离散数学期末复习要点与重点
离散数学期末复习
离散数学内容总结大纲第一篇 数理逻辑第1章 命题逻辑求命题公式的主析取范式及主合取范式例 求()()p r q p ∨⌝∧∨的主析取范式及主合取范式。
例 求(P →Q)∧R 的主析取范式及主合取范式。
例 求命题公式R Q P ∨∧)(的主析取范式和主合取范式。
例 求公式A =(p →⌝q )→r 的主析取范式与主合取范式。
例 求()r q p →→的主析取范式。
判断公式类型例 用等值演算法判断公式q ∧⌝ (p →q )的类型例 判断下列命题公式的类型(永真式、永假式、可满足式),方法不限。
(1)(2)证明例 证明:()()()r q r p r q p →∧→⇔→∨ 例 证明:r q p r q p →∧⇔→→)()( 例 推证:⌝Q ∧(P →Q)⇒⌝P例 前提:q p s q r p ∨→→,,,结论:s r ∨。
该结论是否有效?请说明原因。
在命题逻辑中构造下面推理的证明:例 如果小张守第一垒并且小李向B 队投球,则A 队获胜。
或者A 队未获胜,或者A 队成为联赛的第一名。
小张守第一垒。
A 队没有成为联赛的第一名。
因此小李没有向B 队投球。
解:先将简单命题符号化。
P:小张守第一垒;Q:小李向B队投球;R:A队取胜;S:A 队成为联赛第一名。
前提:(P∧Q)→R,R∨S,P,S结论:Q证明:(1) R∨S 前提引入(2) S 前提引入(3) R (1)(2)析取三段论(4) (P∧Q)→R 前提引入(5) (P∧Q) (3)(4)拒取式(6) P∨Q (5)置换(7) P 前提引入(8) Q (6)(7)析取三段论例一个公安人员审查一件盗窃案,已知下列事实:(1)甲或乙盗窃了录像机;(2)若甲盗窃了录像机,则作案时间不能发生在午夜前;(3)若乙的证词正确,则午夜时屋里灯光未灭;(4)若乙的证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了。
根据以上事实,推断谁是盗窃犯。
(在命题逻辑中构造推理证明。
大学离散数学期末重点知识点总结(考试专用)
1 / 1 1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (∃x)((Ax)∨(Bx))<=>( ∃x)(Ax)∨(∃x)(Bx) (∀x)((Ax)∧(Bx))<=>(∀x)(Ax)∧(∀x)(Bx) —┐(∃x)(Ax)<=>(∀x)┐(Ax) —┐(∀x)(Ax)<=>(∃x)┐(Ax) (∀x)(A ∨(Bx))<=>A ∨(∀x)(Bx) (∃x)(A ∧(Bx))<=>A ∧(∃x)(Bx) (∃x)((Ax)→(Bx))<=>(∀x)(Ax)→(∃x)(Bx) (∀x)(Ax) →B <=>(∃x) ((Ax)→B) (∃x)(Ax) →B <=>(∀x) ((Ax)→B) A →(∀x)(Bx) <=>(∀x) (A →(Bx)) A →(∃x)(Bx) <=>(∃x) (A →(Bx)) (∀x)(Ax)∨(∀x)(Bx) =>(∀x)((Ax)∨(Bx)) (∃x)((Ax)∧(Bx)) =>(∀x)(Ax)∧(∀x)(Bx) (∀x)(Ax)→(∀x)(Bx) =>(∀x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={<x,y>|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f ºg=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f ºg 也是单射; ②如果f,g 都是满射,则f ºg 也是满射; ③如果f,g 都是双射,则f ºg 也是双射; ④如果f ºg 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f 为由<A,*>到<B,^>的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b =>c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格<A,<=>的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格<A,<=>的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度;②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n=n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
02324离散数学知识点
02324离散数学知识点
离散数学是研究离散对象和离散结构的数学分支,其知识点包括但不限于集合论、图论、逻辑学、组合数学等。
以下是其中一些重要的知识点:
1. 集合论:集合论是离散数学的基石,它研究集合、集合之间的关系和集合的性质。
2. 图论:图论是离散数学的重要组成部分,它研究图(由节点和边构成的结构)的性质和分类。
3. 逻辑学:逻辑学是离散数学的另一个重要组成部分,它研究推理的规则和形式。
在离散数学中,逻辑通常用于描述和证明一些结构或系统的性质。
4. 组合数学:组合数学是离散数学的一个分支,它研究计数、排列和组合问题。
5. 离散概率论:离散概率论是离散数学的另一个分支,它研究离散随机事件的数学模型。
6. 离散概率分布:离散概率分布是描述离散随机事件发生概率的数学模型。
7. 离散随机变量:离散随机变量是能够取到可数无穷多个值的随机变量。
8. 离散概率空间:离散概率空间是一个集合,它包含一个可数无穷多的元素,每个元素都有一个与之相关的概率值。
9. 离散随机过程:离散随机过程是离散随机事件在时间或空间上的序列。
这些知识点都是离散数学的重要组成部分,它们在计算机科学、数学、物理学等领域都有广泛的应用。
离散数学复习要点
离散数学复习要点离散数学是数学的一个分支领域,主要研究离散的结构和离散情形下的数学对象及其相关性质。
它与连续数学不同,离散数学的对象是离散的,如集合、图、布尔代数等。
在计算机科学、信息科学、通信工程等领域中,离散数学的理论和方法被广泛应用。
以下是离散数学的一些重要的复习要点:1.集合论:集合是离散数学的基础,集合的基本运算如交、并、差等,以及集合的基本性质如并集和交集的结合律、分配律等,都是需要复习的内容。
此外,还需要了解集合的基数和幂集等概念。
2.命题逻辑:命题是一个可以判断真假的陈述句,命题逻辑是研究命题及其逻辑关系的数学体系。
需要复习的内容包括命题的逻辑运算,如非、与、或、异或等,以及逻辑等价、逻辑推理等。
3.谓词逻辑:谓词逻辑是对自然语言中的谓词进行形式化表示和推理的系统。
复习重点包括一阶谓词逻辑的基本概念,如谓词、量词、域、项等,以及谓词的合取、析取、全称量词和存在量词等逻辑联结词的语义。
4.图论:图论是研究图及其性质的数学分支。
需要复习的内容包括图的基本概念,如顶点、边、路径、圈等,以及图的表示方法、图的遍历算法、连通图、树等。
5. 网络流模型:网络流模型是研究流动网络的数学方法,主要包括最大流、最小割等问题。
需要复习的内容包括网络的基本概念,如容量、割、流等,以及Ford-Fulkerson算法等解决网络流问题的方法。
6.布尔代数:布尔代数是一种关于逻辑运算的代数系统,常用于电路设计和逻辑推理。
需要复习的内容包括布尔代数的基本运算,如与、或、非等,以及布尔函数的最小项与最大项表示、卡诺图等。
7.组合数学:组合数学是研究离散中的计数问题的数学分支。
需要复习的内容包括排列、组合、多元排列组合等的计数方法,如乘法原理、加法原理、排列组合的顺序问题等。
8.代数系统:代数系统是研究代数结构及其性质的数学分支,包括群、环、域等。
需要复习的内容包括群的基本概念和性质,如封闭性、结合律、单位元、逆元等。
电大离散数学期末复习要点与重点考试资料知识点复习考点归纳总结
三一文库( )*电大考试*电大离散数学期末复习要点与重点考试资料考点归纳总结离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点 1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系.空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n . 2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明.证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=∙=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(R ∙S )∙T =R ∙(S ∙T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R ∙S )-1=S -1∙R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R ∙R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界.等价关系和偏序关系是具有不同性质的两个关系. ⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)( 重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v ) +deg -(v ).无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=V v E v 2)deg(; (2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg +(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充。
离散数学知识点总结
离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。
2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。
解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。
解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
离散数学复习资料
离散数学复习资料离散数学是计算机科学与数学领域中的重要学科,它研究的是离散的数学结构和离散的数学对象。
在计算机科学领域,离散数学是构建算法和设计计算机系统的基础。
为了更好地复习离散数学,我们可以从以下几个方面入手。
一、集合论集合论是离散数学的基础,它研究的是集合及其运算。
在集合论中,我们需要了解集合的定义、基本运算和集合间的关系。
此外,还需要掌握集合的代数运算法则,如交、并、差和补集等。
复习时可以通过解题来加深理解,例如证明集合之间的等价关系、集合的幂集等。
二、逻辑与命题逻辑是离散数学中的重要分支,它研究的是推理和论证的规则。
在逻辑中,命题是最基本的逻辑单位。
复习时需要了解命题的定义和常见的逻辑运算符,如非、与、或、异或等。
此外,还需要熟悉命题的真值表和命题之间的逻辑等价关系。
通过解题和推理,可以提高对逻辑的理解和应用能力。
三、图论图论是离散数学中的一个重要分支,它研究的是图及其性质。
在图论中,我们需要了解图的基本概念,如顶点、边、路径、环等。
此外,还需要熟悉图的表示方法,如邻接矩阵和邻接表。
复习时可以通过解题来加深对图的理解,例如求最短路径、判断图的连通性等。
四、代数系统代数系统是离散数学中的一个重要内容,它研究的是代数结构及其性质。
在代数系统中,我们需要了解群、环、域等代数结构的定义和性质。
此外,还需要熟悉代数运算法则和代数结构之间的关系。
复习时可以通过解题来加深对代数系统的理解,例如证明一个集合构成一个群、判断一个环是否是域等。
五、概率论与统计学概率论与统计学是离散数学中的一个重要分支,它研究的是随机事件和随机变量的概率性质。
在概率论与统计学中,我们需要了解概率的定义和性质,掌握常见的概率分布和统计方法。
此外,还需要熟悉概率的运算法则和统计推断的基本原理。
复习时可以通过解题和实际问题的分析来加深对概率论与统计学的理解。
总之,离散数学作为计算机科学与数学领域中的重要学科,对于计算机科学专业的学生来说具有重要意义。
(完整word版)离散数学复习提纲(完整版)
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。
离散数学知识点整理
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。
下面就来对离散数学的一些重要知识点进行整理。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、彼此不同的对象所组成的整体。
集合的表示方法有列举法和描述法。
列举法就是将集合中的元素一一列举出来,用花括号括起来。
描述法是通过描述元素所具有的性质来确定集合。
集合之间的关系包括子集、真子集、相等。
如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,那么 A 是 B 的真子集;如果集合 A 和集合 B 的元素完全相同,那么 A 和 B 相等。
集合的运算有并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同的元素组成的新集合;差集是从一个集合中去掉另一个集合中的元素所得到的新集合;补集是在给定的全集 U 中,去掉集合 A 中的元素所得到的新集合。
二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。
关系可以用关系矩阵和关系图来表示。
关系矩阵是一个二维矩阵,用于表示两个有限集合之间的关系;关系图则是用顶点和边来表示关系。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系;对称性是如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是如果 a 与 b 有关系且 b 与 a 有关系,那么 a 等于 b;传递性是如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。
等价关系是一种具有自反性、对称性和传递性的关系,它可以将集合划分为等价类。
偏序关系是一种具有自反性、反对称性和传递性的关系,它可以引出偏序集的概念。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
离散数学复习资料
离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表h“”否定联结词,P是命题,P是P的否命题,是由联结词和命题P组成的复合命题.P取真值1,P取真值0,P取真值0,P取真值1. 它是一元联结词.h “”合取联结词,P Q是命题P,Q的合取式,是“”和P,Q组成的复合命题. “”在语句中相当于“不但…而且…”,“既…又…”. P Q取值1,当且仅当P,Q均取1;P Q取值为0,只有P,Q之一取0.h “”析取联结词,“”不可兼析取(异或)联结词, P Q是命题P,Q的析取式,是“”和P,Q组成的复合命题. P Q是联结词“”和P,Q组成的复合命题. 联结词“”或“”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P Q”“(P Q)(P Q)”. P Q取值1,只要P,Q之一取值1,P Q取值0,只有P,Q都取值0.h “”蕴含联结词, P Q是“”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P Q取值为0;其余各种情况,均有P Q的真值为1,亦即10的真值为0,01,11,00的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P Q”.h “” 等价联结词,P Q是P,Q的等价式,是“”和P,Q组成的复合命题. “”在语句中相当于“…当且仅当…”,P Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别h命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.h命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.h等值式A B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。
离散数学知识点全归纳
离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。
在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。
以下是离散数学的一些重要知识点的全面总结。
1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。
- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。
- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。
2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。
- 对证法:从假设的反面出发,利用矛盾推理得出结论。
- 数学归纳法:证明基础情况成立,再证明递推步骤成立。
3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。
- 图的表示:邻接矩阵、邻接表等。
- 最短路径:Dijkstra算法、Floyd-Warshall算法等。
- 最小生成树:Prim算法、Kruskal算法等。
4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。
- 函数及其性质:定义域、值域、单射、满射、双射等。
- 逆函数和复合函数:求逆函数、复合函数的定义和性质。
5. 组合数学- 排列和组合:排列、组合的计算公式和性质。
- 递归关系:递推公式、递归算法等。
- 图的着色:色数、四色定理等。
6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。
- 同态:同态映射、同构等。
- 应用:编码理论、密码学等。
以上是离散数学的一些重要知识点的概括。
深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。
在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。
离散数学重点难点复习提纲
第一部分数理逻辑第一章命题逻辑重点:●熟练掌握联结词的定义;●掌握数理逻辑中命题的翻译及命题公式的定义;●熟记基本的等价公式和蕴涵公式;●利用真值表技术和公式法求公式的主析取范式和主合取范式;●熟练掌握应用基本推理方法完成命题逻辑推理:1.直接证法2.反证法3.CP规则难点:●如何正确地掌握对语言的翻译;●如何利用推理方法正确的完成命题推理。
第二章谓词逻辑重点:●谓词、量词、个体域的概念;●谓词逻辑中带量词命题的符号化;●熟记基本的谓词等价公式;●求公式的前束范式;●掌握谓词逻辑的推理规则以及能够熟练地完成一阶逻辑推理;难点:●谓词逻辑中带量词命题的符号化;●如何利用推理方法正确地完成一阶逻辑推理。
第二部分集合论第三章集合与关系重点:●掌握集合的五种基本运算和集合相等的证明方法;●幂集的概念以及和子集的关系;●序偶和笛卡尔积的概念;●关系定义及其和笛卡尔积之间的联系;●关系的复合;●关系的五种性质及其判断和证明;●关系的闭包;●等价关系定义、证明及其与等价类、集合的划分间的关系;●偏序关系的定义和证明,哈斯图;●偏序关系中的特殊元素;难点:●如何正确证明集合之间包含和相等关系;●如何正确地理解和判断关系的性质;●非常重要的关系性质的证明方法——按定义证明法;●如何正确地掌握等价关系及相应的等价类与集合划分之间的关系;●如何正确地理解和判断偏序关系中的八种特殊元素。
第四章函数重点:●能够判定某个二元关系是否是函数;●几种特殊的函数:满射,单射,双射;难点:●如何正确地判断三种特殊函数。
第三部分代数结构重点:●理解代数结构的构成和研究方法;●代数结构中运算的性质以及特殊元素;●广群⇒半群⇒独异点⇒群;●群的定义与性质;●环与域的判断和证明;●格的两种定义;●特殊格:分配格、有界格、有补格、有补分配格;●有补分配格与布尔代数之间的联系;难点:●循环群的判断和证明;●如何正确理解由偏序关系定义的格与由代数系统定义格之间的关系和区别;●如何正确理解布尔代数的概念。
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
离散数学期末考试重点
1.1替代规则(重言式、矛盾式)1.2对偶式的定义。
什么样的公式有对偶式?对偶式原理的含义、证明、使用1.3范式1.4全功能的联结词变幻1.5谓词推理运用和1.8合在一起。
推理规则和名称(CP规则)1.6谓词符号化、特性谓词、唯一存在(量词)用其他联结词表达、自由变元、约束变元。
改名规则只能对约束变元使用。
1.7定理中出现的公式2基本概念!!!2.1属于和包含的关系、集合关系用谓词表达2.2集合运算、对应的谓词表达形式、主范式、定理中关于集合的公式。
2.3求幂集合和元素个数2.5定义和性质3关系的定义二元关系的三种表达形式及转换集合——集合的二元关系自反、反自反、对称、反对称、传递的定义!!前域、陪域为同一集合。
合成运算谓词表达、相应性质P100-102矩阵运算闭包(必考)、公式3-10 P110 9、10闭包性质自反对称传递顺序一定偏序的判断和证明、画出哈斯图。
求最大/小、极大/小、上下界其他序判定。
词典序和标准序、求前/后继等价关系的判定、最常用的等价关系、等价的概念覆盖和划分区别、划分和等价关系的诱导、求积与和、划分的定义和性质、函数的定义、其他概念。
合成函数与关系的合成顺序不同。
单满双的函数性质判定(定理)及证明。
逆函数<--->双射左右逆元构造单侧逆函数补充部分:题型:一、选择10*2’=20’二、填空18*2’=36三-七为大题:三、主范式证明。
9’四、谓词演绎推理15’五、六:二元关系证明七、函数15’注意:一、三章是重点,一定要对基本概念相当清楚(尤其是第一章的公式)!!2.3不考。
那些已知的定理的证明不考,可以直接用的。
这是信安班画的重点,大家可以做个参考。
目前估计卷子是一样的。
离散数学期末考试要总结(重点程度4颗星)
第四章图论1.图的基本概念重点掌握:阶的概念;度的概念:完全图,补图概念;母图与子图—引出生成图与导出图概念的差别;握手定理—度数和 = 2 倍边;握手定理应用—图这一章的所有计算题的理论依据。
2.图的分割重点掌握:割集概念—注意割点或桥的特点。
请留心割集与基本割集的联系。
例题1、9阶无向简单连通图G中,顶点间的最大距离为 [ A ] A.8 ; B.9 ; C.10 ; D.11 。
第五章树1.树的基本概念重点掌握:定义—连通而无回路,m = n - 1;生成树—引出树枝、弦、基本回路、基本割集概念。
2.根树重点掌握:根树的来源及特点定义;最优二元树及最佳前缀码。
特别要求:必须掌握图----树关系.例题1: 每条边都是桥的无向连通图必是树。
[ 是]例题2、n 阶无向连通图G有m 条边,T为G 的一棵生成树,则G对应T的基本回路数目为[ D ]A.n ;B.n-1 ;C.m-n;D.m-n+1。
例题3、非平凡无向树T 是连通图[ 是]。
例题4、根树中的树叶都在树的最高层。
[ 非 ]例题5、填空题:(1)n 阶非平凡无向树至少两片树叶。
(2)、图G(m,n)的阶数n 为10,则其生成树的边数为9 。
例题6、在网上传输 GOODBYE 的最佳前缀码。
每个字母出现频率分别为:G、D、B、E、Y:14%,O:28%;(可以对符号出现频率归一,如下图右;也可以不归一,某符号出现次数即为权,下图左).所以,得到编码如下:G(000),D(001),B(100),E(101),Y(01),O (11)。
试问:你能算出传递GOODBYE共用多少位二进制码字?第六章命题逻辑1.基本概念重点掌握:命题—命题定义及简单命题;5 个基本联结词 + 简单命题 = 复合命题;简单命题的符号化;2.命题公式及其规范形式重点掌握:公式的赋值—成真、成假赋值,真值表—公式的类型;范式及主范式—析取范式与合取范式;主范式中极小项与极大项关系。
离散数学重点难点
1.德·摩根律: (AB) AB, (AB) AB
2.量词顺序不能随意调换. xy(x + y = 0) 与 yx(x + y = 0) 含义不同.
3.不含自由个体变项的公式称为封闭的公式(闭式)
4.定理5.1 (前束范式存在定理) 一阶逻辑中的任何公式都存在与之等 值的前束范式.
5.例6 求前束范式: (1) xF(x) xG(x); (2) xF(x) xG(x).
解 (1) xF(x) xG(x) xF(x) yG(y) (换名规则) xF(x) yG(y) (量词否定) x(F(x) yG(y)) (辖域扩张) xy(F(x) G(y)) (辖域扩张)
自 反 反
反 自
对 称 称
反 对
传 递
R1 √
√√
R2
√√
R3
√√
R4Leabharlann √R5√√
R6
√√√
R7
√
定理7.12 性质有单调性: 若 R1 R2, 则 (1) r(R1) r(R2); (2) s(R1) s(R2); (3) t(R1)
t(R2)
定理7.13 设 R 是非空集合 A 上的关系, (1)若 R 自反, 则 s(R) 与 t(R) 也自反. (2)若 R 对称, 则 r(R) 与 t(R) 也对称. (3)若 R 传递, 则 r(R) 也传递.
离散数学期末总结
离散数学期末总结一.知识点第一章.集合论集合论或集论是讨论集合〔由一堆抽象物件构成的整体〕的数学理论,包含集合、元素和成员关系等最基本数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。
本章主要介绍集合的基本概念、运算及幂集合和笛卡尔乘积。
这章是本书的基础部分,要学好离散数学就需要很好的掌控集合的内容。
集合论的概念和方法已经渗透到全部的数学分支,因而各数学分支的完整体系,都是在所取集合上。
第二章.关系关系在我们日常生活中常常会遇到关系这一概念。
但在数学中关系表示集合中元素间的联系。
本章主要学习关系的基本概念、关系的性质、闭包运算、次序关系、等价关系,本章学习的重点:关系的性质、闭包运算、次序关系。
关系这一章是集合论这一章的延伸,对集合论的理解程度对学习关系这一章是特别有影响的。
而关系又是学习下一章代数系统必不可少的,所以本章是特别重要的章节。
第三章.代数系统代数结构也叫做抽象代数,主要讨论抽象的代数系统。
抽象代数讨论的中心问题就是一种很重要的数学结构--代数系统:半群、群等等。
本章主要学习了运算与半群、群。
学习本章需要学会判断是否是代数系统、群和半群,以及判断代数系统具有哪些运算规律,如:结合、交换律等及单位元、逆元。
这些都在我们计算机编码中表达出重要的作用。
第四章.图论图论〔Graph Theory〕起源于闻名的柯尼斯堡七桥问题,以图为讨论对象。
图论中的图是由假设干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
本章主要学习图的基本概念、路径与回路、图的矩阵表示、平面图和二部图、以及树。
学习的重点:图的矩阵表示、平面图和二部图、以及树。
第五章.数理规律数理规律又称符号规律、理论规律。
它既是数学的一个分支,也是规律学的一个分支。
是用数学方法讨论规律或形式规律。
数理规律是数学基础的一个不可缺少的组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学期末复习要点与重点离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系. 空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n .2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明. 证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=•=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(R •S )•T =R •(S •T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R •S )-1=S -1•R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R •R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系.⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)( 重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v )+deg -(v ). 无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=Vv E v 2)deg(; (2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg +(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E >, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G =<V ,E >,任意V 1⊂V ,则W (G -V 1)≤∣V 1∣(必要条件)若此条件不满足,即存在V 1⊂V ,使得P (G -V !)>∣V 1∣,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).3.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用. 平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念.重要结论:(1)平面图e r e E v V E V G ri i2)deg(,,,,1===>=<∑=则. (2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.4.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法. 给定平面图G =〈V ,E 〉,它有面F 1,F 2,…,F n ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面F i ,内部有且仅有一个结点v i *∈V *;⑵对于图G 的面F i ,F j 的公共边e k ,存在且仅存在一条边e k *∈E *,使e k *=(v i *,v j *),且e k *和e k 相交;⑶当且仅当e k 只是一个面F i 的边界时,v i *存在一个环e k *和e k 相交;则图G *是图G 的对偶图.若G *是G 的对偶图,则G 也是G *的对偶图.一个连通平面图的对偶图也必是平面图.5.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.第5章树及其应用复习要点1.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.2.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.第6章命题逻辑复习要点1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定⌝P、析取∨、合取∧、条件→、和双条件↔及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A有n个命题变元,A的主析取范式有k个极小项,有m个极大项,则n+=k2m于是有(1) A是永真式⇔k=2n(m=0);(2) A是永假式⇔m=2n(k=0);求命题公式A的析取(合取)范式的步骤:见教材第174页.求命题公式A的主析取(合取)范式的步骤:见教材第177和178页.5.了解C是前提集合{A1,A2,…,A m}的有效结论或由A1, A2, …, A m逻辑地推出C的概念.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.第7章 谓词逻辑复习要点1.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词∀,存在量词∃.命题符号化注意:使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题.在谓词公式∀xA 或∃xA 中,x 是指导变元,A 是量词的辖域.会区分约束变元和自由变元.在非空集合D (个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等. 掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.3.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成 B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,而x 1, x 2, …, x k 是个体变元,B 是不含量词的谓词公式.前束范式仍然是谓词公式.4.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.重点:谓词与量词,公式与解释,谓词演算.。