DDR SDRAM, the pipelined, multibank architecture of DDR2 SDRAM enables concurrent operation, thereby providing high, effective bandwidth by hiding row precharge and activation time.A self refresh mode is provided, along with a power-saving, power-down mode.All inputs are compatible with the JEDEC standard for SSTL_18. All full drive-strength outputs are SSTL_18-compatible.Industrial TemperatureThe industrial temperature (IT) option, if offered, has two simultaneous requirements:ambient temperature surrounding the device cannot be less than –40°C or greater than 85°C, and the case temperature cannot be less than –40°C or greater than 95°C. JEDEC specifications require the refresh rate to double when T C exceeds 85°C; this also requires use of the high-temperature self refresh option. Additionally, ODT resistance, input/output impedance and I DD values must be derated when T C is < 0°C or > 85°C.2Gb: x4, x8, x16 DDR2 SDRAM Functional Description。
MEMORY存储芯片MT48LC4M32B2B5-6AIT中文规格书
SELF REFRESH OperationThe SELF REFRESH command can be used to retain data in the device, even if the rest of the system is powered down. When in self refresh mode, the device retains data with-out external clocking. The device has a built-in timer to accommodate SELF REFRESH operation. The SELF REFRESH command is defined by having CS_n, RAS_n, CAS_n,and CKE held LOW with WE_n and ACT_n HIGH at the rising edge of the clock.Before issuing the SELF REFRESH ENTRY command, the device must be idle with all banks in the precharge state and t RP satisfied. Idle state is defined as: All banks are closed (t RP , t DAL, and so on, satisfied), no data bursts are in progress, CKE is HIGH, and all timings from previous operations are satisfied (t MRD, t MOD, t RFC, t ZQinit, t ZQoper,t ZQCS, and so on). After the SELF REFRESH ENTRY command is registered, CKE must be held LOW to keep the device in self refresh mode. The DRAM automatically disables ODT termination, regardless of the ODT pin, when it enters self refresh mode and auto-matically enables ODT upon exiting self refresh. During normal operation (DLL_on),the DLL is automatically disabled upon entering self refresh and is automatically ena-bled (including a DLL reset) upon exiting self refresh.When the device has entered self refresh mode, all of the external control signals, except CKE and RESET_n, are “Don’t Care.” For proper SELF REFRESH operation, all power supply and reference pins (V DD , V DDQ , V SS , V SSQ , V PP , and V REFCA ) must be at valid levels.The DRAM internal V REFDQ generator circuitry may remain on or be turned off depend-ing on the MR6 bit 7 setting. If the internal V REFDQ circuit is on in self refresh, the first WRITE operation or first write-leveling activity may occur after t XS time after self re-fresh exit. If the DRAM internal V REFDQ circuitry is turned off in self refresh, it ensures that the V REFDQ generator circuitry is powered up and stable within the t XSDLL period when the DRAM exits the self refresh state. The first WRITE operation or first write-lev-eling activity may not occur earlier than t XSDLL after exiting self refresh. The device ini-tiates a minimum of one REFRESH command internally within the t CKE period once it enters self refresh mode.The clock is internally disabled during a SELF REFRESH operation to save power. The minimum time that the device must remain in self refresh mode is t CKESR/t CKESR_PAR. The user may change the external clock frequency or halt the external clock t CKSRE/t CKSRE_PAR after self refresh entry is registered; however, the clock must be restarted and t CKSRX must be stable before the device can exit SELF REFRESH oper-ation.The procedure for exiting self refresh requires a sequence of events. First, the clock must be stable prior to CKE going back HIGH. Once a SELF REFRESH EXIT command (SRX,combination of CKE going HIGH and DESELECT on the command bus) is registered,the following timing delay must be satisfied:Commands that do not require locked DLL:•t XS = ACT, PRE, PREA, REF , SRE, and PDE.•t XS_FAST = ZQCL, ZQCS, and MRS commands. For an MRS command, only DRAM CL, WR/RTP register, and DLL reset in MR0; R TT(NOM) register in MR1; the CWL and R TT(WR) registers in MR2; and gear-down mode register in MR3; WRITE and READ pre-amble registers in MR4; R TT(PARK) register in MR5; t CCD_L/t DLLK and V REFDQ calibra-tion value registers in MR6 may be accessed provided the DRAM is not in per-DRAM mode. Access to other DRAM mode registers must satisfy t XS timing. WRITE com-mands (WR, WRS4, WRS8, WRA, WRAS4, and WRAS8) that require synchronous ODT and dynamic ODT controlled by the WRITE command require a locked DLL.4Gb: x4, x8, x16 DDR4 SDRAM SELF REFRESH OperationDQS Differential Input Cross Point VoltageTo achieve tight RxMask input requirements as well as output skew parameters with re-spect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet V IX_DQS,ratio in the table below. The differential input cross point voltage V IX_DQS (V IX_DQS_FR and V IX_DQS_RF ) is measured from the actual cross point of DQS_t, DQS_c relative to the V DQS,mid of the DQS_t and DQS_c signals.V DQS,mid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by V DQS_trans . V DQS_trans is the difference between the low-est horizontal tangent above V DQS,mid of the transitioning DQS signals and the highest horizontal tangent below V DQS,mid of the transitioning DQS signals. A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tan-gent provided the said ledge occurs within ±35% of the midpoint of either V IH.DIFF .Peak voltage (DQS_t rising) or V IL.DIFF .Peak voltage (DQS_c rising), as shown in the figure be-low.A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in the figure below), and a ring-back’s horizontal tangent is derived from its positive slope to zero slope transi-tion (pointB in the figure below) and is not a valid horizontal tangent; a rising transi-tion’s horizontal tangent is derived from its positive slope to zero slope transition (pointC in the figure below), and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (pointD in the figure below) and is not a valid horizontal tangent.Figure 226: V IXDQS DefinitionD Q S _t , D Q S _c : S i n g l e -E n d e d I n p u t V o l t a g e s DQS_tLowest horizontal tanget above V DQS,mid DQS,mid of the transitioning signalsV SSQ V DQS_cTable 106: Cross Point Voltage For Differential Input Signals DQS4Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Meas-urement Levels。
MEMORY存储芯片MT48LC4M32B2TG-7IT中文规格书
Active Power-Down Current (AL = 0) CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 1; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
Precharge Quiet Standby Current CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
1600/1866/2133/ 2400/2666
高速SDRAM控制器设计的FPGA实现
第37卷增刊电子科技大学学报Vol.37suppl 2008年6月Journal of University of Electronic Science and Technology of China Jun.2008高速SDRAM 控制器设计的FPGA 实现张林,何春(电子科技大学电子科学技术研究院成都610054)【摘要】同步动态存储器(SDRAM)控制器通常用有限状态机实现,对于一般的设计方法,由于状态数量多,状态转换通常伴随大的组合逻辑而影响运行速度,因此,SDRAM 控制器的速度限制了SDRAM 存储器的访问速度。
该文从结构优化入手来优化方法,利用状态机分解的思想将大型SDRAM 控制状态机用若干小的子状态机实现,达到简化逻辑的目的,不仅提高了速度还节省了资源,对该类大型SDRAM 控制器的实现有一定参考意义。
关键词现场可编程门阵列;高速状态机;SDRAM 控制器状态机分解中图分类号TN402文献标识码AFPGA Implementation of High Speed SDRAM ControllerZHANG Lin and HE Chun(Research Insti tut e of El ectronic Science and Technology,University of Electronic of Science and Technology of china Chengdu610054)Abstr act Synchronous dynamic random access memory (SDRAM)is widely used in nowadays digital systems for its large capacity and low price.The SDRAM controller is commonly implemented in finite state machine (FSM),which can not achieve high performance with complicated logic.As a result,the access speed is restricted.Taking advantages of the ideology of state machine decomposition,the SDRAM controller is implemented by several subordinate FSMs.This implementation can improve the speed and performance of the systems effectively.The method given is significative for the related design.Key wor ds field programmable gate array;high-speed FSM;SDRAM controller;state machine decomposition收稿日期:20080304作者简介:张林(),男,硕士生,主要从事集成电路设计、VLSI 计算结构等方面的研究SDRAM 在高带宽应用场合中,为了保持系统数据的高吞吐率,通用的SDRAM 控制器不能满足要求,需要进行专门设计[1-2]。
MEMORY存储芯片MT48LC4M32B2TG-6IT G中文规格书
5.CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.6.t CCD_S/L = 5 isn’t allowed in 2t CK preamble mode.7.The write recovery time (t WR) and write timing parameter (t WTR) are referenced fromthe first rising clock edge after the last write data shown at T20.8.When operating in 2t CK WRITE preamble mode, CWL may need to be programmed to avalue at least 1 clock greater than the lowest CWL setting supported in the applicablet CK range, which means CWL = 9 is not allowed when operating in 2t CK WRITE pream-ble mode.Figure 178: WRITE (BC4) OTF to WRITE (BC4) OTF with 1t CK Preamble in Different Bank GroupCommand DQ CK_t CK_cDQS_t,DQS_cBank GroupAddress Address Notes: 1.BC4, AL = 0, CWL = 9, Preamble = 1t CK.2.DI n (or b ) = data-in from column n (or column b ).3.DES commands are shown for ease of illustration; other commands may be valid atthese times.4.BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 andT4.5.CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.6.The write recovery time (t WR) and write timing parameter (t WTR) are referenced fromthe first rising clock edge after the last write data shown at T17.4Gb: x4, x8, x16 DDR4 SDRAM WRITE OperationTable 91: DQ Input Receiver Specifications (Continued)Notes: 1.All Rx mask specifications must be satisfied for each UI. For example, if the minimum in-put pulse width is violated when satisfying TdiVW (MIN), V diVW,max , and minimum slew rate limits, then either TdiVW (MIN) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.2.Data Rx mask voltage and timing total input valid window where V diVW is centered around V CENTDQ,midpoint after V REFDQ training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER =1e- 16 when the Rx mask is not violated.3.Defined over the DQ internal V REF range 1.4.Overshoot and undershoot specifications apply.5.DQ input pulse signal swing into the receiver must meet or exceed V IHL(AC)min . V IHL(AC)min is to be achieved on an UI basis when a rising and falling edge occur in the same UI (a valid TdiPW).6.DQ minimum input pulse width defined at the V CENTDQ,midpoint .7.DQS-to-DQ Rx mask offset is skew between DQS and DQ within a nibble (x4) or word (x8, x16 [for x16, the upper and lower bytes are treated as separate x8s]) at the SDRAM balls over process, voltage, and temperature.8.DQ-to-DQ Rx mask offset is skew between DQs within a nibble (x4) or word (x8, x16) at the SDRAM balls for a given component over process, voltage, and temperature.9.Input slew rate over V diVW mask centered at V CENTDQ,midpoint . Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7V/ns of each other.10.Input slew rate between V diVW mask edge and V IHL(AC)min points.The following figure shows the Rx mask relationship to the input timing specifications relative to system t DS and t DH. The classical definition for t DS/t DH required a DQ rising 4Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels。
Nios II 和SDRAM时钟相位计算
Nios II 和SDRAM时钟相位计算如何连接Nios II 和SDRAMSDRAM和Nios II连接的典型电路框图如下图所示。
SDRAM和System使用同一个PLL输出时钟,可以保证System Clock和SDRAM Clock的相对抖动比较小。
外部晶振的时钟送入PLL,然后由PLL产生两个同频的时钟一个供给Nios II系统使用,另一个供给SDRAM使用。
(把PLL设置成Zero Buffer Mode可以比较方便地控制SDRAM Clock和输入时钟Extern Clock的相位关系。
)Nios II系统中的SDRAM控制器和SDRAM通过双向数据线以及其它的单向控制线和SDRAM相连。
SDRAM Clock通常是E0输出或者C2输出,E0和C2都是PLL专用于输出外部时钟的,有比较小的抖动。
由于一个FPGA中通常有若干个PLL,综合后使用哪个PLL是由输入时钟Extern Clock决定的,所以SDRAM Clock必须和Extern Clock是同一个PLL的专用输入管腿和专用输出管腿。
调试SDRAM和Nios II 的最关键是调整SDRAM Clock的相位。
下面推导SDRAM Clock和Extern Clock的相位关系。
用实线向上箭头表示Extern Clock的上升沿,用虚线向上箭头表示Sdram Clock的上升沿。
先看第一种情况:FPGA输出数据,而SDRAM采样数据。
FPGA在Extern Clock上升沿的时候送出数据,经过最大Tcoutmax(FPGA)的时间在FPGA的管腿输出,由于SDRAM的输入建立时间为Tsu(SDRAM),所以Sdram Clock的采样时机必须在信号到达SDRAM后再等Tsu(SDRAM)。
忽略PCB板传输延时,有:Tlead=T-(Tcoutmax(FPGA)+ Tsu(SDRAM));其中Tlead 为SDRAM Clock相对Extern Clock的最大提前量,T为时钟周期。
通用软件无线电平台-SDR6862硬件说明书
阅读有关产品的最新说明。
联系我们 上海市杨浦区国定东路275-8号1313B室(绿地汇创国际) Tel/Fax: 021- 35317305 Email: SPL_20100518@ QQ在线: 174632971
1
上海宇志通信技术有限公司
第一部分 硬件资源配置
主要用途:
¾ 八通道高速信号 AD 采样 ¾ 八通道高速信号 DA 回放 ¾ 多模卫星导航接收机开发验证平台 ¾ 多模卫星信号模拟源产生研究 ¾ 通用软件无线电开发平台 ¾ 现代信号处理类通用开发平台 ¾ 磁盘阵列存储 ¾ 软件无线电基带处理模拟中频/射频/发送/接收板
在步骤3和步骤4中伴随着数据流的传输主控设备需对传输的数据进行crc校验并把第一次传输的校验结果在dmack信号negated沿时刻锁存入磁盘中请参考crc校验原理如下图42所示图42上海宇志通信技术有限公司22crc并行生成多项式如表42所示表42五两片sdrammt48lc4m32b2部分考虑硬盘dma读写操作中涉及到到对dma读写控制寄存器的重新配置以及等待等内容因此表现在数据流上是不连续的断续的时间最长约几十毫秒以内对于ad采样等数据流连续的设计而言需要对dma传输断续的这段时间对数据流进行缓存我们知道sdram具有容量大价格便宜等优点因此板上选用2片sdram进行缓存设计原理图如图51所示上海宇志通信技术有限公司23图51但它也有缺点比如时序控制相对复杂需要额外刷新等操作等刷新让数据流也表现出不连续但可以通过在fpga内容做一个小容量的fifo来解决
2
上海宇志通信技术有限公司
程和控制能力。Stratix III E 器件主要针对数字信号处理 (DSP) 和存储器较 多的应用,它采用 65 mm 工艺,与 StratixII 相比,器件的逻辑密度是前者的 2 倍,功耗降低了 50%,本设计采用的 EP3SE110 芯片集成有 107 500 个 LE 单元,896 个 18×18 乘法器,片上 RAM 达到 9 Mb 的容量; ¾ 四路独立射频正交下变频模块,正交下变频芯片采用 AD8347,频率覆盖 800 MHz 到 2.7 GHz,实现射频信号混频至中频频段; ¾ 八通道独立 AD 采样,AD 采用 Analog Device 公司 AD9233 芯片,是一款单 芯片、12 位、125 MSPS 模数转换器(ADC),采用 1.8 V 单电源供电,内 置一个高性能采样保持放大器(SHA)和片内基准电压源,最高采样率可达 125MHz,12 位分辩率,模拟带宽最高可达 650MHz,可做射频直接带通采 样,板上 AD 可采集对应四通道射频下变频正交 IQ 输出。 ¾ 四通道 Analog 高速 16 位 DA 转换芯片 AD9777,最大输入数据速率为 160 MSPS(无插值),最大 DAC 更新速率为 400 MSPS(8x 插值),AD9777 的优点在于利用其内部复合(I&Q)混频器,可以实现更传统的基带 I/Q 架构或 镜像抑制上变频架构。 ¾ 四通道模拟正交上变频模块,上变频芯片采用 ADL5375,实现正交信号调制 至射频频段输出,频率覆盖 800 MHz 到 2.7 GHz,最大输出功率为 10dBm; ¾ 板上具有 USB2.0 高速传输接口功能,接口芯片为 Cypress 的 CY7C68013-56, 支持 480Mbits 高速数据传输; ¾ 板上具有 100M 以太网接口功能,接口芯片为 WIZnet 的 W5100,支持 100M 以太网接口速度传输;
翻译1
基于DSP的弱小目标探测系统摘要关于分布式系统弱小目标探测和跟踪的研究对提升红外系统性能非常重要。
当背景图像很复杂,目标像素很低,很难检查。
一个当地的纹理分析方法,非常适合弱小标探测低信号噪声的实时检测。
为了满足实时实现的目标探测要求,一个弱小目标的探测系统,这个系统基于TMS320DM642平台,这是一个由TI公司生产的高性能数字多媒体DSP芯片。
程序的处理速度和流水线效率的提高是由于软件程序的优化,所以该系统有很好的软件和硬件系统结构。
实验表明,该系统可以实时检测1到3个像素的在稳步杂波背景下的弱小目标关键字弱小目标侦测 TMS320DM642 硬件系统1.引言随着数字技术和微电子技术的发展和应用,航空电子技术迅速发展,消防系统应该满足战斗机的武器系统的更高的要求。
在军事应用领域的被动光电系统研究中分布式检测系统是一种新的概念,这是一个光电系统在军事应用领域新的发展方向。
分布式红外多传感器系统采用被动红外探测和跟踪。
它可以在雷达系统停止工作时工作,它有很好的抗电磁能力和许多其他特性例如高分辨率成像 [1]。
同时,使用多个传感器在一起可以提高目标探测和跟踪的性能。
研究分布式系统的弱小目标探测和跟踪对提升外保护系统的性能和新一代战斗机的消防系统非常重要[2]。
目前,昏暗杂乱的红外序列图像中目标的检测和跟踪是一个重要的研究问题。
这个问题算法的设计已经达到了一个相对成熟的阶段,但在实时硬件实现上也有一些瓶颈问题,比如大数据量和较低的处理速度,这让它很难在应用中实现。
高性能DSP芯片的不断出现使得它可以实现弱小目标的实时探测和跟踪[3]。
我们使用德州仪器(TI)生产的高性能DSP芯片TMS320DM642作为核心,设计和实现一个整体硬件系统包括图像的实时输入和输出, 通过优化软件系统的程序结构提高了系统的处理速度,并且算法的选择变得非常灵活和多样化。
该系统具有简单、小容积和低功率消耗的特点,所以它有非常高的实用水平2.弱小目标的一种检测方法这种新的弱小目标检测方法是基于局部纹理分析。
MEMORY存储芯片MT48LC4M32B2B5-7G中文规格书
4Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions
A[9:7] A[6:3] A[2:0]
Toggling Static High
Data3
0
0
D 10000000000000
–
1
D 10000000000000
–
2
D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0
–
3
D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0
–
1
4–7
Notes:
1. DQS_t, DQS_c are VDDQ. 2. BG1 is a "Don't Care" for x16 devices.
3. DQ signals are VDDQ. 4. For x4 and x8 only.
13 52–55
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14 56–59
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15 60–63
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4
MEMORY存储芯片MT48H16M32LFB5-6IT中文规格书
The voltage levels for setup and hold time measurements are dependent on V REF. V REF isunderstood as V REF(DC), as defined in the above figure. This clarifies that DC-variationsof V REF affect the absolute voltage a signal has to reach to achieve a valid HIGH or LOWlevel, and therefore, the time to which setup and hold is measured. System timing andvoltage budgets need to account for V REF(DC) deviations from the optimum positionwithin the data-eye of the input signals. This also clarifies that the DRAM setup/holdspecification and derating values need to include time and voltage associated with V REFAC-noise. Timing and voltage effects due to AC-noise on V REF up to the specified limit(±1% of V DD) are included in DRAM timings and their associated deratings.V REFDQ Supply and Calibration RangesThe device internally generates its own V REFDQ. DRAM internal V REFDQ specification pa-rameters: voltage range, step size, V REF step time, V REF full step time, and V REF valid levelare used to help provide estimated values for the internal V REFDQ and are not pass/faillimits. The voltage operating range specifies the minimum required range for DDR4SDRAM devices. The minimum range is defined by V REFDQ,min and V REFDQ,max. A cali-bration sequence should be performed by the DRAM controller to adjust V REFDQ andoptimize the timing and voltage margin of the DRAM data input receivers.Table 82: V REFDQ SpecificationNotes: 1.V REF(DC) voltage is referenced to V DDQ(DC). V DDQ(DC) is 1.2V.2.DRAM range 1 or range 2 is set by the MRS6[6]6.3.V REF step size increment/decrement range. V REF at DC level.4.V REF,new = V REF,old ±n × V REF,step; n = number of steps. If increment, use “+,” if decrement,use “-.”5.For n >4, the minimum value of V REF setting tolerance = V REF,new - 1.625% × V DDQ. Themaximum value of V REF setting tolerance = V REF,new + 1.625% × V DDQ.6.Measured by recording the MIN and MAX values of the V REF output over the range,drawing a straight line between those points, and comparing all other V REF output set-tings to that line.7.For n ื4, the minimum value of V REF setting tolerance = V REF,new - 0.15% × V DDQ. Themaximum value of V REF setting tolerance = V REF,new + 0.15% × V DDQ.8.Measured by recording the MIN and MAX values of the V REF output across four consecu-tive steps (n = 4), drawing a straight line between those points, and comparing all V REFoutput settings to that line.9.Time from MRS command to increment or decrement one step size for V REF.10.Time from MRS command to increment or decrement more than one step size up to thefull range of V REF.11.If the V REF monitor is enabled, V REF must be derated by +10ns if DQ bus load is 0pF andan additional +15 ns/pF of DQ bus loading.12.Only applicable for DRAM component-level test/characterization purposes. Not applica-ble for normal mode of operation. V REF valid qualifies the step times, which will be char-acterized at the component level.V REFDQ RangesMR6[6] selects range 1 (60% to 92.5% of V DDQ) or range 2 (45% to 77.5% of V DDQ), andMR6[5:0] sets the V REFDQ level, as listed in the following table. The values in MR6[6:0]will update the V DDQ range and level independent of MR6[7] setting. It is recommendedMR6[7] be enabled when changing the settings in MR6[6:0], and it is highly recommen-ded MR6[7] be enabled when changing the settings in MR6[6:0] multiple times during acalibration routine.Table 83: V REFDQ Range and LevelsElectrical Characteristics – AC and DC Single-Ended Input Measurement LevelsRESET_n Input LevelsTable 84: RESET_n Input Levels (CMOS)Notes: 1.Overshoot should not exceed the V IN shown in the Absolute Maximum Ratings table.2.After RESET_n is registered HIGH, the RESET_n level must be maintained aboveV IH(DC)_RESET , otherwise operation will be uncertain until it is reset by asserting RESET_nsignal LOW.3.After RESET_n is registered LOW, the RESET_n level must be maintained below V IL(DC)_RE-SET during t PW_RESET, otherwise the DRAM may not be reset.4.Undershoot should not exceed the V IN shown in the Absolute Maximum Ratings table.5.Slope reversal (ring-back) during this level transition from LOW to HIGH should be miti-gated as much as possible.6.RESET is destructive to data contents.7.See RESET Procedure at Power Stable Condition figure.Figure 211: RESET_n Input Slew Rate DefinitionV IH(AC)_RESET,minV IL(AC)_RESET,maxV IH(DC)_RESET,minV IL(DC)_RESET,maxCommand/Address Input LevelsTable 85: Command and Address Input Levels: DDR4-1600 Through DDR4-24008Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels。
MEMORY存储芯片MT48LC32M8A2-6A G中文规格书
Automotive Mobile LPDDR2 SDRAM MT42L64M16D1, MT42L32M32D1Features•Ultra low-voltage core and I/O power supplies–V DD2 = 1.14–1.30V–V DDCA/V DDQ = 1.14–1.30V–V DD1 = 1.70–1.95V•Clock frequency range–533–10 MHz (data rate range: 1066–20 Mb/s/pin)•Four-bit prefetch DDR architecture•Eight internal banks for concurrent operation •Multiplexed, double data rate, command/address inputs; commands entered on every CK edge •Bidirectional/differential data strobe per byte of data (DQS/DQS#)•Programmable READ and WRITE latencies (RL/WL)•Programmable burst lengths: 4, 8, or 16•Per-bank refresh for concurrent operation•On-chip temperature sensor to control self refresh rate•Partial-array self refresh (PASR)•Deep power-down mode (DPD)•Selectable output drive strength (DS)•Clock stop capability•RoHS-compliant, “green” packagingTable 1: Key Timing ParametersOptions Marking •V DD2: 1.2V L •Configuration–8 Meg x 16 x 8 banks x 1 die64M16– 4 Meg x 32 x 8 banks x 1 die32M32•Device type–LPDDR2-S4, 1 die in package D1•FBGA “green” package–134-ball FBGA (10mm x11.5mm)HE •Timing – cycle time– 1.875ns @ RL = 8-18– 2.5ns @ RL = 6-25•Special options–Automotive grade (Package-levelburn-in)A •Operating temperature range–From –40°C to +85°C IT–From –40°C to +105°C AT •Revision:A Note: 1.For Fast t RCD/t RP, contact factory.AC TimingTable 86: AC TimingNotes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the t CK minimum conditions (in mul-tiples of t CK) as well as the timing specifications when values for both are indicated.。
MEMORY存储芯片MT48LC8M16A2P-6A L中文规格书
Table 55: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)8Gb: x4, x8, x16 DDR3L SDRAM Electrical Characteristics and AC Operating ConditionsInput Operating ConditionsTable 21: DDR3L 1.35V DC Electrical Characteristics and Input ConditionsNotes: 1.V REFCA(DC) is expected to be approximately 0.5 × V DD and to track variations in the DClevel. Externally generated peak noise (non-common mode) on V REFCA may not exceed ±1% × V DD around the V REFCA(DC) value. Peak-to-peak AC noise on V REFCA should not ex-ceed ±2% of V REFCA(DC).2.DC values are determined to be less than 20 MHz in frequency. DRAM must meet specifi-cations if the DRAM induces additional AC noise greater than 20 MHz in frequency.3.V REFDQ(DC) is expected to be approximately 0.5 × V DD and to track variations in the DC level. Externally generated peak noise (non-common mode) on V REFDQ may not exceed ±1% × V DD around the V REFDQ(DC) value. Peak-to-peak AC noise on V REFDQ should not ex-ceed ±2% of V REFDQ(DC).4.V REFDQ(DC) may transition to V REFDQ(SR) and back to V REFDQ(DC) when in SELF REFRESH,within restrictions outlined in the SELF REFRESH section.5.V TT is not applied directly to the device. V TT is a system supply for signal termination re-sistors. Minimum and maximum values are system-dependent.8Gb: x4, x8, x16 DDR3L SDRAM Electrical Specifications – DC and AC。
用于光电设备的航电总线数据测试系统
用于光电设备的航电总线数据测试系统陈静;田民强;白委宁;刘博;惠进【摘要】由于单项的专用总线测试系统通用性、兼容性较差,功能扩展和技术升级的难度较大,介绍一个可以支持1553B、ARINC429、CAN、RS232和RS422五种航电标准的数据总线测试系统的设计方案及技术实现.重点介绍了数据总线测试系统的硬件框架组成,同时分析了系统软件实现方法以及总线逻辑控制设计.该测试系统已成功用于某光电设备在线检测,经实验验证该系统运行稳定可靠.【期刊名称】《应用光学》【年(卷),期】2018(039)006【总页数】4页(P947-950)【关键词】测试技术;航空总线;DSP;FPGA【作者】陈静;田民强;白委宁;刘博;惠进【作者单位】西安建筑科技大学,陕西西安710055;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065【正文语种】中文【中图分类】TN919.5引言机载光电设备是航空武器装备的重要组成部分,通过航电总线与载机进行数据交互。
航空总线总类繁多,在电气特征、拓扑结构、数据传输格式等各个方面都存在很大的差异,给光电设备的测试和调试带来了困难。
研究智能化、开放式人机交互的通用数据总线测试系统,采用简洁的操作步骤,完成精确和详细的通讯测试、故障检测、数据监控,实现准确的故障定位和实时监控,进而提升光电设备的可靠性,是当前数据总线测试技术研究发展的重点[1-3]。
航空总线主要有ARINC419、ARINC429、ARINC629等民用航空总线标准[4-6]和MIL-STD-1553B、GINA等军用航空总线标准[7-8],现阶段,机载光电设备一般采用INC429总线和1553B总线与载机进行信息交换,光电设备内部采用RS232、RS422、CAN总线完成指令控制和交换。
本文针对机载光电设备常用的5种总线标准,设计了一种通用数据总线测试系统,可实现载机总线数据模拟注入、光电设备外部总线通讯监控、光电设备内部通讯信息监控、光电设备完整链路测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SDR SDRAM
MT48LC4M32B2 – 1 Meg x 32 x 4 Banks
Features
•PC100-compliant
•Fully synchronous; all signals registered on positive edge of system clock
•Internal pipelined operation; column address can be changed every clock cycle
•Internal banks for hiding row access/precharge •Programmable burst lengths: 1, 2, 4, 8, or full page •Auto precharge, includes concurrent auto precharge and auto refresh modes
•Self refresh mode (not available on AT devices)•Auto refresh
–64ms, 4096-cycle refresh (commercial and industrial)
–16ms, 4096-cycle refresh (automotive)
•LVTTL-compatible inputs and outputs
•Single 3.3V ±0.3V power supply
•Supports CAS latency (CL) of 1, 2, and 3Options Marking •Configuration
– 4 Meg x 32 (1 Meg x 32 x 4 banks)4M32B2•Package – OCPL1
–86-pin TSOP II (400 mil)TG
–86-pin TSOP II (400 mil) Pb-free P
–90-ball VFBGA (8mm x 13mm)F5
–90-ball VFBGA (8mm x 13mm) Pb-
free
B5•Timing (cycle time)
–6ns (167 MHz)-6A2
–6ns (167 MHz)-63
–7ns (143 MHz)-73•Revision:G/:L •Operating temperature range
–Commercial (0°C to +70°C)None
–Industrial (–40°C to +85°C)IT
–Automotive (–40°C to +105°C)AT4 Notes: 1.Off-center parting line.
2.Available only on Revision L.
3.Available only on Revision G.
4.Contact Micron for availability.
Table 1: Key Timing Parameters
质量等级领域:宇航级IC、特军级IC、超军级IC、普军级IC、禁运IC、工业级IC,军级二三极管,功率管等;
应用领域:航空航天、船舶、汽车电子、军用计算机、铁路、医疗电子、通信网络、电力工业以及大型工业设备
祝您:工作顺利,生活愉快!
以深圳市美光存储技术有限公司提供的参数为例,以下为MT48LC4M32B2B5-6A IT_L的详细参数,仅供参考
Table 2: Address Table
Table 3: 128Mb (x32) SDR Part Numbering
128Mb: x32 SDRAM
Features
128Mb: x32 SDRAM
Electrical Specifications
Electrical Specifications
Electrical Specifications – I DD Parameters
Table 10: I DD Specifications and Conditions – Revision G
Table 11: I DD Specifications and Conditions – Revision L
Notes:
1.All voltages referenced to V SS .
2.I DD specifications are tested after the device is properly initialized.
3.The minimum specifications are used only to indicate cycle time at which proper opera-tion over the full temperature range is ensured for IT parts:0°C ื T A ื +70°C –40°C ื T A ื +85°C.
4.t HZ defines the time at which the output achieves the open circuit condition; it is not a reference to V OH or V OL . The last valid data element will meet t OH before going High-Z.
5.Other input signals are allowed to transition no more than once in any two-clock period and are otherwise at valid V IH or V IL levels.
6.I DD is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
7.Required clocks are specified by JEDEC functionality and are not dependent on any tim-ing parameter.
128Mb: x32 SDRAM
Electrical Specifications – I DD Parameters
Figure 13: Mode Register Definition
A9A7A6A5A4A3A8A2A1A0Address Bus
A10A11A12128Mb: x32 SDRAM
Mode Register。