矩形波导PPT课件
合集下载
微波技术第3章1矩形波导
![微波技术第3章1矩形波导](https://img.taocdn.com/s3/m/40a749578762caaedc33d404.png)
编辑ppt
可见前五个导模是 TE10、TE20、TE01、 TE11、TM11。
35
则TE10模 TE20模 TE01模 TE11和TM11模 TE21和TM21模 TE12和TM12模
• 当f0 = 10GHz时,λc=3cm
fcTE10=6.562GHz fcTE20=13.123GHz fcTE01=14.764GHz fcTE11=16.156GHz fcTE21=19.753GHz fcTE12=30.248GHz
传播。
编辑ppt
13
TE20模场结构
TE10 TE20
编辑ppt
14
(2)TE01模与TE0n模
其场分量为
Ex
j n
b H mn sin n b y e
jz
Hy
j n
b
ny
H mn sin b e
jz
Hz
ny H mn cos b e
jz
Ey Ez H x 0
TE01模只有Ex、Hy和Hz三个场分量,它们与x无关,故 沿a边场无变化;
波分布或TM11模场;如 图。
注:TE11与TM11是简并模,这种简并称为模式简并; 同理,TEmn与TMmn (m>0, n>0) 是简并模。
编辑ppt
19
3.管壁电流 Js nˆHtan
主模:TE10模工作下
波导底面 y = 0 ; nˆ yˆ
JSy 0 y ˆ [x ˆHx zˆHz] x ˆHz zˆHx
ZTM
Eu Hv
2
1
k
c
编辑ppt
31
(5)TE10模矩形波导的传输功 率
P Re 1 E H * ds 2S
可见前五个导模是 TE10、TE20、TE01、 TE11、TM11。
35
则TE10模 TE20模 TE01模 TE11和TM11模 TE21和TM21模 TE12和TM12模
• 当f0 = 10GHz时,λc=3cm
fcTE10=6.562GHz fcTE20=13.123GHz fcTE01=14.764GHz fcTE11=16.156GHz fcTE21=19.753GHz fcTE12=30.248GHz
传播。
编辑ppt
13
TE20模场结构
TE10 TE20
编辑ppt
14
(2)TE01模与TE0n模
其场分量为
Ex
j n
b H mn sin n b y e
jz
Hy
j n
b
ny
H mn sin b e
jz
Hz
ny H mn cos b e
jz
Ey Ez H x 0
TE01模只有Ex、Hy和Hz三个场分量,它们与x无关,故 沿a边场无变化;
波分布或TM11模场;如 图。
注:TE11与TM11是简并模,这种简并称为模式简并; 同理,TEmn与TMmn (m>0, n>0) 是简并模。
编辑ppt
19
3.管壁电流 Js nˆHtan
主模:TE10模工作下
波导底面 y = 0 ; nˆ yˆ
JSy 0 y ˆ [x ˆHx zˆHz] x ˆHz zˆHx
ZTM
Eu Hv
2
1
k
c
编辑ppt
31
(5)TE10模矩形波导的传输功 率
P Re 1 E H * ds 2S
第3.1章矩形波导 2019
![第3.1章矩形波导 2019](https://img.taocdn.com/s3/m/e525703952ea551810a68777.png)
( A1
cos kx
x)(
B1 sin kyb)
又由于B1≠0,A1≠0,故有:
sin kyb 0 sin kxa 0
kyb np kxa mp
整理可得:
mp A2 0, kx a m 0,1, 2,...
np B2 0, ky b n 0,1, 2,...
由于对所有的m和n ,均可满足边界条件,则通解为所有 m和所有n式的叠加:
则可得到通解:
H 0 z ( x , y ) ( A1 c o s k x x A 2 sin k x x )( B 1 c o s k y y B 2 sin k y y )
X (x)
Y (y)
则由纵横关系式可得电场:
E0x (x, y) 0, E0y (x, y) 0,
y 0,b x 0, a
m
a
2
n
b
2
(2) TM模
对于TM模: Ez 0,
Hz 0
边界条件: E0z (x, y) 0, E0z ( x, y) 0,
则可得到通解:
y 0, b x 0, a
E0z (x, y) (A1 cos kx x A2 sin kx x)(B1 cos k y y B2 sin k y y)
横纵向场关系式:
Ex
j
k
2 c
E z x
H z
y
Ey
k
j
2 c
E z y
H z
x
Hx
k
讲18矩形波导03PPT课件
![讲18矩形波导03PPT课件](https://img.taocdn.com/s3/m/6d8ff9f02f60ddccdb38a0b7.png)
Ez y
)
H (x, y, z) H(x, y)e z
kc2 k2 2
2Ez k 2Ez 0
Ez, Hz ,
2Hz k2Hz 0 边界条件
如果 Ez= 0, Hz= 0,E、H 完全在横截面内,这种波被称为横电 磁波,简记为 TEM 波,这种波型不能用纵向场法求解;
如果 Ez 0, Hz= 0 ,传播方向只有电场分量,磁场在横截面内, 称为横磁波,简称为 TM 波或 E 波;
紫外线
可见光线 (光纤通信用)
光纤
近红外线 远红外线
亚毫米波 红外
毫米波(EHF) 厘米波(SHF)
波导
分米波(UHF)
米波(VHF) 短波(HF)
同轴电 缆
中波(MF) 长波
对称线
微波无 线电
短波无 线电
长波无 线电
波导是用金属管制作的导波系统, 电磁波在管内传播,损耗很小,主要用于 3GHz ~30GHz 的频率范围。
Hx (x, y, z) H x (x, y)e z
Ey (x, y, z) Ey (x, y)e z
H y (x, y, z) H y (x, y)e z
Ez (x, y, z) Ez (x, y)e z
Hz (x, y, z) H z (x, y)e z
Ex (x, y, z)、Ey (x, y, z)、Hx (x, y, z)、H y (x, y, z)
Ez y
E y z
jH x
Ex z
Ez x
jH y
H z y
H y z
j Ex
H x z
H z x
jEy
Ez y
Ey
jH x
Ex
《矩形波导TE波》PPT课件
![《矩形波导TE波》PPT课件](https://img.taocdn.com/s3/m/fb9dd8e9a8114431b80dd880.png)
2021/8/17
17
二、TE10波的功率和容量
图 13-5 尖端效应影响耐功率
2021/8/17
18
三、TE10波内壁电流
在电磁理论中已经讲过波导管壁的传导电流分
布是由管内磁场的切向分J 量s 所n 决H 定r 。
(13-8)
Js
Ht
n
图 13-6 波导管内壁电流
2021/8/17
19
三、TE10波内壁电流
目前的雷达战中,对提高峰值功率容量极为重视。
因为在一定意义上,功率就是作用距离,所以增加传
输线功率容量相当重要。
气体击空的实质是场拉出游离电子在撞到气体分子
之前已具有足够的动能,再次打出电子,形成连锁反
应,以致击穿。如果在概念上,我们加大气体密度,
就不会出现很大动能的电子,所以加大气压和降低温
度是增加耐压功率的常用办法。
是一个问题的两个方面:增加功率是为了使通讯雷
达“看”远,减小衰减是为了保证功率不受损失,
一个“增产”,一个“节支”,相互依存,缺一不
可。
一般认为波导空间(Air Space)是无耗的,所谓
衰减是指电流的壁损耗。假定P0是理想导体波导的
传输功率,则
P P0 e 2 az
P z
2aP0 e 2az
2021/8/17
2
波型阻抗
1
2021/8/17
1
2a
2
5
一、TE10波的另一种表示
我们在上面给出的TE10波表达式,是以Hz为领矢
矢量的。然而,在实用上也常有用Ey作领矢矢量,即
设
Ey E0sinaxejz
(13-1)
利用Maxwell方程
矩形波导中的TE波-Read.PPT
![矩形波导中的TE波-Read.PPT](https://img.taocdn.com/s3/m/56d8f87666ec102de2bd960590c69ec3d5bbdb99.png)
第八章导行电磁波
(3) 色散。由式(8 - 11a)和(8 - 11d)可知,TE波和TM波的相 速和群速都随波长(即频率)而变化,称此现象为“色散”。因 此TE波和TM波(即非TEM波)称为“色散”波,而TEM波的相 速和群速相等, 且与频率无关, 称为“非色散” 波。
第八章导行电磁波 4. 波阻抗
TEM波,但由式(8 -6)可知,此时必有kc=0,γ=jβ=jkz。这样Et 和
Ht仍可由式(8 - 15a)计算,即
第八章导行电磁波 式中:
第八章导行电磁波 8.1.5 边界条件
图 8 - 1 导波系统横截面
第八章导行电磁波 对于TM波, 其边界条件为
第八章导行电磁波 由于kc≠0,所以有
c
第八章导行电磁波
式中
,ZTM=β/ωε。
第八章导行电磁波 2. TE波 TE波型电场的纵向分量Байду номын сангаасz=0,代入式(8 - 2a)得▽t×Ht=0。令
第八章导行电磁波
第八章导行电磁波 3. TEM波
横电磁波的纵向电磁场分量都为零,即Ez=0,Hz=0,故E=Et, H=Ht。显然,如果TM波的Ez(或TM波的Hz)等于零,它就变成了
TEM都能满足f>fc=0的传输条件,均是传输状态。也就是说TEM 波不存在截止频率。
第八章导行电磁波 2. 波导波长
在传输状态下,γ=jβ=jkz,
将kc=2π/λc,k=2π/λ=2π/λ0
代入上式得
第八章导行电磁波 所以可得
对于TEM波,λc=∞,
第八章导行电磁波 3. 相速、群速和色散 (1) 相速。
式中n为波导内壁上的单位法向矢量,它由波导管壁指向波导管 内;H 是波导管内壁处的切向磁场。
三、矩形波导管中电磁波的传输特性 微波技术基础 课件 PPT
![三、矩形波导管中电磁波的传输特性 微波技术基础 课件 PPT](https://img.taocdn.com/s3/m/977f242af61fb7360a4c6592.png)
c
2
1
m
2
n
2
a b
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
❖ 简并现象:不同波型具有相同截止波长(或截止频率)的现象
简并波型的kc、fc、vg、vp以及g都是相同的 kc
o 一般情况下: ▪ TE0n和TEm0是非简并模(TM最低次模为TM11)
2 m 2 n 2 a b
矩形波导管管壁电流立体分布图
❖ 左右两侧壁的电流 ❖ 只有Jy分量 ❖ 大小相等,方向相同。
❖ 上下宽壁内的电流 ❖由Jz和Jx合成, ❖ 同一位置上下宽壁内的管壁电流大小 相等,方向相反。
§2-3 矩形波导管中电磁波的传输特性——四、矩形波导管的管壁电流
了解管壁电流的分布情况,对解决某些实际问题有帮助
ax
s
in
2
a
x dxdy
Em2 axb
2ZTE10
a sin 2
0
a
x dx ab
2ZTE10
Em2 ax
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
▪ 功率容量Pbr:波导能够传输(承受)的最大允许功率(极限功率)
Emax Ey xa / 2 Ebr
a 0.7
b 0.4 ~ 0.5a
▪ 使用的波导已标准化:可根据需要选用
§2-3 矩形波导管中电磁波的传输特性——
四、矩形波导管的管壁电流
▪ 导行波在金属波导内壁表面上将感应出高频电流,称为管壁电流。
▪ 管壁电流如何分布?
假定内表面是理想导体, ▪ Js表示内表面上的表面电流密度矢量 ▪ H表示内表面处切线方向的磁场强度 ▪ an表示内表面法线方向的单位矢量
2
1
m
2
n
2
a b
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
❖ 简并现象:不同波型具有相同截止波长(或截止频率)的现象
简并波型的kc、fc、vg、vp以及g都是相同的 kc
o 一般情况下: ▪ TE0n和TEm0是非简并模(TM最低次模为TM11)
2 m 2 n 2 a b
矩形波导管管壁电流立体分布图
❖ 左右两侧壁的电流 ❖ 只有Jy分量 ❖ 大小相等,方向相同。
❖ 上下宽壁内的电流 ❖由Jz和Jx合成, ❖ 同一位置上下宽壁内的管壁电流大小 相等,方向相反。
§2-3 矩形波导管中电磁波的传输特性——四、矩形波导管的管壁电流
了解管壁电流的分布情况,对解决某些实际问题有帮助
ax
s
in
2
a
x dxdy
Em2 axb
2ZTE10
a sin 2
0
a
x dx ab
2ZTE10
Em2 ax
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
▪ 功率容量Pbr:波导能够传输(承受)的最大允许功率(极限功率)
Emax Ey xa / 2 Ebr
a 0.7
b 0.4 ~ 0.5a
▪ 使用的波导已标准化:可根据需要选用
§2-3 矩形波导管中电磁波的传输特性——
四、矩形波导管的管壁电流
▪ 导行波在金属波导内壁表面上将感应出高频电流,称为管壁电流。
▪ 管壁电流如何分布?
假定内表面是理想导体, ▪ Js表示内表面上的表面电流密度矢量 ▪ H表示内表面处切线方向的磁场强度 ▪ an表示内表面法线方向的单位矢量
矩形波导PPT幻灯片课件
![矩形波导PPT幻灯片课件](https://img.taocdn.com/s3/m/765558eca0116c175f0e48f4.png)
g
vp f
1 ( c )2
2 2 g
1 ( c )2
其中 λ为工作波长。
第2章 规则金属波导
对均不为零的m和n, TEmn和TMmn模具有相同的截止波长 和λc截止波数Kc,Kc和λc相同但波型不同称为简并模, 虽然它们 场分布不同, 但具有相同的传输特性。
则有:
Hz
m
H0 cos( a
x) cos(n
b
y)e jz
第2章 规则金属波导
TE波的全部场分量表示式为:
Ex
j Kc2
H0
n
b
cos(m
a
x) sin(n
b
y)e jz
Ey
j
K
2 c
H0
m
a
s in( m
a
x) cos(n
b
y)e jz
Ez 0
第2章 规则金属波导
二、 矩形波导中的场
由上节分析可知, 矩形金属波导中只能存在TE波和 TM波。下面分别来讨论这两种情况下场的分布。 (一)TM
(1)场分量的表示式
此时Hz=0, Ez≠0, 且满足
Ez E0 cos(Kx x x ) cos(Ky y y )e jz
根据边界条件(波导管壁内表面电场切向分量为零)求解 上式中待定常数:
第2章 规则金属波导
TE21模场结构图
第2章 规则金属波导
三、 矩形波导的传输特性
1) 截止波数、截止波长、
由前述分析,矩形波导TEmn和TMmn模的截止波数均为
Kcmn
m 2 n 2
a b
《电磁场与微波技术教学课件》2.2 矩形波导
![《电磁场与微波技术教学课件》2.2 矩形波导](https://img.taocdn.com/s3/m/4fc5f35054270722192e453610661ed9ac515556.png)
雷达天线
矩形波导可以作为雷达系统的天线, 利用其高方向性和低副瓣特性,提高 雷达的探测精度和距离分辨率。
毫米波雷达
在毫米波雷达中,矩形波导常被用作 发射和接收天线,其宽带宽和低损耗 特性有助于实现高分辨率和高灵敏度 的探测。
测量技术中的应用
微波测量
矩形波导在微波测量技术中常被用作标准测量器件,用于校准和检测微波设备 的性能参数。
100%
军事应用
在二战期间,矩形波导在雷达和 通信系统中得到广泛应用。
80%
技术进步
随着微波技术的不断发展,矩形 波导的性能得到不断提升和优化 。
02
矩形波导的传输特性
传输模式
01
02
03
04
TEM模
在矩形波导中,当工作频率较 低时,只有TM01模可以传输 ,随着频率的升高,会出现 TE11模,TM02模等其他模式 。在某些频率下,可能存在多 个模式同时传输的情况。
矩形波导的应用
雷达系统
矩形波导可用于雷达发射和接收天线,传输高频率 的微波信号。
卫星通信
在卫星通信系统中,矩形波导常用于传输信号,确 保信号的稳定传输。
加热与熔炼
矩形波导的高功率容量使其在工业加热和熔炼中得 到广泛应用。
矩形波导的发展历程
80%
早期研究
20世纪初,科学家开始研究矩形 波导的传输特性。
色散效应
由于色散现象的存在,矩形波导中的信号传输会受到一定的影响。例如,脉冲信号的展宽 、信号畸变等。因此,在设计微波系统时,需要考虑矩形波导的色散效应,以减小其对系 统性能的影响。
பைடு நூலகம் 03
矩形波导的尺寸选择与设计
波导尺寸的选择
01
矩形波导的传播特性24页PPT
![矩形波导的传播特性24页PPT](https://img.taocdn.com/s3/m/92b0c10db9f3f90f77c61b8d.png)
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
矩形波导中的TE波.PPT
![矩形波导中的TE波.PPT](https://img.taocdn.com/s3/m/ddd3b081d4bbfd0a79563c1ec5da50e2524dd106.png)
第九章 导行电磁波
电磁场理论
第9章 导行电磁波 9-3 矩形波导中的TE10波
8/27/2019
电磁场与电磁波1第九章导行电磁波 复习9-2矩形波导的传播特性(1)
矩形波导截止频率: 能够传输的最低频率 y
b
,
x
a
z
频率大于截止频率的电磁波才能在矩形波导中传输。
a= 2b
主模频率范围
填充空气的矩形波导中TM波和TE波的截止频率分布
( 1) 该矩形波导的尺寸 a 和b 。 ( 2) 根据所设计的波导 ,计算 TE10 波的相速度 、波导波长和波 阻抗。
(1) TE10 波的截止波长和截止频率分别为
TE01 波的截止波长和截止频率分别为
根据题意可得:1.2/(2a)≤3×10'
0.8c/(2b)≥ 3×10'
可取:
9/4/2019
其它模式开始出现 ,呈现多模式。
8/27/2019
电磁场理论
3
第九章 导行电磁波 复习9-2矩形波导的传播特性(3)
矩形波导中TE波电磁场分布情况
E2(x,y,z)= 0
y
b
,
一 a一 x
z
8/27/2019
电磁场理论
4
第九章 导行电磁波
9-3 矩形波导中的TE10波
EX( x , y , z ) = 0
TE10 波的电磁场表达式
HY(x,y,z)=0
8/27/2019
电磁场理论
5
第九章 导行电磁波
TE10 波的电磁场对应的瞬时表达式
H2(x,y,z)=v2HOCOS(zx/a)cos(ot-kz) 其余分量为零
t =0
电磁场理论
第9章 导行电磁波 9-3 矩形波导中的TE10波
8/27/2019
电磁场与电磁波1第九章导行电磁波 复习9-2矩形波导的传播特性(1)
矩形波导截止频率: 能够传输的最低频率 y
b
,
x
a
z
频率大于截止频率的电磁波才能在矩形波导中传输。
a= 2b
主模频率范围
填充空气的矩形波导中TM波和TE波的截止频率分布
( 1) 该矩形波导的尺寸 a 和b 。 ( 2) 根据所设计的波导 ,计算 TE10 波的相速度 、波导波长和波 阻抗。
(1) TE10 波的截止波长和截止频率分别为
TE01 波的截止波长和截止频率分别为
根据题意可得:1.2/(2a)≤3×10'
0.8c/(2b)≥ 3×10'
可取:
9/4/2019
其它模式开始出现 ,呈现多模式。
8/27/2019
电磁场理论
3
第九章 导行电磁波 复习9-2矩形波导的传播特性(3)
矩形波导中TE波电磁场分布情况
E2(x,y,z)= 0
y
b
,
一 a一 x
z
8/27/2019
电磁场理论
4
第九章 导行电磁波
9-3 矩形波导中的TE10波
EX( x , y , z ) = 0
TE10 波的电磁场表达式
HY(x,y,z)=0
8/27/2019
电磁场理论
5
第九章 导行电磁波
TE10 波的电磁场对应的瞬时表达式
H2(x,y,z)=v2HOCOS(zx/a)cos(ot-kz) 其余分量为零
t =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 规则金属波导
则有: E zE 0sim n a (x)sin n b y ()ejz
根据上节得到TM模横向场表达式:
Ht Et
1
K
2 c
j
K
2 c
j z
t Ez
t
E
z
在直角坐标系下:
Ht
j
Kc2
xEz y
yEz x
Et
j
Kc2
xEz y
yEz x
第2章 规则金属波导
TM波的全部场分量表示式为:
第2章 规则金属波导
得到:
X
K
2 x
X
0
Y
K
2 y
Y
0
(2.3-10) (2.3-11)
通解为:
XC1coK sxx()C2sinKx(x) YC3coK syy()C4sinKy(y)
(2.3-12) (2.3-13)
或:
XAcosK(xxx) YBcosK(yyy)
(2.3-14) (2.3-15)
第2章 规则金属波导
小结:
①存在无穷多个波型与m、n对应,其线性组合(叠加)也是场
解。每一对(m、n)对应一种波型,记为TMmn。截止波数:
Kc=
m
a
2
n
b
2
②对于TM波,m、n中任意一个不能为0,否则场全为0。
所以TM00、TM0n、TMm0不存在。最低波型为TM11。
③TM波型的场沿z轴为行波,沿x、y轴为纯驻波分布(正弦、余 弦的分布规律)。
(1)场分量的表示式
此时Hz=0, Ez≠0, 且满足
E z E 0 cK o x x sx ) ( cK o y y sy ) ( e j z
根据边界条件(波导管壁内表面电场切向分量为零)求解
上式中待定常数:
x0 xa y0 yb
Ez 0 Ez 0 Ez 0 Ez 0
x 2 Kx m a y 2 Ky n b
E x K jc 2m aE 0co m asx )s ( in b ny ) (e jz E y K jc 2n bE 0sim a nx ( )co n bs y)e ( jz
E zE 0sim n a (x)sin n b y ()ejz
H xjK w c 2n bE 0sim a nx ( )co n bs y)e ( jz
H y K jc 2 w m aE 0co m as x )s (in b ny )e ( jz
Hz 0
第2章 规则金属波导
其中:
Kc2Kx2Ky2m a2nb2
Kc为矩形波导TM波的截止波数, 显然它与波导尺寸、传 输波型有关。m和n分别代表TM波沿x方向和y方向分布的半波 个数, 一组m、n对应一种TM波, 称作TMmn模(Emn模);但m 或n均不能为零, 否则场分量全部为零。因此,矩形波导中不能 存在TMm0模、TM0n模和TM00模;TM11模是最低次模(截止波 长最长或截止频率最低), 其余称为高次模。
磁力线 总是闭合曲线,或者围绕载流导体,或者围绕交变电 场而闭合,磁力线之间不能相交,在波导壁的内表面上只能存在 磁场的切向分量,法向分量为零。
电力线与磁力线相互正交。
第2章 规则金属波导
(2)场结构
TM11模场结构图
第2章 规则金属波导
TM21模场结构图
第2章 规则金属波导
(二)TE
(1)场分量的表示式
为了能形象和直观的了解场的分布(场结构),可以 利用电力线和磁力线来描绘它。电力线和磁力线遵循 的规律:
力线上某点的切线方向
该点处场的方向
力线的疏密程度
场的强弱
电力线 发自正电荷、止于负电荷,也可以环绕着交变磁场构 成闭合曲线,电力线之间不能相交。在波导壁的内表面(假设为 理想导体)电场的切向分量为零,只有法向分量(垂直分量), 即在波导内壁处电力线垂直边壁。
至此,可以得到:
EzE0coKsxx(x)coKsyy(y)ejz (2.3-16) HzH0coKsxx(x)coKsyy(y)ejz (2.3-17)
第2章 规则金属波导
二、 矩形波导中的场
由上节分析可知, 矩形金属波导中只能存在TE波和 TM波。下面分别来讨论这两种情况下场的分布。 (一)TM
(2.1-29) (2.1-31)
这里采用直角坐标系:
t2
2 x2
2 y2
纵向分量波动方程为:
2 tE Z(x,y)K c 2E Z(x,y)0
t2 H Z(x ,y ) K c 2 H Z(x ,y ) 0
(2.2-15) (2.2-16)
第2章 规则金属波导
纵向分量求解: 纵向分量波动方程可写为:
此时Ez=0, Hz≠0, 且满足
H z H 0 cK o x x sx ) c ( K o y y sy ) e ( j z
根据边界条件(波导管壁内表面磁场法向分量为零)求解 上式中待定常数:
x0 xa y0 yb
2Ez x2
2Ez y2
Kc2Ez
0
2Hz x2
2yH2z
Kc2Hz
0
采用分离变量法:
EZX(x)Y(y)
(2.3-5) (2.3-6)
代入2.3-5 :
X X
Y Y
Kc2
上式成立必须满足(Kx、Ky为横向截止波数) :
X X K x 2 Y Y K y 2 其K x 2 中 K y 2 K : c 规则金属波导
设矩形波导的宽边尺寸为a, 窄边尺寸为b, 并建立如下图 所示的坐标。
第2章 规则金属波导
一、求解波动方程
根据上节分析结论,导行波分布函数方程:
t 2 E (x ,y ) K c 2 E (x ,y ) 0
t 2 H (x ,y ) K c 2 H (x ,y ) 0
m 场量沿x轴[0,a]出现的半周期(半个纯驻波)的数目;
n 场量沿y轴[0,b]出现的半周期的数目。
④j 相位关系 Ey-Hx、Ex-Hy
z轴有功率传输
Ez-Hx、Ez-Hy
x、y轴无功率传输
所以行波状态下,沿波导纵向(z轴)传输有功功率、横向(x、
y轴)无功功率。
第2章 规则金属波导
2) 场结构
第2章 规则金属波导
2-3
通常将由金属材料制成的、矩形截面的、内充空气介质 的规则金属波导称为矩形波导, 它是微波技术中最常用的传 输系统之一。
由于矩形波导不仅具有结构简单、机械强度大的优点, 而且由于它是封闭结构,可以避免外界干扰和辐射损耗;因 为它无内导体,所以导体损耗低,而功率容量大。在目前大 中功率的微波系统中常采用矩形波导作为传输线和构成微波 元器件。