弹塑性及有限元题目整理

合集下载

弹性力学与有限元分析试题及其答案

弹性力学与有限元分析试题及其答案

弹性力学与有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

(完整)弹塑性力学简答题

(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。

110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。

5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
(2) J 3 = I 3 + (4) J 2 = (6)
1 2 3 I1 I 2 + I1 ; 3 27
1 S ij S ij ; 2
∂J 2 = S ij . ∂σ ij
1 S ik S km S mi 。 3 2—22* 试证在坐标变换时, I 1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用 张量计算证明。 5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪 8 3 11
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变

河海大学05-06第二学期弹塑性力学考试试卷

河海大学05-06第二学期弹塑性力学考试试卷

2005-2006 学年第二学期《弹性力学及有限元》期末试卷一、选择题(20 分) 1、 弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以求得具体问题的应力、应变、位移。

A.几何方程 B.边界条件 C.数值方法 D.附加假定2、 弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系( )。

A.平衡方程、几何方程、物理方程完全相同B.平衡方程、几何方程相同,物理方程不同C.平衡方程、物理方程相同,几何方程不同3、 根据圣维南原理,作用在物体一小部分边界上的力系可以用下列( )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A.静力上等效 B.几何上等效 C.平衡 D.任意4、 三结点三角形单元中的位移分布为( )。

A.常数 B.线性分布 C.二次分布 D.三次分布二、简答题1、在什么条件下,平面应力问题的 的?(9 分)与平面应变问题的是相同2、若引用应力函数 求解平面问题,应力分量与应力函数的关系式、 推导出来的。

(5 分)、是根据弹性力学哪一类基本方程3、有限单元法中选取单元位移模式应满足什么条件? (9 分)三、计算题1、 试问 分量?(10 分)是否可能成为弹性力学问题中的应变2、圆环内半径和外半径为别为 a 和 b,内边界受均布法向压力 作用,外边界固 定。

已知平面轴对称问题的应力分量为,相应位移分量为 ,试求圆环的应力分量和位移分量。

(15 分)3、试用应力函数求解题 3 图所示的应力分量(设)。

(20 分)题3图 4、某结构的有限元计算网格如题 4 图(a)所示。

网格中两种类型单元按如题 4 图(b)所示的局部编号,它们单元劲度矩阵均为试求:(1)结点 2 的等效荷载列阵 。

(4 分) (2)整体劲度矩阵中的子矩阵 和 。

(8 分)(a)(b)。

弹塑性力学试题--答案要点

弹塑性力学试题--答案要点

一、判断题(本题18分,每小题3分)1、弹性体的应力就是一种面力。

( ×)2、弹性体中任意一点都有x y r θσσσσ+=+ (√ )3、物体是弹性的就是说应力和应变之间的关系是直线。

( ×)4、极坐标系下的弹性力学方程只能用来描述具有轴对称性的受力物体。

( ×)5、下图为线性硬化弹塑性材料。

( √)图16、平面应力与平面应变问题的平衡方程、几何方程、物理方程完全相同。

(×) 二、概念解释(本题16分,每小题2分)1、塑性;2、屈服准则;3、外力(即外荷载);4、均匀性,各向同性;5、主应力和主方向;6、翻译:主应力,剪应变,平面应变问题 三、简答题(本题17分)1、简述半逆解法的适用条件及其实施的主要过程。

(6分)主要使用条件是常体力平面问题,这时候可以使用基于应力函数的解法。

半逆解法的主要实施过程(a )根据问题的条件(几何形状、受力特点、边界条件等),假设部分或者全部应力分量的某种函数形式;(b )根据应力分量与应力函数的关系以及用应力函数给出的变形协调关系,确定应力函数的形式;(c )再次利用应力分量与应力函数的关系求出应力分量,并让其满足边界条件,对于多联通域,还要满足位移单值条件。

2、简述圣维南原理及其作用 (6分)圣维南原理:若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。

可以推广为:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计3、在主轴坐标系下,线弹性体应变能密度是()11223312U σεσεσε=++,请将其写成约定求和的指标记法。

(5分)解答:()11223311 i=1,2,322i i U σεσεσεσε=++=四、证明题(本题12分)平面问题中,物体中任意两条微小线元PB 和PC ,线段长度如图2所示,变形以后,变到了P ’B ’和P ’C ’. 已知P 点的为,u v ,请证明变形几何方程(给出推导过程): ,,x y xy u v u vx y y xεεγ∂∂∂∂===+∂∂∂∂图2答案要点:,,A B A B u u u u dx u u dy x yv vv v dx v v dyx y∂∂=+=+∂∂∂∂=+=+∂∂12A x A y A B xy uu dx uu u u x dx dx xv v dx vv v v x dy dy xu v u dy v dx v v v u uv u y x dx dydx dy x yεεγαα∂+--∂∂===∂∂+--∂∂===∂∂∂++---∂∂∂∂=+=+=+=+∂∂五、计算题(本题37分)1、图3为某矩形截面墙体,其上面受到向下的堆载q 作用,右侧受到来自土的作用,且底端压力为γ,下端固定,请写出该挡土墙的全部边界条件。

弹塑性力学与有限元-材料非线性问题和几何非线性问题

弹塑性力学与有限元-材料非线性问题和几何非线性问题

《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
➢ 塑性力学的基本法则 (i) Prager运动硬化法则 规定加载曲面中心的移动是在表征现时应力状态的应力点的法线方向。
Prager运动法则一般说只能应用于九维应力空间。
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
(3)按单元内各个积分点计算D的预测值
1)计算屈服函数值
,然后区分三种情况
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
材料非线性问题
➢ 弹塑性增量分析数值方法中的几个问题 弹塑性状态的决定和本构关系的积分 (i)
(ii) 若
,则该积分点为由弹性
进入塑性的过渡情况,计算比例因子m。
(iii)若
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形条件下的应变和应力的度量 一. 应变的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
几何非线性问题
➢ 大变形条件下的应变和应力的度量 二. 应力的度量 在大变形问题中,是从变形后的物体中截取出微元体建立平衡方 程和与之相等效的虚功原理,所以应从变形后的物体内截取单元 体定义应力张量--欧拉应力张量,tτij
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》

弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)弹塑性力学2008级试题一简述题(60分)1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。

塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。

2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。

应力状态:某点处的9个应力分量组成的新的二阶张量?。

3)球张量和偏量??m0 球张量:球形应力张量,即??????0中?m? 偏?m0?0?,其??m??1??3x??y??z?量:偏斜应力?xy张量?xz,即??x??m?Sij???yx??zx?1?y??m?zy???yz?,其中?z??m???m?13??x??y??z?5)转动张量:表示刚体位移部分,即?0????1??v?uWij?????2??y??x???1??w??u?2??x?z?1??u?v?????2??y?x?????????01??w?v?????2???y?z?1??u?w??????2??z?x?????1?v?w???????2??z?y????0??6)应变张量:表示纯变形部分,即??u??x????1???ij???v?u2???y??x???1??w??u?2??x?z?1??u?v?????2???x??y????????v?y1??w?v?????2??y?z??1??u?w??????2??z?x?????1?v?w???????2??z?y????w???z?7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关系,2即应变协调条件。

?2?x?y2??2?y?x2??2?xy?x?y。

8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

弹塑性力学基础与有限元分析-接触分析实例

弹塑性力学基础与有限元分析-接触分析实例

06
结论与展望
结论
1
本文通过理论分析和有限元模拟,深入研究了弹 塑性力学基础与有限元分析在接触分析中的应用。
2
研究结果表明,弹塑性力学基础与有限元分析在 接触分析中具有较高的精度和可靠性,能够有效 地模拟复杂接触问题。
3
本文所采用的有限元分析方法在处理接触问题时 具有较好的通用性和扩展性,为进一步研究复杂 接触问题提供了有力支持。
弹塑性本构模型
弹塑性本构模型的定义
弹塑性本构模型是描述弹塑性材料力学行为的数学模型,它通过应力应变关系来描述材料的弹塑性行 为。
常见的弹塑性本构模型
常见的弹塑性本构模型包括Mohr-Coulomb模型、Drucker-Prager模型、Cam-Clay模型等。这些模 型在描述材料的弹塑性行为方面各有特点,适用于不同的材料和工程问题。
接触面完全贴合,无相对运动。
滑动状态
接触面部分贴合,存在相对运动。
混合状态
接触面同时存在分离、粘结和滑动。
接触检测与跟踪
初始接触检测
确定初始状态下接触面的位置和状态。
接触状态跟踪
实时监测接触面的运动状态和相互作用。
接触面更新
根据接触状态调整接触面的几何形状和参数。
接触刚度与阻尼
1 2
接触刚度
描述接触面间的相互作用力与相对位移的关系。
求解阶段主要进行有限元 方程的求解,得到各节点 的位移和应力等结果。
ABCD
前处理阶段主要完成有限元 模型的建立和网格划分,为 求解阶段提供输入数据。
后处理阶段主要对求解结果进 行可视化、分析和评估,为工 程设计和优化提供依据。
04
接触分析原理
接触状态描述
分离状态

最新弹性力学与有限元分析试题答案DOC

最新弹性力学与有限元分析试题答案DOC

最新弹性力学与有限元分析复习题及其答案填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、—形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力^的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应 _______________ 和切应力。

应力及其分量的量纲是L-1MT-2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量匚x=100MPa,匚y=50MPa,“=10*50 MPa,则主应力"十=150MPa. '2 =QMPa,二》= 35 16。

&已知一点处的应力分量,匚x=200MPa,二y=0MPa,• x<-400 MPa,则主应力匚一512 MPa,二2二-312 MPa, :r =-37° 57'。

9、已知一点处的应力分量,二x"2000MPa,二y =1000MPa,x^-400 MPa,则主应力G =1052MPa,二-2052 MPa,:严82° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹塑性问题有限元分析讲述

弹塑性问题有限元分析讲述

nz nz
xz yz
0 0
nx zx
ny zy
nz ( zz
n)
0
这是关于nx , ny , nz的齐次线性方程组,其非零解的条件为行列式
等于零
展开可得:
n3
I1
2 n
I 2
n
I3
0(1)
其中
I1 xx yy zz
I2
xx
yy
xx zz
zz
yy
xy2
2 yz
2 zx
设该点有一斜面的应力矢量为p,它与 ij 保持平衡,该斜面的法线n的方
向为p余1 弦 为1nnxx、, pn2y、nz ,2n由y , 合p3 力 平3衡nz 可,以于得是到该p面在上坐的标与轴p方等向价的的三正个应投力影分n 和别剪
应力 n 的关系为:
2 n
p2
n2
2 1
nx
22ny
32nz
px nx n , py ny n , pz nz n
其中 nx , ny , nz 为斜面外法线n的方向 余弦
△ABC △S △BOC nx△S △COA ny△S △AOB nz△S
由 Fx 0
px△S xxnx△S yxny △S zxnz △S Fx△V 0
当OABC P :
弹性 极限
应 力
加 载
卸 载
塑性应变 弹性应变
断裂 应变
在实际结构中,真实的情况是材料处于复杂 的受力状态,ij 即中 的各个分量都存在,如何基 于材料的单拉应力-应变实验曲线,来描述复杂 应力状态下材料的真实弹塑性行为,就必须涉及 屈服准则、塑性流动法则、塑性强化法则这三个 方面的描述,有了这三个方面的描述就可以完全 确定出复杂应力状态下材料的真实弹塑性行为

21级弹塑性力学试卷(专硕)

21级弹塑性力学试卷(专硕)
三、如图所示悬臂薄板,已知板内的应力分量为
其中a为常数。其余应力分量为零。求此薄板所受的边界载荷及体力,并画出边Fra bibliotek载荷。(16分)
四、如图所示,楔形体顶部受集中力P作用,试求出楔形体的应力分量。(体力不计)(16分)
五、如图所示,已知悬臂的单位厚度板,其长度为l,宽度为2a,板材料的比重为 ,设 ,试求在自重作用下板的应力和位移。(18分)
2022年1月8日考试用
广西大学课程考试试题
(2021─2022学年度第1学期)
课程名称:弹塑性力学与有限元法
弹塑性力学部分(开卷)
命题教师签名:黄立新
年级方向学号姓名
题 号





总分
应得分
25
25
16
16
18
100
实得分
考试要求:
1、用标准A4纸全部手写答题,不接受打印答题。
2、提交的答题卷包括封面(打印)、考试试题(打印)、答题内容(手写)和封底(打印)。
3.什么是弹塑性力学?弹塑性力学在工程中有哪些作用?(8分)
二、试写出应力边界条件及接触条件(25分)
1.如图所示曲梁,试写出界条件。(10分)
2.三个弹性体I,II, III,弹性模量分别为 , , ,变形前互相接触,请写出变形后的接触条件,并举例讨论三个弹性体弹性模量之间比例关系如何影响物体的变形。(15分)
3、纵向装订
一、简答题(25分)
1.实际工程中,能求出解析解答的问题是非常少的。有限元法是解决工程问题的强有力工具,因此有限元的商业软件(ANSYS、ABAQUS等)被广泛使用,你如何理解这些现象?会使用有限元的商业软件是否就能解决工程问题?如果不能,还需要具备哪些知识(举例说明)?(12分)

有限元例题及答案

有限元例题及答案

例 8-1:E ,A ,L ,s σ 杆I 弹塑性; 杆II 弹性。

求s AF σ3=下2点位移。

解:(1)理论解在荷载s A F σ3=作用下,杆I 屈服而有内力(拉力)S A N σ=1,杆II 内力(压力)为s II A N σ2=,中点2位移δ取决于杆II 的变形,即*===∆=δσσδ22)2(EL AE L A l S S II式中E Ls σδ=*(屈服位移)(2)直接迭代法杆I 和杆II 的刚度分别为⎩⎨⎧=**≤〉)()(δδδδδσL EAAI S k L EA k II =①迭I 迭代步迭代从*=δδ0开始,这时有L EAk k K II I 20=+=*-====δσσδ5.15.123101EL L EA A F K S S②第2迭代步杆I 进入塑性,有L EA A k s I 67.01==δσ杆Ⅱ完全弹性,刚度不变。

因此,总刚为L EAk k K II I 67.11=+=*-====δσσδ8.18.167.13112E L LEA A F k S s 整个迭代过程见表8-1。

表8-1 直接迭代法各次迭代结果(3)切线刚度法杆Ⅰ和杆Ⅱ的切线刚度分别为⎩⎨⎧=**≤〉)()(0δδδδLEAI k L EA k II =①第1迭代步初始状态时,00=δ,杆Ⅰ,Ⅱ中应力、应变均匀为零。

总刚为:L EAk k K T TI T 21=+=由F K T -=δψ,得S A σψ30-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.1)3(10S A L由式n n n δδδ∆+=+1得,s δδ5.11=杆中应力:S SI σσσσ5.111-==杆中内力:S SI A N A N σσ5.111-==②第2迭代步由于杆I 已进入塑性,杆Ⅱ仍处弹性,总刚:L EAk k K TIITI T =+=2由F K T -=δψ,得S S S A A A σσσψ5.035.21-=-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.0)5.0(11S A LEA由式n n n δδδ∆+=+1得,*=∆+=σδδδ0.2112杆中应力:S II SI A N A N σσ0.222-==检验F K T -=δψ,有030.32=-=S S A A σσψ迭代平衡。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

--弹性力学与有限元分析试题及参考答案

--弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。

为了满足平衡微分方程,必须A =-F ,D =-E 。

此外还应满足应力边界条件。

(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。

上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

弹塑性力学及有限元a答案

弹塑性力学及有限元a答案

济南大学
在职攻读工程硕士专业学位研究生课程考试试题答案(A)
报考专业领域:考试科目名称:姓名:学号:(所有答题内容必须写在答题纸上,写在试卷、草稿纸上无效)
1分析判断题,并说明理由(每题10分,共50分)
1) 错误;2) 正确;3) 正确;4) 错误;5)错误;6) 错误;7) 正确;8) 错误;9)错误;10) 错误;
2 论述题
(1)论述形函数的基本性质。

(15分)
1)形函数
N在节点i上的值等于1,在其它节点上的值等于0.
i
2)在单元中任一点,所有形函数之和等于1
3)在三角形单元的边界ij上任一点(x,y),有
4)形函数在单元上的面积分和在边界上的线积分公式为
20分)。

有限元简答题

有限元简答题

有限元简答题1、弹性力学和材料力学在研究对象上的区别?6答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。

弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,弹性力学的研究对象要广泛得多。

2、理想弹性体的五点假设?答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、1、任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空间梁问题?为什么答:平面问题分为平面应力问题和平面应变问题,当研究对象一个方向的尺寸远小于另两个方向,外力和约束仅平行于板面作用而沿Z向不变,且仅有的三个应力分量是x、y的函数时,这样的空间问题就可以转换成平面应力问题;当研究对象一个小位移和小变形的假定。

3、什么叫轴对称问题,采用什么坐标系分析?为什么?答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。

对于轴对称问题,采用圆柱坐标。

当以弹性体的对称轴为Z轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。

4、梁单元和杆单元的区别?答:主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。

杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。

5、薄板弯曲问题与平面应力问题的区别?答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。

6、有限单元法结构刚度矩阵的特点?答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。

7、有限单元法的收敛性准则?答:完备性要求,协调性要求。

完备性要求。

如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、应力1. 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2. 应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3. 为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。

4.Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

5.固体力学解答必须满足的三个条件是什么?可否用其他条件代替? 可以。

能量原理处于整个系统。

6. 解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

二、应变1. 从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。

从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。

2.两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。

3.应力状态是否可以位于加载面外?为什么?不可以。

保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

4.给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。

5. 应变协调方程的物理意义是什么?对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。

多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。

6.已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?一定,从几何角度看,微单元体之间就会出现裂缝或者相互嵌入,即产生不连续现象、而实际物体在变形后应保持连续,因此,6个应变分量不能任意给定,必须满足一定的协调关系,否则,就会导致位移不单值,不连续现象产生7.求解弹性力学问题的应力法能应用于求解其中的位移边界问题吗?为什么? 不能,位移边界条件无法用应力分量表示三、弹性本构方程1.对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,,,222x X xy xyy y yz yz z z zx zxG G G G G G νννσελετγσελετγσελετγ=+==+==+=,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。

2.弹性应变能可以分解为哪两种应变能?体积改变能和形状改变能。

3.对于各向同性弹性体,弹性应变能是否可以一定可以表示为应力不变量(或应变不变量)的函数?为什么?可以。

弹性应变能是客观存在的,它与坐标系的选择无关。

4. 对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。

应变能为应力的三个不变量的函数,由于第三不变量为应力的三次方,求导后为应力的二次方,第二不变量为应力的二次方,第一不变量为应力的一次方。

故在线弹性情况下应变能为第一不变量的平方与第二不变量的线性组合。

若含第三不变量,则非线性弹性。

所以线性弹性情况下独立的弹性常数只有两个。

5.为什么弹性模量必须大于零由于应变能函数w 是非负的,即要求材料从零应变状态产生变形达到某一应变状态外力必须做正功。

简单地说,在材料某一方向施加单轴拉应力,则必然引起同一方向上的伸长变形,应力与应变方向相同,则弹性模量大于零。

6.超弹性材料的特点是什么?它的应力、应变和应变能三者之间的关系如何?在任意的加载—卸载循环下,材料都不产生能量耗散。

四、弹性力学边值问题的微分提法与求解方法1.用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。

2.使用应力作为基本未知数求解弹性力学问题,应力应满足哪些方程? 本构方程和协调方程。

五、平面问题1.两个弹性力学问题,一个为平面应力,一个为平面应变,所有其它条件都相同,试问两者的应力分布是否相同?不相同。

前面一个是(,)(,)0x x y y z x y x y σσσσσ===,后面是1()2z x y σσσ=+≠0。

六、薄板弯曲1.在薄板弯曲中,哪些应力和应变分量较大?哪些应力分量较小?,(,)(,)x y xy yz zx z σστττσ>≥。

平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。

2. 一混凝土矩形薄板,受均布荷载,试问哪个方向的配筋量应该大一些?为什么?短边上的配筋量应该大一些 由于短边方向上的最大弯矩大于长边方向的最大弯矩,且随着长边与短边的比值的增大,短边的弯矩比长边的弯矩大得越来越多七、能量原理1.虚位移原理:外力在虚位移上做的功等于内力在虚应变上做的功。

没有涉及本构方程,等价于平衡微分方程和力边界条件。

2.虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?平衡微分方程和静力边界条件。

不涉及物理方程。

适用于塑性力学问题。

说明了虚位移原理是以能量形式表示的静力平衡。

3.最小势能原理的适用范围是什么?为什么?仅对弹性保守系统有效,因为是在条件弹性保守系统的假定下进行的。

4.最小势能原理能否适用于分析塑性力学问题?为什么?仅对弹性保守系统有效,因为是在条件弹性保守系统的假定下进行的。

5.物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性该条件是满足的。

6.虚功原理是否适用于塑性力学问题?为什么?可以,因为虚功原理没有涉及物体的本构方程,没有规定应力应变之间的具体关系八弹性力学问题的数值方法1.与Ritz法相比较,有限元方法的优点主要是哪些?在使用Ritz法进行近似求解时,需要在整个物体构造位移试验函数,对于复杂的几何开头,这往往比较困难、有限元的基本思想则是:把整个求解区域分成许多个有限小区域,这些小区域称之为单元。

单元与单元之间保持位移连续;然后,在每一个单元上求热能,将所有单元上的势能加起来得弹性体的总势能,最后应用最小势能原理求解单元节点位移。

九、塑性力学的基本概念1.什么是随动强化?试用单轴加载的情况加以解释?反向屈服应力的降低程度正好等于正向屈服应力提高的程度,则称为随动硬化。

2.塑性内变量是否可以减小?为什么?不能。

内变量为刻画加载历史的量,若可以减小,会抵消一部分塑性变形,不能反映塑性历史。

3. 什么是硬化?有哪几类硬化模型?硬化:应力在超过屈服极限后,随着应力的增加,应变不断增加的行为。

等向硬化随动硬化混合硬化模型4. 物体在外力作用下部分区域产生塑性变形,当外力完全卸去,一般都会产生残余应力,为什么?金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力. 原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们相互之间又是互相牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-----当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力\微观应力和晶格畸变应力.注意它们是在一定范围存在的弹性应力,一般在浇注、锻打或加工后受热变形较多。

一般要做时效处理。

来消除应力。

十、屈服条件1. 举例说明屈服条件为各向同性的物理含义?屈服条件与主应力的作用方位无关,即在不同的坐标系下,屈服函数具有相同的函数形式,即与坐标的选取无关.2. 什么是Mises应力,为什么要这样定义?即等效应力,根据Mises屈服准则可以直接比较Mises应力与屈服极限大小判断是否屈服十一、塑性本构关系1.什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。

中性变载:应力增量沿着加载面,即与加载面相切。

应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。

2.中性变载是否会产生塑性变形?是否会产生弹性变形?分别是为什么?中性变载是应力增量沿着加载面,即与加载面相切。

因应力在同一个面上变化,ξ将保持不变,不会产生新的塑性变形(连续性条件),但因为应力改变,内变量β会产生塑性应变。

3.对于非稳定材料,正交流动法则是否成立?为什么?不成立。

有应变软化存在,所以不成立。

4.比较两种塑性本构理论的特点?增量理论和全量理论。

增量理论将整个加载历史看成是一系列的微小增量加载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系,再沿加载路径依次积分应变增量得最终的应变。

全量理论不去考虑应力路径的影响,直接建立应变全量与应力全量直接的关系。

5. 理想塑性材料本构关系的塑性因子是通过什么来确定的?实际问题中,如果微单元体周围物体还牌弹性阶段,由于要满足变形协调条件,微单元体的塑性变形必然受到周围物体的限制,而不可能任意发展,这时塑性因子的值是确定的,不过它不是通过微单元体本身的本构关系确定的,面是由问题的整体条件来确定。

理想弹塑性问题,就在平稳、几何和本构方程的基础上,结合屈服条件一起求解6. 以Mises 等向硬化模型为例,试说明如何根据实验确定加载面的演化方程? 根据单轴拉伸试验结果,得到σ~ξp 关系曲线,即为任意路径下的等效应力-累积塑性变形增量关系曲线。

切线的斜率为Ep=d σ/d ξp ,将应力替换为等效 应力,即得塑性模量h 。

若使用塑性功作为内变量,则加载面为7.弹性本构关系和塑性本构关系的各自主要特点是什么?对于弹性体,一点的应力应取决于该是点的应变状态,即应力是应变函数: ,进入塑性状态后,应变不仅取决于应力状态,而且取决于应力状态,而且还取决于应力历史8.理想塑性体内塑性区的变形是否总是协调的?为什么?是的,因为进入塑性区后,塑性变形可以任意发生十二、塑性流动与破坏问题1.什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少?在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。

相关文档
最新文档