第2章数理统计基础习题解答
概率论与数理统计2.第二章练习题(答案)
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
数理统计课后答案-第二章
2.6
已知总体
ξ 服从指数分布,概率密度为
⎧λ e − λ x ϕ ( x) = ⎨ ⎩ 0 x>0 x≤0
3
其中,参数 λ > 0 , ( X 1 , X 2 , L , X n ) 是
ξ 的样本, X 是样本均值, S 2 是样本方差,
S *2 是修正样本方差,求 EX , DX , E ( S 2 ) 和 E ( S *2 ) 。
因此有
n −1 n −1 2 n −1 n −1 2 2 )= σ , E (S y σ 。 Dξ = Dη = n n n n
⎡ n ⎤ E ⎢∑ ( X i + Yi − X − Y ) 2 ⎥ ⎣ i =1 ⎦
n n ⎡n ⎤ = E ⎢∑ ( X i − X ) 2 + 2∑ ( X i − X )(Yi − Y ) + ∑ (Yi − Y ) 2 ⎥ i =1 i =1 ⎣ i =1 ⎦
解 因为总体
ξ 服从参数为 λ 的指数分布,所以 Eξ =
1
λ
, Dξ =
1
λ2
。
由定理 2.1 可知
EX = Eξ =
1
λ
, DX =
1 1 Dξ n −1 n −1 , E ( S *2 ) = Dξ = 2 。 = 2 ,E ( S 2 ) = Dξ = 2 n n nλ nλ λ
2.7
设 ( X 1 , X 2 , L , X n ) 是总体
∑ (X i − X )2 =
i =1
n
S x2 。 b2
2.4 设有样本 ( X 1 , X 2 , L , X n ) , X = 本方差, μ 是常数,证明
1 n 1 n 2 X 是样本均值, S = ( X i − X ) 2 是样 ∑ ∑ i n i =1 n i =1
概率论与数理统计习题解答(第2章)
概率论与数理统计习题解答(第2章)习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数(1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C(这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故2{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.3解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P .3.设随机变量X 的分布律为;,2,1,0,!}{>===λλ k k ak X P k为常数,试求常数a .解:因为1!0==-∞=∑λλaek ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P . 解: (1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,4(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P .5.设随机变量X 的分布律为 ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数} 解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P 偶数,(2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计) (1) 求某一天中午12时至下午3时没有收到紧急呼救的概率.(2) 求某一天中午12时至下午5时至少收到5一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P .(2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率.解:设射击的次数为X ,由题意知().20400~,B X , {}{},98.002.0111240010400k k k kC X P X P -=∑-=≤-=≥9972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率. 解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在6窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225=-==---k k k e e Ck Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P10.设随机变量X的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求:(1) 系数a ;(2) X 落在区间)4,0(π内的概率. 解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππaxdx a dx x f ,所以21=a . (2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X的分布函数为7⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F试求:(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度.解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='=,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程24422=+++X Xx x 有实根,则3216)4(2≥--=∆X X ,即12-≤≥X X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p813.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少?解: (1) 因为4)(3~,N X 所以 )2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P9996.019998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-=[])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=. (2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于9x=3对称也容易看出。
数理统计第二章课后习题参考答案
第二章 参数估计2.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()1f x ββ=;,0x β<<的总体,试用矩法估计总体均值、总体方差及参数β. 解: 1.30.6 1.7 2.20.3 1.1 1.26X μ+++++===.()()()()()()()22222222111 1.3 1.20.6 1.2 1.7 1.2 2.2 1.20.3 1.2 1.1 1.26ni i X X n σ=⎡⎤=-=-+-+-+-+-+-⎣⎦∑ ()222222210.10.60.510.90.10.4076σ=+++++==. ()()0112E X x f x dx xdx ββββ+∞-∞===⎰⎰;.令()E X X =,则12X β=,即2X β=.参数β的矩估计量为ˆ22 1.2 2.4X β==⨯=.2.6 设总体X 的密度函数为()f x θ;,1X ,2X ,…,n X 为其样本,求下列情况下θ的MLE.(iii )()()100x x e x f x ααθθαα--⎧>⎪=⎨⎪⎩,;,其它α已知解:当0i X >()12i n = ,,,时,似然函数为: ()()()()111111ni i i n n n x n x i i i i i i L f x x e x eαααθθαθθθαθα=----===∑⎛⎫=== ⎪⎝⎭∏∏∏;.()()11ln ln ln 1ln n ni i i i L n n x x αθθααθ===++--∑∑.由()1ln 0ni i L nx αθθθ=∂=-=∂∑,得θ的MLEˆθ,即1ˆnii nxαθ==∑.2.7 设总体X 的密度函数为()()1f x x ββ=+,01x <<,1X ,2X ,…,n X 为其子样,求参数β的MLE 及矩法估计。
今得子样观察值为0.3,0.8,0.27,0.35,0.62及0.55,求参数β的估计值。
概率论与数理统计(经管类)第二章课后习题答案
习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。
《概率论与数理统计》第02章习题解答.docx
P{ X = 1} = P[人(瓦U瓦)U孔A ] = 0.8(0.2 + 0.2-0.04) + 0.2 x (0.8)2
= 0.416
P{X=2} =P( £%為)=(0.8)3=0.512
3、据信有20%的美国人没有任何健康保险,现任意抽查12个美国人,以X表示15人无 任何健康保险的人数(设各人是否有健康保险是相互独立的),问X服从什么分布,写出X的分布律,并求下列情况下无任何健康保险的概率
解:(1)P{X>1}=f(x)dx=j"-(4-x2)dr = (-X- — X3)
"9927
(2)―叫刃’叩沟心]刃
22
27
10-R
£二0丄2,…,10
27■■
592
(3)P{y=2}=C^(—)2x(—)8=0.2998
s99s9?
p{r>2}= 1- p{r=0} - p{y=1}= 1-(—)° x(―)10- ^0(—)J(—)9= 0.5778
J;(0.2 + 1.2y)dy
—oo
y v _1
-1 < y < 0
0<y<\
0
0.2y + 0.2
0.6/+0.2j + 0.2
1
y <-1
0<y<l
沖1
P{0<Y<0.5} = F(0.5)-F(0) = 0.2+0.2x0.5 + 0.6x(0.5)2-0.2 = 0.25
P{y > 0.1} = 1-F(0」)=1一0.2-0.2x0」一0.6x0= 0.774
数理统计第二章参考答案
平均极差为 = (
)= ,
则= = െ
= െ7.
2.10 设总体 X ~ P() , X1,…,X n 是来自总体 X 的样本,试验证:对于任何值 [0,1] , X (1 )S *2 都是 的无偏估计量。
解:
因此, X (1 )S *2 是 的无偏估计量。 2.14 设总体 X 服从泊松分布 P() , X1,…,X n 为取自总体 X 的一个样本,求参 数 2 的无偏估计量的 R-C 下界。
n 2 2 2 n 2
n2
n 1
lim
n+
E( X(n) )2
பைடு நூலகம்
lim
n+
n 2 n2
2
2
n 2 n 1
lim
n+
2 1 2
2
2
2 1 1
0
n
n
因此 X(n)是 的均方相合估计量,故 X(n)必是 的相合估计量。
2.22 已知某种元件的寿命服从指数分布 Exp() ,抽出 12 只进行寿命试验,结果 为(单位:h): 20 640 1750 50 1110 1660 640 2410 890 970 1520 750 试求 (1) 参数 和元件的平均寿命 的置信度为 90%的置信区间; (2) 元件平均寿命 的置信度为 90%的单侧置信下限及单侧置信上限; 解:
nx
n1 n
, x (0, )
0, else
E(x(n))
xf (x)dx
x
0
nx
n1
n dx
n n 1
E(x(n)2 )
x 2 f (x)dx
x2
0
nx
第2章数理统计基础习题解答
).
1 n λ X i − 是一个统计量. ∑ n i =1 2
B.
1 n ∑ X i − E ( X ) 是一个统计量. n i =1 1 n ∑ X i − D( X ) 是一个统计量. n i =1
C. X 1 + X 2 是一个统计量.
D.
1
4. 是(
设 ( X 1 , X 2 ,L , X n ) 是来自总体 X 的样本, X 为样本平均值,则下述结论不成立的
2
8.
设 ( X 1 , X 2 ,L , X n ) 是来自正态总体 X ~ N ( µ , σ ) 的简单随机样本, X 为样本均
2
值,记 S12 =
1 n 1 n 1 n 2 2 2 2 , , X − X S = X − X S = ( ) ( ) ∑ i ∑ i ∑ ( X i − µ )2 , 2 3 n − 1 i =1 n i =1 n − 1 i =1
2 2
28. 设 X 1 , ⋅⋅⋅, X n 为总体 X ~ B (1, p ) 的一个样本,求 E X 和 D X ,并求样本方差
( )
( )
S2 =
1 n ( X i − X ) 2 的数学期望. ∑ n − 1 i =1
解:由性质可知, E X = E ( X ) = p
( )
D ( X )= D ( X ) / n = p (1 − p ) / n
B. 每个 X i
C. ( X 1 , X 2 ,L , X n ) 是 n 维随机变量.
D. ( X 1 , X 2 ,L , X n ) 各分量相互独立且同分布.
2. 设 ( x1 , x2 , L , xn ) 是来自总体 X 的一个样本观测值,则( A
概率论与数理统计习题及答案-第二章
k0 k !
(2) P(保险公司获利不少于 10000)
P(30000 2000X 10000) P(X 10)
10 e5 5k
0.986305
k0 k !
即保险公司获利不少于 10000 元的概率在 98%以上
5
分别为随机变量 X,Y 的概率分布,如果已知 P{X≥1}= ,试求 P{Y≥1}.
9
5
4
【解】因为 P( X 1) ,故 P( X 1) .
9
9
而
P( X 1) P(X 0) (1 p)2
故得
(1 p)2 4 ,
9
1
即
p .
3
从而
P(Y 1) 1 P(Y 0) 1 (1 p)4 65 0.80247
3 0.512
4.(1) 设随机变量 X 的分布律为
2
k P{X=k}= a ,
k!
其中 k=0,1,2,…,λ>0 为常数,试确定常数 a. (2) 设随机变量 X 的分布律为
P{X=k}=a/N, k=1,2,…,N, 试确定常数 a. 【解】(1) 由分布律的性质知
1
P( X
习题二
1.一袋中有 5 只乒乓球,编号为 1,2,3,4,5,在其中同时取 3 只,以 X 表示取出的 3 只
球中的最大号码,写出随机变量 X 的分布律.
【解】
X 3, 4, 5
故所求分布律为
1 P( X 3) 0.1
C35 3 P( X 4) 0.3 C35 P( X 5) C24 0.6 C35
概率论与数理统计第二章课后习题及参考答案
于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2
数理统计课后习题答案第二章
30.解:由题意用U统计量
计算得置信区间为
把
代入计算得置信区间
31.解:由题意, 未知,则
则
经计算得
解得 的置信区间为
查表:
带入计算得 的置信区间为: 。
32.
解: 未知,则 即:
有: 则单侧置信下限为:
将 带入计算得
即钢索所能承受平均张力在概率为 的置信度下的置信下限为 。
33.解:总体服从(0,1)分布且样本容量n=100为大子样。
令 为样本均值,由中心极限定理
又因为 所以
则相应的单侧置信区间为 ,
将 =0.06
代入计算得所求置信上限为0.0991
即为这批货物次品率在置信概率为95%情况下置信上限为0.0991。
34.解:由题意:
解得 的单侧置信上限为
其中n=10, =45,查表 3.325
。一元回归的线性模型为 试求 , 的最小二乘估计。
8.对于自变量和因变量都分组的情形,经验回归直线的配置方法如下:对 和 作 次试验得 对试验值,把自变量的试验值分成 组,组中值记为 ,各组以组中值为代表;把因变量的试验值分为 组,组中值记为 ,同样地各组以组中值为代表。如果 取 有 对, , ;而 。用最小二乘法配直线 ,试求 的估计量23
77
7
9.4
44
46
81
8
10.1
31
117
93
9
11.6
29
173
93
10
12.6
58
112
51
11
10.9
37
111
76
12
数理统计第二章课后习题答案
第二章 参数估计2.2 对容量为n 的子样,对密度函数其22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩ 中参数α的矩法估计。
解:1202()()a E x x x dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n =+++ 为n 个样本的观察值。
2.6 设总体X 的密度函数为12(;),,,,n f x X X X θ 为其样本,求下列情况下θ∧的MLE 。
(ii)1,01(;)0,x x f x αθθ-⎧=⎨⎩ 其它 0θ (v )1,0(;)0,x e x f x θθθ-⎧≥⎪=⎨⎪⎩其它 0θ 解:(ii)1111()n n n i i i i L x x θθθθθ--====∏∏1ln ()ln (1)ln n i i L n x θθθ==+-∑11111ln ()ln 01(ln )(ln )n i i n n i i i i d L n x d n x x n θθθθ=∧--===+==-=-∑∑∑ (v)111()n i i x n L e θθθ=-∑= 11ln ()ln()nii L n x θθθ==--∑211ln ()101,n i i n i i d L n X d x x X n θθθθθ=∧==-+===∑∑2.10 设总体123(,1),,,X N X X X μ 为一样本,试证明下述三个估计变量11232123312313151021153412111362X X X X X X X X X μμμ=++=++=++ 都是μ的无偏估计量,并求出每一估计量的方差,问哪一个最小? 证:1123131()()()()5102E E X E X E X μ=++131()5102μμ=++= 同理:2123115()()()()3412E E X E X E X μ=++ 115()3412μμ=++= 3123111()()()()362E E X E X E X μ=++ 111()362μμ=++= ∴12,,μμμ是μ的无偏估计量。
概率论与数理统计第二章习题答案(PDF)
第二章 随机变量及其分布习题2.11. 口袋中有5个球,编号为1, 2, 3, 4, 5.从中任取3只,以X 表示取出的3个球中的最大号码.(1)试求X 的分布列;(2)写出X 的分布函数,并作图. 解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为3, 4, 5,且事件“X = 3”所含样本点个数为k 1 = 1,有1.0101}3{===X P , 事件“X = 4”所含样本点个数为31223232=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103}4{===X P , 事件“X = 5”所含样本点个数为61234243=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106}5{===X P , 故X 的分布列为6.03.01.0543P X;(2)因分布函数F (x ) = P {X ≤ x },分段点为x = 3, 4, 5,当x < 3时,F (x ) = P {X ≤ x } = P (∅) = 0,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 3} = 0.1,当4 ≤ x < 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} = 0.1 + 0.3 = 0.4,当x ≥ 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} + P {X = 5} = 0.1 + 0.3 + 0.6 = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.5,1;54,4.0;43,1.0;3,0)(x x x x x F2. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1)试求X 的分布列; (2)写出X 的分布函数. 解:样本点总数n = 62 = 36,(1)X 的全部可能取值为1, 2, 3, 4, 5, 6,且事件“X = 1”所含样本点个数为k 1 = 62 − 52 = 11,有3611}1{==X P , 事件“X = 2”所含样本点个数为k 2 = 52 − 42 = 9,有369}2{==X P ,事件“X = 3”所含样本点个数为k 3 = 42 − 32 = 7,有367}3{==X P ,事件“X = 4”所含样本点个数为k 4 = 32 − 22 = 5,有365}4{==X P ,事件“X = 5”所含样本点个数为k 5 = 22 − 1 = 3,有363}5{==X P , 事件“X = 6”所含样本点个数为k 6 = 1,有361}6{==X P , 故X 的分布列为3613633653673693611654321PX ; (2)因分布函数F (x ) = P {X ≤ x },分段点为x = 1, 2, 3, 4, 5, 6,当x < 1时,F (x ) = P {X ≤ x } = P (∅) = 0,当1 ≤ x < 2时,3611}1{}{)(===≤=X P x X P x F , 当2 ≤ x < 3时,36203693611}2{}1{}{)(=+==+==≤=X P X P x X P x F , 当3 ≤ x < 4时,36273673693611}3{}2{}1{}{)(=++==+=+==≤=X P X P X P x X P x F ,当4 ≤ x < 5时,36323653673693611}{}{)(41=+++===≤=∑=k k X P x X P x F , 当5 ≤ x < 6时,36353633653673693611}{}{)(51=++++===≤=∑=k k X P x X P x F , 当x ≥ 6时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.6,1;65,3635;54,3632;43,3627;32,3620;21,3611;1,0)(x x x x x x x x F 3. 口袋中有7个白球、3个黑球.(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X 的概率分布列如何. 解:(1)X 的全部可能取值为1, 2, 3, 4,且107}1{==X P ,30797103}2{=×==X P ,12078792103}3{=××==X P , 1201778192103}4{=×××==X P , 故X 的概率分布列为120112073071074321PX ;(2)X 的全部可能取值仍为1, 2, 3, 4,且7.0107}1{===X P ,24.0108103}2{=×==X P ,054.0109102103}3{=××==X P , 006.01010101102103}4{=×××==X P ,故X 的概率分布列为006.0054.024.07.04321P X .4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)试求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少?解:设A 1 , A 2 , A 3分别表示“取到第一个、第二个、第三个盒子”,(1)X 的全部可能取值为0, 1, 2, 3,且P {X = 0} = P (A 1) P {X = 0 | A 1} + P (A 2) P {X = 0 | A 2} + P (A 3) P {X = 0 | A 3}610301304031353331353431=++=×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×=, P {X = 1} = P (A 1) P {X = 1 | A 1} + P (A 2) P {X = 1 | A 2} + P (A 3) P {X = 1 | A 3}2130330630635221331352312313524131=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛××=, P {X = 2} = P (A 1) P {X = 2 | A 1} + P (A 2) P {X = 2 | A 2} + P (A 3) P {X = 2 | A 3}10330630303512233135132231031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×=, P {X = 3} = P (A 1) P {X = 3 | A 1} + P (A 2) P {X = 3 | A 2} + P (A 3) P {X = 3 | A 3}30130100353331031031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×+×=, 故X 的概率分布列为30110321613210PX ; (2)所求概率为3130********}3{}2{}2{==+==+==≥X P X P X P . 5. 一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验. (1)试求5件产品中不合格品数X 的分布列; (2)需要对这批产品进行逐个检验的概率是多少?解:样本点总数7528752012345969798991005100=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数为439492681234586878889905900=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 1”所含样本点个数为25551900123487888990104901101=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 2”所含样本点个数为5286600123888990129103902102=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 3”所含样本点个数为48060012899012389102903103=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 4”所含样本点个数为18900901234789101904104=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 5”所含样本点个数为252123456789105105=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,则583752.07528752043949268}0{===X P ,339391.07528752025551900}1{===X P ,070219.0752875205286600}2{===X P ,006384.075287520480600}3{===X P ,000251.07528752018900}4{===X P ,000003.075287520252}5{===X P ,故X 的分布列为000003.0000251.0006384.0070219.0339391.0583752.0543210P X ;(2)所求概率为P {X > 0} = 1 − P {X = 0} = 1 − 0.583752 = 0.416248. 6. 设随机变量X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,21;31,31;10,41;0,0)(x x x x x x F试求X 的概率分布列及P {X < 3},P {X ≤ 3},P {X > 1},P {X ≥ 1}. 解:X 的全部可能取值为其分布函数F (x ) 的分段点0, 1, 3, 6,且41041)00()0(}0{=−=−−==F F X P ,1214131)01()1(}1{=−=−−==F F X P , 613121)03()3(}3{=−=−−==F F X P ,21211)06()6(}6{=−=−−==F F X P ,故X 的概率分布列为2161121413210PX ; 且31)03(}3{=−=<F X P ;21)3(}3{==≤F X P ;32311)1(1}1{1}1{=−=−=≤−=>F X P X P ; 43411)01(1}1{1}1{=−=−−=<−=≥F X P X P .7. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.e ,1e;1,ln ;1,0)(x x x x x F试求P {X < 2},P {0 < X ≤ 3},P {2 < X < 2.5}.解:P {X < 2} = F (2 − 0) = ln 2;P {0 < X ≤ 3} = F (3) − F (0) = 1 − 0 = 1;P {2 < X < 2.5} = F (2.5 − 0) − F (2) = ln 2.5 − ln 2 = ln 1.25.8. 若P {X ≥ x 1} = 1 − α ,P {X ≤ x 2} = 1 − β ,其中x 1 < x 2 ,试求P {x 1 ≤ X ≤ x 2}.解:P {x 1 ≤ X ≤ x 2} = P {X ≤ x 2} − P {X < x 1} = P {X ≤ x 2} + P {X ≥ x 1} − 1 = 1 − β + 1 − α − 1 = 1 − α − β . 9. 从1, 2, 3, 4, 5五个数字中任取三个,按大小排列记为x 1 < x 2 < x 3 ,令X = x 2 ,试求(1)X 的分布函数;(2)P {X < 2}及P {X > 4}.解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为2, 3, 4,且事件“X = 2”所含样本点个数为k 1 = 3,有3.0103}2{===X P , 事件“X = 3”所含样本点个数为k 2 = 2 × 2 = 4,有4.0104}3{===X P ,事件“X = 4”所含样本点个数为k 3 = 3,有3.0103}4{===X P ,因分布函数F (x ) = P {X ≤ x },分段点为x = 2, 3, 4, 当x < 2时,F (x ) = P {X ≤ x } = P (∅) = 0,当2 ≤ x < 3时,F (x ) = P {X ≤ x } = P {X = 2} = 0.3,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 2} + P {X = 3} = 0.3 +0.4 = 0.7, 当x ≥ 4时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=;4,1;43,7.0;32,3.0;2,0)(x x x x x F(2)P {X < 2} = P (∅) = 0,P {X > 4} = P (∅) = 0.10.设随机变量X 的密度函数为⎩⎨⎧≤≤−−=.,0;11|,|1)(其他x x x p试求X 的分布函数.解:分布函数F (x ) = P {X ≤ x },分段点为x = −1, 0, 1,当x < −1时,F (x ) = P {X ≤ x } = P (∅) = 0,当−1 ≤ x < 0时,21221122)](1[)()(22121++=⎟⎠⎞⎜⎝⎛+−−+=⎟⎟⎠⎞⎜⎜⎝⎛+=−−==−−∞−∫∫x x x x u u du u du u p x F xxx, 当0 ≤ x < 1时,xxxu u u u du u du u du u p x F 021200122)1()](1[)()(⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−+−−==−−∞−∫∫∫21202211022++−=−⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+−−=x x x x , 当x ≥ 1时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++−<≤−++−<=.1,1;10,212;01,212;1,0)(22x x x x x x x x x F11.如果X 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0;21,2;10,)(其他x x x x x p试求P {X ≤ 1.5}. 解:16132325.13021222)2()(}5.1{25.112125.11105.1=−⎟⎟⎠⎞⎜⎜⎝⎛−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+=−+==≤∫∫∫∞−x x x dx x xdx dx x p X P . 12.设随机变量X 的密度函数为⎪⎩⎪⎨⎧>≤=.2π||,0;2π||,cos )(x x x A x p 试求(1)系数A ;(2)X 落在区间 (0, π /4) 内的概率. 解:(1)由密度函数正则性知122πsin 2πsinsin cos )(2π2π2π2π==⎟⎠⎞⎜⎝⎛−−===−−∞+∞−∫∫A A A xA xdx A dx x p , 故21=A ;(2)所求概率为4204πsin 21sin 21cos 21}4π0{4π04π=−===<<∫x xdx X P .13.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1)系数A ;(2)X 落在区间 (0.3, 0.7) 内的概率; (3)X 的密度函数.解:(1)由连续随机变量分布函数的连续性知A A x F F F x =⋅==−==−→211)(lim )01()1(1,故A = 1; (2)所求概率为P {0.3 < X < 0.7} = F (0.7) − F (0.3) = 0.7 2 − 0.3 2 = 0.4;(3)密度函数p (x ) = F ′(x ),当x < 0时,F (x ) = 0,有p (x ) = F ′(x ) = 0,当0 ≤ x < 1时,F (x ) = x 2,有p (x ) = F ′(x ) = 2x , 当x ≥ 1时,F (x ) = 1,有p (x ) = F ′(x ) = 0,故X 的密度函数为⎩⎨⎧<≤=.,0;10,2)(其他x x x p 14.学生完成一道作业的时间X 是一个随机变量,单位为小时.它的密度函数为⎩⎨⎧≤≤+=.,0;5.00,)(2其他x x cx x p (1)确定常数c ;(2)写出X 的分布函数;(3)试求在20min 内完成一道作业的概率; (4)试求10min 以上完成一道作业的概率. 解:(1)由密度函数正则性知1812423)()(5.00235.002=+=⎟⎟⎠⎞⎜⎜⎝⎛+=+=∫∫∞+∞−c x x c dx x cx dx x p ,故c = 21; (2)分布函数F (x ) = P {X ≤ x },分段点为x = 0, 0.5,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0,当0 ≤ x < 0.5时,2727)21()()(2302302x x u u du u u du u p x F xxx+=⎟⎟⎠⎞⎜⎜⎝⎛+=+==∫∫∞−,当x ≥ 0.5时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤+<=;5.0,1;5.00,27;0,0)(23x x x x x x F(3)所求概率为5417181277312131731}316020{23=+=⎟⎠⎞⎜⎝⎛×+⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==≤F X P ;(4)所求概率为1081037212167161216171611}616010{23=−−=⎟⎠⎞⎜⎝⎛×−⎟⎠⎞⎜⎝⎛×−=⎟⎠⎞⎜⎝⎛−==≥F X P . 15.设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A = {X > a }和B = {Y > a }独立,且P (A ∪B ) = 3/4,求常数a . 解:由于事件A 和B 独立,且显然有P (A ) = P (B ),则43)]([)(2)()()()()()()()(2=−=−+=−+=A P A P B P A P B P A P AB P B P A P B A P ∪, 可得21)(=A P 或23)(=A P (舍去), 显然0 < a < 2,有218181d 83}{)(32322=−===>=∫a x x x a X P A P a a , 故34=a .16.设连续随机变量X 的密度函数p (x ) 是一个偶函数,F (x ) 为X 的分布函数,求证对任意实数a > 0,有(1)∫−=−=−adx x p a F a F 0)(5.0)(1)(;(2)P {| X | < a } = 2F (a ) − 1;(3)P {| X | > a } = 2[1 − F (a )]. 证:(1)因p (x ) 为偶函数,有∫∫+∞−∞−=a a dx x p dx x p )()(且5.0)(0=∫∞−dx x p ,则∫∫∫∫+=+==∞−∞−a aa dx x p dx x p dx x p dx x p a F 0)(5.0)()()()(,故∫∫∫∫−=−=−===−∞−+∞−∞−a aadx x p a F dx x p dx x p dx x p a F 0)(5.0)(1)(1)()()(;(2)P {| X | < a } = P {−a < X < a } = F (a ) − F (−a ) = F (a ) − [1 − F (a )] = 2 F (a ) − 1; (3)P {| X | > a } = 1 − P {| X | ≤ a } = 1 − P {| X | < a } = 1 − [2 F (a ) − 1] = 2 − 2 F (a ).习题2.21. 设离散型随机变量X 的分布列为3.03.04.0202P X −试求E (X ) 和E (3X + 5).解:E (X ) = (−2) × 0.4 + 0 × 0.3 + 2 × 0.3 = −0.2;E (3X + 5) = (−1) × 0.4 + 5 × 0.3 + 11 × 0.3 = 4.4. 2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X 的分布列为04.009.013.031.033.010.0543210P X试求顾客在商店平均购买服装件数.解:平均购买服装件数为E (X ) = 0 × 0.10 + 1 × 0.33 + 2 × 0.31 + 3 × 0.13 + 4 × 0.09 + 5 × 0.04 = 1.9. 3. 某地区一个月内发生重大交通事故数X 服从如下分布002.0006.0026.0087.0216.0362.0301.06543210P X试求该地区发生重大交通事故的月平均数. 解:月平均数E (X ) = 0 × 0.301 + 1 × 0.362 + 2 × 0.216 + 3 × 0.087 + 4 × 0.026 + 5 × 0.006 + 6 × 0.002 = 1.201. 4. 一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X 为8桶中被污染的桶数,试求X 的分布列,并求E (X ).解:样本点总数125970820=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数64358150=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0511.01259706435}0{===X P , 事件“X = 1”所含样本点个数32175715151=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2554.012597032175}1{===X P , 事件“X = 2”所含样本点个数50050615252=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3973.012597050050}2{===X P , 事件“X = 3”所含样本点个数30030515353=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2384.012597030030}3{===X P , 事件“X = 4”所含样本点个数6825415454=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0542.01259706825}4{===X P , 事件“X = 5”所含样本点个数455315555=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0036.0125970455}5{===X P , 故X 的分布列为0036.00542.02384.03973.02554.00511.0543210PX且E (X ) = 0 × 0.0511 + 1 × 0.2554 + 2 × 0.3973 + 3 × 0.2384 + 4 × 0.0542 + 5 × 0.0036 = 2. 5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1, 2, 2, 5, 10(g );(乙)1, 2, 3, 4, 10(g );(丙)1, 1, 2, 5, 10(g ),称重时只能使用一组砝码.问:当物品的质量为1g 、2g 、…、 10g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少? 解:设X 1 , X 2 , X 3分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,当物品的质量为1g 、2g 、…、10g 时,有X 1 = 1、1、2、2、1、2、2、3、3、1,即P {X 1 = 1} = 0.4,P {X 1 = 2} = 0.4,P {X 1 = 3} = 0.2, X 2 = 1、1、1、1、2、2、2、3、3、1,即P {X 2 = 1} = 0.5,P {X 2 = 2} = 0.3,P {X 2 = 3} = 0.2, X 3 = 1、1、2、3、1、2、2、3、4、1,即P {X 3 = 1} = 0.4,P {X 3 = 2} = 0.3,P {X 3 = 3} = 0.2,P {X 3 = 4} = 0.1,则平均砝码数E (X 1 ) = 1 × 0.4 + 2 × 0.4 + 3 × 0.2 = 1.8,E (X 2 ) = 1 × 0.5 + 2 × 0.3 + 3 × 0.2 = 1.7, E (X 3 ) = 1 × 0.4 + 2 × 0.3 + 3 × 0.2 + 4 × 0.1 = 2, 故用乙组砝码称重所用的平均砝码数最少.6. 假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 故9245124581540)(=×+×+×=X E .7. 对一批产品进行检查,如查到第a 件全为合格品,就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p .问每批产品平均要查多少件?解:设X 表示检查一批产品要查的件数,X 的全部可能取值为1, 2, …, a – 1, a ,则P {X = 1} = p ,P {X = 2} = (1 – p )p ,…,P {X = a – 1} = (1 – p ) a − 2 p ,P {X = a } = (1 – p ) a − 1, 即E (X ) = 1 ⋅ p + 2 (1 – p ) p + … + (a – 1) (1 – p ) a − 2 p + a (1 – p ) a − 1,有(1 – p )E (X ) = 1 ⋅ (1 – p ) p + 2 (1 – p )2 p + … + (a – 2) (1 – p ) a − 2 p + (a – 1) (1 – p ) a − 1 p + a (1 – p ) a , 得E (X ) – (1 – p )E (X ) = p + (1 – p ) p + … + (1 – p ) a − 2 p + a (1 – p ) a − 1 – (a – 1) (1 – p ) a − 1 p – a (1 – p ) a ,即)]1()1([)1()1(1])1(1[)(11p a p a a p p p p X pE a a −−−−−+−−−−=−−= 1 – (1 – p ) a − 1 + (1 – p ) a − 1 ⋅ p = 1 – (1 – p ) a − 1 ⋅ (1 – p ) = 1 – (1 – p ) a ,故pp X E a)1(1)(−−=.8. 某厂推土机发生故障后的维修时间T 是一个随机变量(单位:h ),其密度函数为⎩⎨⎧≤>=−.0,0;0,e 02.0)(02.0t t t p t 试求平均维修时间. 解:平均维修时间5002.0e e e )e (e 02.0)(002.0002.0002.0002.0002.0=−=+−=−=⋅=+∞−∞+−∞+−∞+−∞+−∫∫∫tttt t dt t d t dt t T E .9. 某新产品在未来市场上的占有率X 是仅在区间 (0, 1) 上取值的随机变量,它的密度函数为⎩⎨⎧<<−=.,0;10,)1(4)(3其他x x x p 试求平均市场占有率.解:平均市场占有率∫∫−+−=−⋅=143213)412124()1(4)(dx x x x x dx x x X E5154342105432=⎟⎠⎞⎜⎝⎛−+−=x x x x .10.设随机变量X 的密度函数如下,试求E (2 X + 5).⎩⎨⎧≤>=−.0,0;0,e )(x x x p x 解:7e 25e 2e )52()e )(52(e )52()52(0=−=++−=−+=+=++∞−+∞−+∞−+∞−+∞−∫∫∫xx xx x dx x d x dx x X E .11.设随机变量X 的分布函数如下,试求E ( X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0,当x > 1时,)1(21e 41)()(−−=′=x x F x p ,∫∫∞+−−∞−⎟⎠⎞⎜⎝⎛−⋅+⋅=1)1210][e 21)(e 21x x d x d x 则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(210e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,故1641)1(21)(=×+−×=X E .12.某工程队完成某项工程的时间X (单位:月)是一个随机变量,它的分布列为1.02.03.04.013121110P X(1)试求该工程队完成此项工程的平均月数;(2)设该工程队所获利润为Y = 50(13 – X ),单位为万元.试求该工程队的平均利润; (3)若该工程队调整安排,完成该项工程的时间X (单位:月)的分布为1.04.05.0121110P X则其平均利润可增加多少?解:(1)平均月数E (X ) = 10 × 0.4 + 11 × 0.3 + 12 × 0.2 + 13 × 0.1 = 11.(2)平均利润为E (Y ) = E [50 (13 – X )] = 150 × 0.4 + 100 × 0.3 + 50 × 0.2 + 0 × 0.1 = 100(万元); (3)因E (Y 1) = E [50 (13 – X 1)] = 150 × 0.5 + 100 × 0.4 + 50 × 0.1 = 120,有E (Y 1) – E (Y ) = 20,故平均利润增加20万元.13.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0π;0,2cos 21)(其他x x x p 对X 独立重复观察4次,Y 表示观察值大于π /3的次数,求Y 2的数学期望.解:Y 的全部可能取值为0, 1, 2, 3, 4,因216πsin 2πsin2sin2cos 21}3π{π3ππ3π=−===>=∫x dx x X P p , 则161)1(}0{4=−==p Y P ,164)1(14}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,166)1(24}2{22=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P , 164)1(34}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,161}4{4===p Y P , 故5168016141643166216411610)(222222==×+×+×+×+×=Y E .14.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 试求21X 的数学期望. 解:438383112020222==⋅=⎟⎠⎞⎜⎝⎛∫∫dx dx x x X E .15.设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明∑+∞=≥=1}{)(k k X P X E .证:)(}{}{}{}{11111X E n X nP n X P n X P k X P n n nk k kn k =======≥∑∑∑∑∑∑+∞=+∞==+∞=+∞=+∞=.16.设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明∫∫∞−+∞−−=0)()](1[)(dx x F dx x F X E .证:设X 的密度函数为p (x ),有p (x ) = F ′(x ),故∫∫∫∫∞−∞−+∞+∞∞−+∞+−−−−=−−000)]([)()](1[)](1[)()](1[x F xd x xF x F xd x F x dx x F dx x F)()()()()(0)]([00000X E dx x xp dx x xp dx x xp dx x xp dx x p x ==+=+−−−=∫∫∫∫∫+∞∞−∞−+∞∞−+∞.习题2.31. 设随机变量X 满足E (X ) = Var (X ) = λ ,已知E [(X − 1) (X − 2)] = 1,试求λ . 解:因E (X ) = Var (X ) = λ ,有E (X 2) = Var (X ) + [E (X )]2 = λ + λ 2 ,则E [(X − 1) (X − 2)] = E (X 2 – 3X + 2) = E (X 2) – 3E (X ) + 2 = λ + λ 2 – 3λ + 2 = λ 2 – 2λ + 2 = 1, 得λ 2 – 2λ + 1 = 0,即 (λ – 1)2 = 0, 故λ = 1.2. 假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 得9245124581540)(=×+×+×=X E ,且154451245124581540)(2222==×+×+×=X E , 故4058892154)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 3. 已知E (X ) = –2,E (X 2) = 5,求Var (1 – 3X ).解:因Var (X ) = E (X 2) – [E (X )]2 = 5 – (–2) 2 = 1,故Var (1 – 3X ) = (–3)2 Var (X ) = 9 × 1 = 9. 4. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x试求Var (X ).解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0, 当x > 1时,)1(21e 41)()(−−=′=x x F x p ,则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(21e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,可得1641)1(21)(=×+−×=X E ,且∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)1(212021)1(2120222e 41e 21e 412e )()(dx x dx x dx x dx x dx x p x X E x x x x因2e 202e e )(e e 00020202=−=⋅−⋅=⋅=∫∫∫∫∞−∞−∞−∞−∞−dx x xdx x d x dx x x x xx x ,∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=⋅−=1)1(211)1(2121)1(2121)1(2122e2e2][e2exdx x d x dx x x x x x26642e421)1(21=×+=+=∫∞+−−dx x x ,可得2152641221)(2=×+×=X E ,故2131215)]([)()Var(222=−=−=X E X E X .5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<−≤<−+=.,0;10,1;01,1)(其他x x x x x p试求Var (3X + 2).解:因061613232)1()1()()(13201321001=+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x xp X E , 且611211214343)1()1()()(1043014310201222=+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x p x X E , 则61)]([)()Var(22=−=X E X E X , 故23619)Var(9)23Var(=×==+X X .6. 试证:对任意的常数c ≠ E (X ),有Var (X ) = E (X – E (X ))2 < E (X – c )2.证:因E (X – c )2 = E (X 2 – 2cX + c 2) = E (X 2) – 2c E (X ) + c 2 = E (X 2) – [E (X )]2 + [E (X )]2 – 2c E (X ) + c 2= E (X – E (X ))2 + [E (X ) – c ]2 > E (X – E (X ))2 = Var (X ).7. 设随机变量X 仅在区间[a , b ]上取值,试证a ≤ E(X) ≤ b ,22)Var(⎟⎠⎞⎜⎝⎛−≤a b X .证:因X ≥ a ,有X – a ≥ 0,得E (X – a ) = E (X ) – a ≥ 0,即E (X ) ≥ a ,又因X ≤ b ,同理可得E (X ) ≤ b ,故a ≤ E (X ) ≤ b ;因a ≤ X ≤ b ,有222a b b a X a b −≤+−≤−−,得2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X , 则022222222≤⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−a b b a X E a b b a X E ,即2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X E , 故22222))(()Var(⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=a b b a X E X E X E X .8. 设随机变量X 取值x 1 ≤ … ≤ x n 的概率分别是p 1 , …, p n ,11=∑=nk k p .证明212)Var(⎟⎠⎞⎜⎝⎛−≤x x X n .证:因x 1 ≤ X ≤ x n ,有222111x x x x X x x n n n −≤+−≤−−,得212122⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−x x x x X n n ,故2121212222))(()Var(⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=x x x x E x x X E X E X E X n n n .9. 设g (x ) 为随机变量X 取值的集合上的非负不减函数,且E (g (X )) 存在,证明:对任意的ε > 0,有)())((}{εεg X g E X P ≤>.注:此题应要求g (ε ) ≠ 0.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),因g (x ) 为非负不减函数,当x > ε 时,有g (x ) ≥ g (ε ) > 0,即1)()(≥εg x g , 故)())(()()()()()()()()()(}{εεεεεεεg X g E g X g E dx x p g x g dx x p g x g dx x p X P =⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=>∫∫∫∞+∞−∞+∞+. 10.设X 为非负随机变量,a > 0.若E (e aX)存在,证明:对任意的x > 0,有axaX E x X P e )(e }{≤≥.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),故ax aX ax aX ax au xax auxE E du u p du u p du u p x X P e )(e e e )(e e )(e e )(}{=⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=≥∫∫∫∞+∞−∞+∞+. 11.已知正常成人男性每升血液中的白细胞数平均是7.3 × 10 9,标准差是0.7 × 10 9.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2 × 10 9至9.4 × 10 9之间的概率的下界. 解:设X 表示“每升血液中的白细胞数”,有E (X ) = 7.3 × 10 9,Var (X ) = (0.7 × 10 9) 2 = 0.49 × 10 18,则P {5.2 × 10 9 ≤ X ≤ 9.4 × 10 9} = P {–2.1 × 10 9 ≤ X – 7.3 × 10 9 ≤ 2.1 × 10 9} = P { | X – E (X ) | ≤ 2.1 × 10 9}989111041.41049.01)101.2()Var(1181829=−=××−=×−≥X ,故所求概率的下界为98.习题2.41. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率. 解:设X 表示“取到的不合格品个数”,有X 服从二项分布b (3, 0.1),故所求概率为972.09.01.0139.0}1{}0{}1{23=××⎟⎟⎠⎞⎜⎜⎝⎛+==+==≤X P X P X P . 2. 一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率. 解:设X 表示“检查到的一级品个数”,有X 服从二项分布b (5, 0.8),故所求概率为99328.02.08.0152.01}1{}0{1}2{45=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P . 3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解:设X 表示“三次射击所中的10环次数”,有X 服从二项分布b (3, 0.7),故所求概率为784.07.03.07.023}3{}2{}2{32=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .4. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位 顾客,问到时顾客来到餐厅而没有座位的概率是多少? 解:设X 表示“到时来到餐厅的顾客人数”,有X 服从二项分布b (52, 0.8),故所求概率为0001279.08.02.08.05152}52{}51{}51{5251=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .5. 设随机变量X ~ b (n , p ),已知E (X ) = 2.4,Var (X ) = 1.44,求两个参数n 与p 各为多少? 解:因X ~ b (n , p ),有E (X ) = np = 2.4,Var (X ) = np (1 – p ) = 1.44,有6.04.244.11==−p , 故p = 0.4,64.04.2==n . 6. 设随机变量X 服从二项分布b (2, p ),随机变量Y 服从二项分布b (4, p ).若P {X ≥ 1} = 8/9,试求P {Y ≥ 1}.解:因X 服从二项分布b (2, p ),有98)1(1}0{1}1{2=−−==−=≥p X P X P ,即32=p ,故8180311)1(1}0{1}1{44=⎟⎠⎞⎜⎝⎛−=−−==−=≥p Y P Y P .7. 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算. 解:设X 表示“发现的不合格品个数”,有X 服从二项分布b (40, 0.02),(1)所求概率为1905.098.002.014098.01}1{}0{1}2{3940=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P ;(2)因n = 40较大,p = 0.02很小,取λ = np = 0.8,有)8.0(~P X ,故查表可得所求概率为191.0809.01}1{1}2{=−=≤−=≥X P X P . 8. 设X 服从泊松分布,且已知P {X = 1} = P {X = 2},求P {X = 4}. 解:设X 服从泊松分布P (λ ),有λ > 0,则λλλλλ−−=====e 2}2{e 1}1{21P X P ,得22λλ=,即λ = 2,故查表可得P {X = 4} = P {X ≤ 4} – P {X ≤ 3} = 0.947 – 0.857 = 0.090.9. 已知某商场一天来的顾客数X 服从参数为λ 的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为λ p 的泊松分布. 证:设Y 表示“该商场一天内购买商品的顾客人数”,Y 的全部可能取值为0, 1, 2, …,有∑∑∞=−−∞=−⎟⎟⎠⎞⎜⎜⎝⎛⋅======rk rk r k rk p p r k k k X r Y P k X P r Y P )1(!e }|{}{}{λλ ∑∑∑∞=+−∞=−−∞=−−−=−−=−−⋅⋅=0!)1(!e )!()1(!e )1()!(!!!e n nr n r rk rk k r rk rk r k n p r p r k p r p p p r k r k k λλλλλλpr p r n n r r r p r p n p r p λλλλλλλλ−−−−∞=−=⋅=−=∑e !)(e !e )(!)]1([!e )1(0, r = 0, 1, 2, …, 故Y 服从参数为λ p 的泊松分布.10.从一个装有m 个白球、n 个黑球的袋子中返回地摸球,直到摸到白球时停止.试求取到黑球数的期望. 解:设X 表示“取到的黑球数”,有X + 1服从参数为n m mp +=的几何分布,有mn m p X E +==+1)1(, 故mnm n m X E =−+=1)(. 11.某种产品上的缺陷数X 服从下列分布列:121}{+==k k X P ,k = 0, 1, …,求此种产品上的平均缺陷数.解:因X + 1服从参数为21=p 的几何分布⎟⎠⎞⎜⎝⎛21Ge ,有21)1(==+p X E ,故E (X ) = 2 – 1 = 1. 12.设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤ 1/2}出现的次数,试求P {Y = 2}.解:因412}21{212210===≤∫x xdx X P ,有Y 服从二项分布⎟⎠⎞⎜⎝⎛41,3b , 故649434123}2{2=⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛==Y P .13.某产品的不合格品率为0.1,每次随机抽取10件进行检查,若发现其中不合格品数多于1,就去调整设备.若检验员每天检查4次,试问每天平均要调整几次设备. 解:设X 表示“所取10件中的不合格品数”,有X 服从二项分布b (10, 0.1),则需要调整设备的概率为2639.09.01.01109.01}1{}0{1}2{910=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P , 设Y 表示“每天调整设备的次数”,有X 服从二项分布b (4, 0.2639), 故E (X ) = 4 × 0.2639 = 1.0556,即每天平均要调整1.0556次设备.习题2.51. 设随机变量X 服从区间 (2, 5)上的均匀分布,求对X 进行3次独立观察中,至少有2次的观察值大于3的概率. 解:设Y 表示“X 大于3的次数”,有Y 服从二项分布b (3, p ),且322535}3{=−−=>=X P p , 故所求概率为272032313223}2{32=⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=≥Y P . 2. 在 (0, 1)上任取一点记为X ,试求⎭⎬⎫⎩⎨⎧≥+−081432X X P .解:因X 服从区间 (0, 1)上的均匀分布,且021*******≥⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=+−X X X X ,即41≤X 或21≥X ,故432110412141081432=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧≥≤=⎭⎬⎫⎩⎨⎧≥+−X X P X X P 或.3. 设K 服从 (1, 6)上的均匀分布,求方程x 2 + Kx + 1 = 0有实根的概率.解:因方程x 2 + Kx + 1 = 0有实根,有判别式 ∆ = K 2 – 4 ≥ 0,即K ≤ – 2或K ≥ 2,故所求概率为5416260}22{=−−+=≥−≤K K P 或. 4. 设流经一个2 Ω 电阻上的电流I 是一个随机变量,它均匀分布在9A 至11A 之间.试求此电阻上消耗的平均功率,其中功率W = 2I 2.解:因电流I 的密度函数为⎪⎩⎪⎨⎧<<=.,0,119,21)(其他x x p故平均功率36023212)(2)2()(1193119222==⋅===∫∫∞+∞−x dx x dx x p x I E W E . 5. 某种圆盘的直径在区间 (a , b )上服从均匀分布,试求此种圆盘的平均面积. 解:设d 表示“圆盘的直径”,S 表示“圆盘的面积”,有2π41d S =, 因直径d 密度函数为⎪⎩⎪⎨⎧<<−=.,0,,1)(其他b x a ab x p 故平均面积)(4π)(4π1π41)(π41π41)(223222b ab a a b x dx a b x dx x p x d E S E ba b a ++=−=−⋅==⎟⎠⎞⎜⎝⎛=∫∫∞+∞−. 6. 设某种商品每周的需求量X 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.解:因X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,3010,201)(其它x x p 并设每周进货量为a 单位商品,商店所获利润为Y 元,当X ≤ a 时,Y = 500X − 100 (a − X ) = 600X − 100a ;当X > a 时,Y = 500a + 300 (X − a ) = 300X + 200a ,即⎩⎨⎧>+≤−==,,200300,,100600)(a X a X a X a X X g Y则∫∫∫++−==+∞∞−3010201)200300(201)100600()()()(a adx a x dx a x dx x p x g Y E5250350215)10215()515(2302102++−=++−=a a ax x ax x a a ,要使得92805250350215)(2≥++−=a a Y E ,有040303502152≤+−a a ,可得26362≤≤a ,故a 可取21, 22, 23, 24, 25, 26,即最少进货量为21单位商品. 7. 已知X ~ Exp (λ ),试在λ = 0.1下求P {5 ≤ X ≤ 20}.解:因X 的密度函数为⎩⎨⎧<≥=−,0,0,0,e )(x x x p x λλ 故4712.0e e )e (e 1.0e }205{25.02051.02051.0205=−=−===≤≤−−−−−∫∫x x x dx dx X P λλ.8. 统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T (以日计)服从均值为241的指数分布.试求P {50 ≤ T ≤ 100}.解:因T 服从指数分布,且2411)(==λT E ,有T 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 2411)(241t t t p t故1523.0ee)e(e 2411}10050{241100241501005024110050241=−=−==≤≤−−−−∫x t dt T P .9. 若一次电话通话时间X (单位:min )服从参数为0.25的指数分布,试求一次通话的平均时间. 解:因X 服从参数为λ = 0.25的指数分布,故一次通话的平均时间41)(==λX E .10.某种设备的使用寿命X (以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利100元,而调换一台设备需花费300元.试求每台设备的平均利润.解:因X 服从指数分布,且41)(==λX E ,有X 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 41)(4x x x p x设Y 表示“每台设备的利润”,当X ≤ 1时,Y = 100 − 300 = −200;当X > 1时,Y = 100.故平均利润∫∫∞+−−+−=>+≤−=14104e 41100e 41200}1{100}1{200)(dx dx X P X P Y E xx 6402.33200e 300e100)e 1(200)e (100)e (2004141411414=−=+−−=−+−−=−−−+∞−−x x.11.设顾客在某银行的窗口等待服务的时间X (以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=−.,0,0,e 51)(5其他x x p x某顾客在窗口等待服务,若超过10min ,他就离开.他一个月要到银行5次,以Y 表示一个月内他未。
概率论与数理统计第2章复习题解答
《概率论与数理统计》第二章复习题解答1. 将4只球(1-4号)随机放入4只盒子(1-4号)中去,一只盒子只放一球. 如一只球装入了与之同号的盒子, 称形成了一个配对. 记X 为总的配对数, 求X 的分布律. 解:241!41)4(===X P ; 0)()3(===ΦP X P ——因为当3个球形成配对时,另1个球一定也形成配对;41!41)2(24=⨯==C X P ——当4个球中的某2个形成配对时,另2个球(标号a,b )都不形成配对的放法只1种,即分别放入标号b,a 的盒中;31!42)1(14=⨯==C X P ——当4个球中的某1个形成配对时,另3个球都不形成配对的放法只2种:以abc 记3个空盒的号码排列,则3个球只能以bca 或cab 的次序对应放入3个盒中;249314102411)0(=----==X P . 于是,分布律为2. 盒中装有10个大小相等的球, 编号为0-9. 从中任取一个, 在号码“小于5”、“等于5”、“大于5”三种情况下,分别记随机变量.2,1,0=X 求X 的分布律、分布函数、分析2)1(-=X Y 服从什么分布.解:(1)10个球中号码“小于5”、“等于5”、“大于5”分别有5、1、4个,于是X 的分布律为(2)X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=2,1 21 ,6.010 ,.500 ,0 )(x x x x x F X ; (3)2)1(-=X Y 分布律为即2)1(-=X Y 服从参数为0.9的0-1分布.3. 设随机变量X 的分布密度为∞<<∞-=-x Aex f x X ,)(. 求(1)A 的值;(2))21(<<-X P ;(3)X的分布函数;(4)21X Y -=的分布密度. 解:(1)122)(0===⎰⎰∞-∞∞-A dx Ae dx x f x X , 21=∴A ,⎪⎪⎩⎪⎪⎨⎧≤>=∴-0,21 0,21)(x e x e x f x x X ; (2))(2112121)21(212001----+-=+=<<-⎰⎰e e dx e dx e X P x x ; (3)⎪⎪⎩⎪⎪⎨⎧≥-=+<===--∞-∞-∞-⎰⎰⎰⎰0 ,21121210 ,2121 )()(00x e dt e dt e x e dt e dt t f x F x x t t x x t xX X ; (4))1(1)1()1()()(222y X P y X P y X P y Y P y F Y -<-=-≥=≤-=≤=⎪⎩⎪⎨⎧≥-<-<<---=1 ,01 1,)11(1y y y X y P ⎪⎩⎪⎨⎧≥<--+--=1 ,11,)1()1(1y y y F y F X X 求导得⎪⎩⎪⎨⎧≥<---+-=1 ,0 1,121)]1()1([)(y y y y f y f y f X X Y⎪⎩⎪⎨⎧≥<-+=----1 ,0 1 ,121]2121[11y y y e e y y ⎪⎩⎪⎨⎧≥<-=--1 ,01,1211y y e y y .4. 根据历史资料分析, 某地连续两次强地震间隔的年数X 的分布函数为⎩⎨⎧<≥-=-0 ,00,1)(1.0x x e x F x ,现在该地刚发生了一次强地震,求(1)今后3年内再发生强地震的概率;(2)今后3-5年内再发生强地震的概率;(3)X 的分布密度)(x f ,指出X 服从什么分布.解:(1)26.01)3()3(31.0=-==≤⨯-e F X P ;(2)13.0)1()1()3()5()53(31.051.0=---=-=≤<⨯-⨯-e eF F X P . (3)X 的分布密度⎪⎩⎪⎨⎧≤>=⎩⎨⎧≤>=--0,0 0,1010 ,0 0,1.0)(1011.0x x e x x e x f x x ,故X 服从参数为10的指数分布. 5.(1)设),2(~p b X , ),3(~p b Y , 且95)1(=≥X P , 求)1(≥Y P .(2)设)(~λP X , 且)2()1(===X P X P , 求)4(=X P .(3)设),(~2σμN X ,试分析当↑σ时,概率)(σμ<-X P 的值将如何变化. 解:(1)),2(~p b X ,95)1(1)0(1)1(2=--==-=≥∴p X P X P ,故321=-p ,31=p . 从而)31,3(~b Y , 2719)32(1)1(1)0(1)1(33=-=--==-=≥∴p Y P Y P . (2))(~λP X , 且)2()1(===X P X P , 即λλλλ--=e e !2!121, 亦即λλ22=, 又0>λ, 2=∴λ.从而)2(~P X , 2!2)(-==e k k X P k, .2,1,0 =k 于是22432!42)4(--===e e X P . (3)),(~2σμN X ,故6826.01)1(2)1()1()()(=-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P . 故当↑σ时,概率)(σμ<-X P 的值.6. 设某城市男子的身高(单位:cm))6,170(~2N X .(1)应如何设计公共汽车的车门高度, 才能使该地男子与车门碰头的概率小于0.01?(2)若车门高度为182cm, 求100个男子中会与车门碰头的人数至多是1的概率.解:(1)设公共汽车的车门高度应为x cm. 则 要使01.0)6170(1)(1)(<-Φ-=≤-=>x x X P x X P , 只须)33.2(99.0)6170(Φ=>-Φx , 从而只要33.26170>-x , 于是98.183>x 即可.(2)若车门高度为182cm, 则1个男子会与车门碰头的概率为 0228.0)2(1)6170182(1)182(1)182(=Φ-=-Φ-=≤-=>=X P X P p 设100个男子中会与车门碰头的人数为Y , 于是)0228.0,100(~b Y , 从而34.09772.00228.09772.00228.0)1()0()1(991110010000100=+==+==≤C C Y P Y P Y P .7. 设带有3颗炸弹的轰炸机向敌人的铁路投弹, 若炸弹落在铁路两旁40米以内, 即可破坏铁路交通. 记弹落点与铁路的距离为X (单位: 米), 落在铁路一侧时X 的值为正, 落在另一侧时为负. X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤-+=其它 ,0 1000 ,100001000100,10000100)(x x x x x f若3颗炸弹全部使用, 求敌人铁路交通受到破坏的概率.解:1颗炸弹落在铁路两旁40米以内的概率为64.01000010010000100)()40(4000404040=-++==<=⎰⎰⎰--dx x dx x dx x f X P p 设3颗炸弹中落在铁路两旁40米以内的颗数为Y , 则)64.0,3(~b Y ,从而至少1颗炸弹落在铁路两旁40米以内(可破坏铁路交通)的概率为95.0)64.01(1)0(1)1(3=--==-=≥Y P Y P8. 设),(~b a U X , 证明: 当0>k 时, l kX Y +=仍服从均匀分布.证明:),(~b a U X ,⎪⎩⎪⎨⎧<<-=∴其它,0 ,1)(b x a a b x f X ,而)()()()()(k l y F k l y X P y l kX P y Y P y F X Y -=-≤=≤+=≤= 求导得k k l y f y f X Y 1)()(-=. 又因为⇔≠-0)(k l y f X l bk y l ak b kl y a +<<+⇔<-<,故 ⎪⎩⎪⎨⎧+<<+-=其它,0 ,)(1)(l bk y l ak ka b y f Y . 即当0>k 时, l kX Y +=在),(l bk l ak ++上服从均匀分布. 证毕.9.(1)设X 的分布密度⎩⎨⎧<<--=其它 ,0 11,1)(x x x f X , 用分布函数法求X Y =的分布密度;(2)设)1,0(~U X , 用公式法求XY +=11的分布密度. 解:(1)⎩⎨⎧≤>--=<<-=≤=≤=0 ,00,)()()()()()(y y y F y F y X y P y X P y Y P y F X X Y , 求导得 ⎩⎨⎧≤>-+=0 ,0 0,)()()(y y y f y f y f X X Y 注意到当且仅当10<<y 时)(),(y f y f X X -取非零表达式,故⎩⎨⎧<<-=--+-=其它 ,010),1(2)1()1()( y y y y y f Y (2))1,0(~U X ,⎩⎨⎧<<=∴其它,0 10,1 )(x x f X ,而当10<<x 时x y +=11单调可导;反函数为11)(-=y y h ,21)('y y h -=;21)1(,1)0(==y y ,由定理知⎪⎩⎪⎨⎧<<=其它 ,0 121 ,)('))(()( y y h y h f y f X Y ⎪⎩⎪⎨⎧<<=其它 ,0 121 ,12y y 10. 试证明:若 ,3,2,1,)1()(1=-==-k p p k X P k , 则)()(t X P s X t s X P >=>+>, 其中t s ,是非负整数.(即几何分布具有“无记忆性”) 证明:t t t k k t k k p p p p p p p p t X P )1()1(1)1()1()1()(1111-=---=-=-=>∑∑∞+=-∞+=-, )()()(),()(s X P t s X P s X P s X t s X P s X t s X P >+>=>>+>=>+>,由上一步结果知 t s ts p p p s X t s X P )1()1()1()(-=--=>+>+,故)()(t X P s X t s X P >=>+>对任意非负整数t s ,成立. 即几何分布与指数分布一样,具有“无记忆性”. 证毕.第 1 页:第二章 随机变量及其分布习 题 课**************************************************第二章随机变量及其分布习 题 课第 2 页:**************************************************随 机 变 量离 散 型随机变量连 续 型随机变量分 布 函 数分 布 律密 度 函 数均匀分布指数分布正态分布两点分布二项分布泊松分布随机变量的函数的分布定义知识结构特征数第 3 页:随机变量与普通的函数不同**************************************************随机变量与普通的函数不同随机变量随机变量的取值具有一定的概率规律设 ={}为某随机现象的样本空间,称定义在上的实值函数 X=X() 为随机变量.用来表示随机现象结果的变量。
概率论及数理统计习题解答(第2章).doc
习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数 (1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,,2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.设随机变量X 的分布律为0;,2,1,0,!}{>===λλΛk k ak X P k为常数,试求常数a .解:因为1!==-∞=∑λλae k ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P .解:(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P Y . 5.设随机变量X 的分布律为Λ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数}解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P ΛΛ偶数, (2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P . (2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概解:设射击的次数为X ,由题意知().20400~,B X , {}{},98.002.0111240010400k k k kC X P X P -=∑-=≤-=≥9972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225Λ=-==---kk k e e C k Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P 10.设随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求: (1) 系数a ; (2) X 落在区间)4,0(π内的概率.解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a . (2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='=,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x 有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即12-≤≥X X ,所以有实根的概率为 {}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少? 解: (1) 因为4)(3~,N X所以)2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P9996.019998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-= [])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=.(2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。
概率论与数理统计-第二章习题附答案
习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解2. 已知随机, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布,若{P X ≥51}9=, 求{P Y ≥1}.解注意p{x=k}=k k n kn C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率. 解设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大, 写出随机变量X 的分布律.解X1. 设X 的分布律为解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ (2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41.选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A)13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ). (A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-<则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2. 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布,要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3.设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得〔过程简略〕220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它, 对X 独立观察3次, 求至少有2次的结果大于1的概率.解2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8.设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<11d 5x =-15=-.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布与概率密度.解若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求Y =2解 (1)(2)4.已知随机变量()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X (X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =0 4.y =<<即()04,0,.其它f y y =<<⎩。
概率论与数理统计(经管类)第二章课后习题答案
2.设离散型随机变量X的分布律为:
X
-1
2
3
P
0.25
0.5
0.25
求X的分布函数,以及概率 , .
解:
则X的分布函数F(x)为:
3.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=a F1(x)-bF2(x)也是某一随机变量的分布函数,证明a-b=1.
证:
4.如下4个函数,哪个是随机变量的分布函数:
注:可知X为从2到12的所有整数值.
可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故
P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)
P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))
P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))
求: (1) ; (2)
解:
(1)
(2)(2)
5.设K在(0,5)上服从均匀分布,求方程 (利用二次式的判别式)
解: K~U(0,5)
方程式有实数根,则
故方程有实根的概率为:
6.设X ~ U(2,5),现在对X进行
解:
至少有两次观测值大于3的概率为:
7.设修理某机器所用的时间X服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,
X的概率密度为:
即
(2)
即
(3)
,
即
6.X~N(0,1),求以下Y的概率密度:
(1)
解: (1)
概率论与数理统计统计课后习题答案
第二章习题解答1. 设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ).A . 52,53-==b aB . 32,32==b a C . 23,21=-=b a D . 23,21-==b a2. 解:因为随机变量X ={这4个产品中的次品数}X 的所有可能的取值为:0,1,2,3,4.且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈;2215542070{2}0.2167323C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈;041554201{4}0.0010969C C P X C ===≈.3.解:设{1}P x p ==,则{0}1P x p ==-. 由已知,2(1)p p =-,所以23p =X 当0x <时,(){}0F x P X x =≤=;当01x ≤<时,1(){}{0}3F x P X x P X =≤===; 当1x ≥时,(){}{0}{1}1F x P X x P X P X =≤==+==.X 的分布函数为:00()1/30111x F x x x <⎧⎪=≤<⎨⎪≥⎩. 4. 解:设X ={在取出合格品以前,已取出不合格品数}. 则X 的所有可能的取值为0,1,2,3.7{0}10P x ==; 377{1}10930P x ==⋅=;3277{2}1098120P x ==⋅⋅=; 32171{3}10987120P x ==⋅⋅⋅=. 所以X 的概率分布为:5.解:设X ={其中黑桃张数}.则X 的所有可能的取值为0,1,2,3,4,5.0513395522109{0}0.22159520C C P x C ===≈; 14133955227417{1}0.411466640C C P x C ===≈; 23133955227417{2}0.274399960C C P x C ===≈; 32133955216302{3}0.0815199920C C P x C ===≈; 411339552429{4}0.010739984C C P x C ===≈; 50133955233{5}0.000566640C C P x C ===≈. 所以X 的概率分布为:6.解:由已知,()XG p所以()(1),0,1,2iP X i p p i ==-=.7.解:X 的所有可能的取值为0,1,2,3. 且1{0}2P X ==; 111{1}224P X ==⨯=;1111{2}2228P X ==⨯⨯=;1111{3}2228P X ==⨯⨯=;8. 一家大型工厂聘用了100名新员工进行上岗培训,据以前的培训情况,估计大约有4%的培训者不能完成培训任务. 求:(1)恰有6个人不能完成培训的概率; (2)不多于4个的概率. 解:设X ={不能完成培训的人数}.则(100,0.04)XB ,(1)6694100{6}0.040.960.1052P X C ==⋅=;(2)4100100{4}0.040.960.629k k k k P X C-=≤=⋅=∑.9. 一批产品的接收者称为使用方,使用方风险是指以高于使用方能容许的次品率p 接受一批产品的概率. 假设你是使用方,允许次品率不超过05.0=p ,你方的验收标准为从这批产品中任取100个进行检验,若次品不超过3个则接受该批产品. 试求使用方风险是多少?(假设这批产品实际次品率为0. 06).解:设X ={100个产品中的次品数},则(100,0.06)X B ,所求概率为1001003{3}(0.06)(0.94)0.1430k k k k P X C-≤≤==∑.10. 甲、乙两人各有赌本30元和20元,以投掷一枚均匀硬币进行赌博. 约定若出现正面,则甲赢10元,乙输10元;如果出现反面,则甲输10元,乙赢10元. 分别求投掷一次后甲、乙两人赌本的概率分布及相应的概率分布函数.解:设甲X ={投掷一次后甲的赌本},乙X ={投掷一次后乙的赌本}. 则甲X 的取值为20,40,且1{20}{40}2P X P X ====甲甲,1{10}{30}2P X P X ====乙乙,所以甲X 与乙X 的分布律分别为:0,201,204021,40X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩甲(), 0,101,103021,30X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩乙() 11. 设离散型随机变量X 的概率分布为:(1){}2,1,2,,100k P X k a k ===;(2){}2,1,2,k P X k a k -===,分别求(1)、(2)中常数a 的值.解:(1)因为{}1001001121,kk k P X k a =====∑∑即 1002(12)112a -⋅=-,所以)12(21100-=a . (2) 因为{}1121,kk k P X k a ∞∞-=====∑∑即121112a ⋅=-,所以 1=a .12. 已知一电话交换台服从4=λ的泊松分布,求:(1)每分钟恰有8次传唤的概率;(2)每分钟传唤次数大于8次的概率.解:设X ={每分钟接到的传唤次数},则()XP λ,查泊松分布表得(1){8}{8}{9}0.05110.02140.0297P X P X P X ==≥-≥=-=; (2){8}0.02136P X ≥=.13. 一口袋中有5个乒乓球,编号分别为1、2、3、4、5,从中任取3个,以示3个球中最小号码,写出X 的概率分布.解:X 的所有可能的取值为1,2,3.243563{1}105C P x C ====;23353{2}10C P x C ===;22351{3}10C P x C ===.所以X 的概率分布为:14. 已知每天去图书馆的人数服从参数为(0)λλ>的泊松分布. 若去图书馆的读者中每个人借书的概率为(01)p p <<,且读者是否借书是相互独立的. 求每天借书的人数X 的概率分布.解:设Y ={每天去图书馆的人数},则()YP λ,{},0,1,2,!iP Y i e i i λλ-===当{}Y i =时,(,)XB i p ,{}{}(1)k k i k i i kP X k P Y i C p p +∞-====⋅-∑!(1)(1)!!!()!iik k i kk i k ii k i ki e C p p e p p i i k i k λλλλ+∞+∞----===⋅-=-⋅-∑∑!(1)(1)!!()!!()!ik k i k k i ki k i ki k i p ep p e p i k i k k i k λλλλλ-+∞+∞----===-=-⋅--∑∑(1)()(1)e !()!!!k ki kk kk i kp pi kp p p ep e ek i k k k λλλλλλλλ-+∞-----==-=⋅=-∑即X 的概率分布为(){}e ,0,1,2,!k pp P X k k k λλ-===.15. 设随机变量X 的密度函数为 ,010,⎩⎨⎧<<+= x b ax f(x)其它, 且⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<3131X P X P ,试求常数a 和b . 解:1301()3183a b P X ax b dx ⎧⎫<=+=+⎨⎬⎩⎭⎰; 113142()393a b P X ax b dx ⎧⎫>=+=+⎨⎬⎩⎭⎰,由421183932a b a b +=+=得,71.5,.4a b =-= 16. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B x arctan , 求常数A , B ;{1}P X <以及概率密度f (x ).解:由()lim (arctan )02()lim (arctan )12x x F A B x A B F A B x A B ππ→-∞→+∞⎧-∞=+=-=⎪⎪⎨⎪+∞=+=+=⎪⎩得121A B π⎧=⎪⎪⎨⎪=⎪⎩.所以11()arctan 2F x x π=+; {1}{11}(1)(1)0.5P X P x F F <=-<<=--=; 211()'()1f x F x x π==⋅+.17. 设连续型随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩求:(1)常数A 的值;(2)X 的概率密度函数)(x f ;(3){}2≤X P .解:(1)由()F x 的连续性得(10)(10)(1)1F F F -=+==即21lim 1x Ax -→=,所以1A =,20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(2)2,01()'()0,x x f x F x <<⎧==⎨⎩其他;(3){2}(2)1P X F ≤==.18. 设随机变量X 的分布密度函数为 , 01 , 1)(2⎪⎩⎪⎨⎧<-=其它当x xAx f 试求:(1)系数A ;(2)⎭⎬⎫⎩⎨⎧<<221X P ;(3)X 的分布函数)(x F . 解:(1)因为1111()arcsin f x dx A x A π+∞--∞-====⎰⎰所以1A π=,1() 0 ,x f x <=⎩其它; (2)12111221112()arcsin 23P X f x dx x π⎧⎫<<====⎨⎬⎩⎭⎰;(3) 当1x <-时,(){}0f x P X x =≤=, 当01x ≤<时,11(){}arcsin 2xf x P X x x π-=≤==+⎰, 当1x ≥时,1(){}1f x P X x -=≤==⎰,所以 ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,arcsin 1211,0x x x x x F π)( 19. 假设你要参加在11层召开的会议,在会议开始前5 min 你正好到达10层电梯口,已知在任意一层等待电梯的时间服从0到10 min 之间的均匀分布. 电梯运行一层的时间为10 s ,从11层电梯口到达会议室需要20 秒. 如果你不想走楼梯而执意等待电梯,则你能准时到达会场的概率是多少?解:设X ={在任意一层等待电梯的时间},则(0,10)XU ,由题意,若能准时到达会场,则在10等电梯的时间不能超过4.5 min , 所求概率为 4.50{ 4.5}0.45100P X -≤==-.20. 设顾客在某银行窗口等待服务的时间X (min )服从51=λ的指数分布. 某顾客在窗口等待服务,若超过10 min ,他就离开. 若他一个月到银行5次,求: (1) 一个月内他未等到服务而离开窗口的次数Y 的分布; (2) 求{}1≥Y P . 解:(1)由已知,1(),(5,)5XE Y B p其中10{10}1{10}1()p P X P X f x dx -∞=>=-≤=-⎰110250115e dx e --=-=⎰所以Y 的分布为55{}(1)k k k P Y k C p p -==-2255()(1),(0,1,2,3,4,5)k k k C e e k ---=-=;(2){}02025511{0}1()(1)0.5167P Y P Y C e e --≥=-==--=.21. 设随机变量)4,5(~N X ,求α使:(1){}903.0=<αX P ;(2){}01.05=>-αX P .解:由)4,5(~N X 得5~(0,1)2X N - (1){}555()0.903222X P X P ααα---⎧⎫<=<=Φ=⎨⎬⎩⎭ 查标准正态分布表得:51.32α-=,所以6.7=α;(2)由{}01.05=>-αX P 得,{}50.99P X α-<=所以{}{}55PX P X ααα-<=-<-<5()()2()10.99222222X P ααααα-⎧⎫=-<<=Φ-Φ=Φ-=⎨⎬⎩⎭即()0.9952αΦ=,查标准正态分布表得2.582α=,所以16.5=α22. 设)2,10(~2N X ,求{}{}210 , 1310<-<<X P X P . 解:由)2,10(~2N X 得10~(0,1)2X N - {}101013=P 0 1.5(1.5)(0)0.99320.50.49322X P X -⎧⎫<<<<=Φ-Φ=-=⎨⎬⎩⎭;{}102{2102}P X P X -<=-<-< 10{11}(1)(1)2(1)120.841310.68262X P -=-<<=Φ-Φ-=Φ-=⨯-=. 23. 某地8月份的降水量服从185mm,28mm μσ==的正态分布,求该地区8月份降水量超过250 mm 的概率.解:设随机变量X ={该地8月份的降水量}, 则2(185,28)XN ,从而185(0,1)28X N -所求概率为185250185{250}{}1(2.32)10.98980.01022828X P X P --≥=>=-Φ=-= 24. 测量某一目标的距离时,产生的随机误差(cm)X 服从正态分布)400,0(N ,求在3次测量中至少有1次误差的绝对值不超过30 cm 的概率.解:由(0,400)X N 得(0,1)20X N设Y ={在3次测量中误差的绝对值不超过30 cm 的次数},则(3,)Y B p其中{30}{3030}{1.5 1.5}p P X P X P X =<=-<<=-<<(1.5)( 1.5)2(1.5)120.933210.8664=Φ-Φ-=Φ-=⨯-=所以P {3次测量中至少有1次误差的绝对值不超过30 cm }={1}P Y ≥00331{0}10.86640.13320.9976P Y C =-==-⋅=25. 已知测量误差2~(7.5,10)X N ,X 的单位是mm ,问必须进行多少次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.解:设必须进行n 次测量才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.由已知2~(7.5,10)X N ,7.5~(0,1)10X N - 设Y ={n 次测量中,绝对误差不超过10mm 的次数},则(,)Y B n p其中7.5{10}{0.25}(0.25)0.598710X p P X P -=≤=≤=Φ= 所求概率为{1}0.9P Y ≥>,即{0}0.1P Y =≤000.59870.40130.1n n C ⋅≤,解之得,3n ≥必须进行3次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9. 26. 参加某项综合测试的380名学生均有机会获得该测试的满分500分. 设学生的得分)(~2σμ,N X ,某教授根据得分X 将学生分成五个等级:A 级:得分)(σμ+≥X ;B 级:)(σμμ+<≤X ;C 级:μσμ<≤-X )(;D 级:)()2(σμσμ-<≤-X ;F 级:)2(σμ-<X . 已知A 级和C 级的最低得分分别为448分和352分,则: (1)μ和σ是多少?(2)多少个学生得B 级?解:(1)由已知,448352μσμσ+=⎧⎨-=⎩,解之得40048μσ=⎧⎨=⎩(2){}{01}X P X P μμμσσ-≤<+=≤<(1)(0)0.84130.50.3413=Φ-Φ=-=由于0.3413×380=129.66,故应有130名学生得B 级。
数理统计教程第二章课后习题答案
数理统计第二章习题解答1.设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 2. 已知母体ξ均匀分布于()βα,之间,试求βα,的矩法估计量.解: 2βαξ+=E ,()122αβξ-=D 。
令()⎪⎪⎩⎪⎪⎨⎧=-=+22122n S αβξβα得 n S 3ˆ-=ξα,.3ˆnS +=ξβ 3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量.解: ()322adx x a a x E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a 中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i ix∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫ ⎝⎛⋅++=∏=n i i x n L ααα 令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα,得 ∑=--=ni iL xn1ln 1ˆα。
由于 ()01ln 222<+-=∂∂ααnL 故∑=--=ni iL xn1ln 1ˆα是α极大似然估计.(2) 由211+-=αξE 令ξα=+-211 得 .112ˆξξα--=5.用极大似然法估计几何分布 ()(),2,1,11=-==-k p p k P k ξ中的未知参数p .解:()()n x ni p p p L -∑-=1,令 ()01ln =---=∂∂∑pn x p n p p L i 得x p1ˆ=而01ln 2ˆ2<--=∂∂=x x n p Lpp ξ1ˆ=∴p是P 的极大似然估计. 6. 设随机变量ξ的密度函数为()0,,21>∞<<-∞=-σσσx e x f x,n ξξ,,1 是ξ的容量为n 的子样,试求σ的极大似然值. 解: ()()∑=--ix neL σσσ12,()01ln 2=+-=∂∂∑i x n L σσσσ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( X 1 , X 2 , ⋅⋅⋅, X 8 )
2.5)___ ; 样 本 容
; 样 本 观 测 值 为 ___(3.1, 2.6, 2.8, 3.3, 2.9, 3.2, 2.4, 量
n = ____8___ ; 样 本 均 值 的 观 测 值
; 样 本 方 差 的 观 测 值
x=
1 8 1 xi = ( 3.1 + 2.6 + L + 2.5 ) = 2.8500 ∑ 8 i =1 8 1 8 2 ( xi − x ) =0.1114 ∑ 7 i =1
E( X ) =
E( X ) = λ
和方差 D ( X ) =
D( X ) / n = λ / n
.
4
19.设总体 X
N (1, 4) , ( X 1 , X 2 , X 3 ) 是来自 X 的样本,其中 S 2 为样本方差,则
2 E ( X 12 ) E ( X 2 ) E ( X 32 ) = 125
6.26
;查表
1 1 = = 0.193 F0.05 (4,5) 5.19
.
; 若 Fα (6,3) = 14.73 , 查 表 得
α=
0.025
三.应用计算题 27. 设总体 X ~ U [ a , b] ,求样本均值的期望和方差. 解:设 ( X 1 , X 2 ,L , X n ) 是来自总体 X ~ U [ a, b] 的样本,则 由 E ( X ) = ( a + b) / 2 知, E ( X ) = E ( X ) = ( a + b) / 2 由 D ( X ) = (b − a ) / 12 知, D ( X ) = D ( X ) / n = (b − a ) / 12n
2
∑( X
i =1
n
i
− 2)
2
32 服
从的分布是
χ 2 ( n)
.
23. 设样本 X 1 , X 2 , K , X n1 来自总体 X
N ( µ1 , σ 12 ) ,样本均值和样本方差分别为:
2 N (µ2 ,σ 2 ),
X=
1 n1 1 n1 −1 2 X , S = 又设样本 Y1 , Y2 , L , Yn2 来自总体 Y ( X i − X )2 , ∑ ∑ i 1 n1 i =1 n1 − 1 i =1 1 n2
2
.
17.设 ( X 1 , X 2 , L , X n ) 为总体 X ~ N ( µ , σ ) 的一个样本,则 E ( X i ) =
µ
;
D( X i ) =
σ2
; E ( X i2 ) =
σ 2 + µ2
.
18. 设总体服从参数为 λ 的泊松分布 X ~ P (λ ) ,求样本 ( X 1 , X 2 ,L , X n ) 均值的期望
第 2 章数理统计基础习题解答
一.选择题 1. 设 ( X 1 , X 2 ,L , X n ) 为总体 X 的样本,则不成立的是( B ).
A. 每个 X i
(i = 1,2, L , n) 与 X 有相同的分布. (i = 1,2, L , n) 是确定的数.
B. 每个 X i
C. ( X 1 , X 2 ,L , X n ) 是 n 维随机变量.
s2 =
; 样 本 二 阶 原 点 矩 的 观 测 值 为
b2 =
1 8 2 ∑ xi = 65.7600 8 = 8.2200 8 i =1
.
15. 设总体 X ~ B (1, p ) ,其中未知参数 0 < p < 1 , ( X 1 , X 2 , L , X n ) 是 X 的样本,则
P( X 1 = x1 , X 2 = x2 ,L , X n = xn ) =
2
8.
设 ( X 1 , X 2 ,L , X n ) 是来自正态总体 X ~ N ( µ , σ ) 的简单随机样本, X 为样本均
2
值,记 S12 =
1 n 1 n 1 n 2 2 2 2 , , X − X S = X − X S = ( ) ( ) ∑ i ∑ i ∑ ( X i − µ )2 , 2 3 n − 1 i =1 n i =1 n − 1 i =1
C. xi , i = 1, 2, L , n 与 X 有相同的分布.
D. xi , i = 1, 2, L , n 与 X 有相同的数学特征.
3. 已知总体 X 服从 [0, λ ] 上的均匀分布( λ 未知) X 1 , X 2 , L X n 为 X 的样本, 则( C A.
).
1 n λ X i − 是一个统计量. ∑ n i =1 2
B.
1 n ∑ X i − E ( X ) 是一个统计量. n i =1 1 n ∑ X i − D( X ) 是一个统计量. n i =1
C. X 1 + X 2 是一个统计量.
D.
1
4. 是(
设 ( X 1 , X 2 ,L , X n ) 是来自总体 X 的样本, X 为样本平均值,则下述结论不成立的
E ( S 2 ) = D( X ) = p(1 − p) .
29.在天平上重复称一重量为 a 的物品,假设各次称量结果相互独立且都服从正态分布
N (a,0.2 2 ) .若以 X n 表示 n 次称量结果的算术平均值,要使 P{| X n − a |< 0.1} ≥ 0.95 ,求
2 2
28. 设 X 1 , ⋅⋅⋅, X n 为总体 X ~ B (1, p ) 的一个样本,求 E X 和 D X ,并求样本方差(Fra bibliotek)( )
S2 =
1 n ( X i − X ) 2 的数学期望. ∑ n − 1 i =1
解:由性质可知, E X = E ( X ) = p
( )
D ( X )= D ( X ) / n = p (1 − p ) / n
样本均值和样本方差分别为: Y =
2 S12 σ 2 立,则 2 ⋅ 2 服从 S2 σ 1
∑ Yi , S22 =
i =1
n2
1 n2 ∑ (Yi − Y )2 ,且两个样本相互独 n2 − 1 i =1
F (n1 − 1, n2 − 1)
分布.
查表得 z0.0495 = 24. 设 zα 为标准正态分布的上侧分位数, 查表得 α =
从
⎛ σ2 ⎞ N ⎜ µ, ⎟ n ⎠ ⎝
分布.
21. 设 ( X 1 , X 2 ,L , X n ) 是来自正态总体 X 从
N ( µ , σ 2 ) 的样本,则 Z =
n(X − µ)
σ
服
N (0,1)
分布.
则 22. 设总体 X ~ N (2,3 ) ,X 1 , X 2 , ⋅⋅⋅, X n 为 X 的一个简单样本,
1.65
; 若 zα = 2.31 ,
0.0104
.
25. 设 tα (n) 为 t 分 布 的 上 侧 分 位 数 , 则 查 表 得 t0.025 (5) =
2.5706
;若
tα (6) = 3.7074 ,查表得 α =
0.005
.
5
26. 设 Fα ( m, n) 为 F 分布的上侧分位数,则查表得 F0.05 (5, 4) = 得 F0.95 (5, 4) =
p i=1
∑ xi
n
n − xi (1 − p ) ∑ i =1
n
.
16 . 设 ( X 1 , X 2 , L , X n ) 为 总 体 X 的 一 个 样 本 , 则 样 本 的
r
阶原点矩为
1 n r ∑ Xi n i =1
;样本的 r 阶中心矩为
1 n ( X i − X )r ∑ n i =1
A. 正态分布.
B. 自由度为 n 的 t 分布.
C.
D. F 分布.
12. 设 ( X 1 , L , X n ) 及 (Y1 , L , Ym ) 分别取自两个相互独立的正态总体 N ( µ1 , σ 2 ) 及
S12 N ( µ 2 , σ ) 的两个样本,其样本方差分别为 S 及 S ,则统计量 F = 2 服从 F 分布的自 S2
).
1 n 1 n 2 , X S = ∑ ( X i − X )2 ,则以下结论中错误的是( B ∑ i n i =1 n − 1 i =1
B. ( X − µ ) / σ ~ N (0,1) .
A. X 与 S 2 独立.
C. ( n − 1) S 2 / σ 2 ~
χ 2 (n − 1) .
D. n ( X − µ ) / S ~ t ( n − 1) .
C ).
A. X 与
∑(X
i =1
n
n
i
− X ) 2 独立.
B. 当 i ≠ j 时, X i 与 X j 独立.
C.
∑X
i =1
n
i
与
∑X
i =1
2 i
独立.
D. 当 i ≠ j 时, X i 与 X j 独立.
2
5. 样本 ( X 1 , X 2 ,L , X n ) 取自概率密度为 p ( x ) 的总体,则有( A
2 S4 =
1 n ( X i − µ ) 2 ,则服从自由度为 n − 1 的 t 分布的随机变量是( A ). ∑ n i =1
A.
X −µ . S1 n
B.
X −µ S2 / n
.
C.
X −µ . S3 n − 1
D.
X −µ . S4 n
9. 设 ( X 1 , X 2 ,L , X n ) 是来自正态总体 X