北师版八年级下数学第四章随堂练习3
北师大版八年级数学下册第四章学情评估 附答案 (2)
北师大版八年级数学下册第四章学情评估一、选择题(每题3分,共30分)1.下列从左到右的变形中,是因式分解的是( )A.x2-9=(x-3)2B.x2-x+4=x(x-1)+4C.(x+2)2=x2+4x+4 D.x2+2x=x(x+2)2.用提公因式法分解因式2x2-x时,应提取的公因式是( )A.x B.2x C.x2D.23.下列多项式中,可以用平方差公式进行因式分解的是( )A.x2+4y2B.-9x2-y2C.4x+y2D.-16x2+25y24.下列多项式能用完全平方公式进行因式分解的是( )A.a2-2a+4 B.a2+2a-1C.a2+a-1 D.a2-4a+45.若多项式x2+kx-6可以因式分解为(x-2)(x+3),则k的值为( ) A.1 B.-1 C.-2 D.26.利用因式分解计算11×1022-11×982的结果是( )A.44 B.800 C.2 200 D.8 8007.如图,长为a,宽为b的长方形的周长为16,面积为12,则a2b+ab2的值为( )A.28 B.96C.192 D.2008.已知x3+x2+x+1=0,则x2 023+x2 022+x2 021+…+x+1的值是( ) A.0 B.1 C.-1 D.29.若多项式2x2+ax-6能分解成两个一次因式的积,且其中一个一次因式为2x -3,则a的值为( )A.1 B.5 C.-1 D.-510.216-1可以被10~20之间的两个整数整除,则这两个整数是( ) A.13和15 B.12和16 C.14和17 D.15和17二、填空题(每题3分,共15分)11.因式分解:2ax 2-2a =____________________.12.已知x =y +3,则代数式x 2-2xy +y 2-20的值为________.13.若2 0242-4=2 022m ,则m =________.14.若关于x 的二次三项式x 2+2(m -3)x +16可用完全平方公式分解因式,则m的值为________.15.设M =2n +28+1,若M 为某个有理数的平方,则n 的值为____________.三、解答题(一)(每题8分,共24分)16.因式分解:(1)4a 2-25;(2)2x 2-8xy +8y 2.17.给出三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再把结果因式分解.18.已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.四、解答题(二)(每题9分,共27分)19.甲、乙两个同学因式分解x2+ax+b时,甲看错了b,分解结果为(x+4)·(x +2),乙看错了a,分解结果为(x+1)·(x+9).求多项式x2+ax+b分解因式的正确结果.20.如图①,在一个边长为a的正方形中,剪去一个边长为b的小正方形,再将余下的部分拼成如图②所示的长方形.(1)[观察]比较两图中阴影部分的面积,可以得到等式:________(用字母a,b表示);(2)[应用]计算:x4-81;(3)[拓展]已知2m-n=3,2m+n=4,求8m2-2n2的值.21. 在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式x3+2x2-x-2因式分解的结果为(x-1)(x+1)(x+2).当x=18时,x-1=17,x+1=19,x+2=20,此时可以得到数字密码171 920或201 719等.(1)根据上述方法,当x=28,y=11时,对于多项式x3-xy2分解因式后可以得到数字密码:______________;(2)将关于x的多项式(m-n)x3-(m+12n)x分解因式后,利用题目中所示的方法,当x=18时得到的数字密码之一为182 016,求m,n的值.五、解答题(三)(每题12分,共24分)22.在一次数学综合与实践活动中,同学们需要制作如图1所示的三种卡片,其中卡片①是边长为a的正方形,卡片②是长为b,宽为a的长方形,卡片③是边长为b的正方形.(1)卡片①,卡片②,卡片③的面积之和为_________________________;(2)小明制作了2张卡片①,3张卡片②,1张卡片③,并用这些卡片无缝无叠合拼成如图2所示的大长方形,请根据图2的面积写一个多项式的因式分解为____________;(3)小刚将自己制作的2张卡片①和1张卡片②送给小明,小明用所有卡片重新无缝无叠合拼成一个大的正方形M,若a=1.6,b=2.8,求正方形M的边长.23.教材中写道:“形如a2±2ab+b2的式子称为完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决数学问题的方法,不仅可以将有些看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题及求代数式最大、最小值等问题.例如:分解因式x2+2x-3.原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).例如:求代数式x2+4x+6的最小值.原式=x2+4x+4-4+6=x2+4x+4+2=(x+2)2+2.∵(x+2)2≥0,∴当x=-2时,x2+4x+6有最小值,是2.解决下列问题:(1)若多项式x2+6x+m是一个完全平方式,那么常数m的值为________;(2)分解因式:x2+6x-16=______________;(3)若x>-1,比较:x2+6x+5________0(填“>”“<”或“=”),并说明理由;(4)求代数式-x2-6x-5的最大或最小值.答案一、1.D 2.A 3.D 4.D 5.A 6.D 7.B 8.A 9.A10.D 提示:216-1=(28+1)(28-1)=(28+1)(24+1)(24-1)=257×17×15.二、11.2a (x +1)(x -1) 12.-1113.2 026 14.7或-115.5或14或-10 提示:当2n 是乘积二倍项时,原式=28+2×24+1=(24+1)2,此时n =5;当28是乘积二倍项时,原式=2n +2×27+1=(27+1)2,此时n =14;当1是乘积二倍项时,原式=2n +2×24×2-5+28=(24+2-5)2,此时n =-10. 综上所述,n 的值为5或14或-10.三、16.解:(1)原式=(2a +5)(2a -5).(2)原式=2(x 2-4xy +4y 2)=2(x -2y )2.17.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6) 或12x 3+2x 2-x +12x 3-2x 2=x 3-x =x (x 2-1)=x (x +1)(x -1)或12x 3+4x 2+x +12x 3-2x 2=x 3+2x 2+x =x (x 2+2x +1)=x (x +1)2. 18.解:∵x +y =4,∴(x +y )2=16,即x 2+y 2+2xy =16.∵x 2+y 2=14,∴xy =1.∴x 3y -2x 2y 2+xy 3=xy (x 2-2xy +y 2)=1×(14-2)=12.四、19.解:∵(x +4)·(x +2)=x 2+6x +8,∴a =6.∵(x +1)·(x +9)=x 2+10x +9,∴b =9,∴x 2+ax +b =x 2+6x +9=(x +3)2.20.解:(1)a 2-b 2=(a +b )(a -b )(2)原式=(x 2-9)(x 2+9)=(x -3)(x +3)(x 2+9).(3)原式=2(2m -n )(2m +n )=2×3×4=24.21.解:(1)281 739(答案不唯一) 提示:∵x 3-xy 2=x (x -y )(x +y ),∴当x =28,y =11时,x -y =17,x +y =39,∴可得到数字密码281 739或283 917或172 839或173 928或391 728或392 817.(2)∵x =18,20=x +2,16=x -2,∴(m -n )x 3-(m +12n )x =x (x +2)(x -2) =x (x 2-4)=x 3-4x ,∴⎩⎨⎧m -n =1,m +12n =4,解得⎩⎨⎧m =3,n =2. 五、22.解:(1)a 2+ab +b 2(2)2a 2+3ab +b 2=(2a +b )(a +b )(3)根据题意,得正方形M 的面积为4a 2+4ab +b 2=(2a +b )2,∴正方形M 的边长为2a +b ,当a =1.6,b =2.8时,2a +b =3.2+2.8=6,∴正方形M 的边长为6.23.解:(1)9 (2)(x +8)(x -2)(3)>理由:x 2+6x +5=(x +1)(x +5).∵x >-1,∴x +1>0,x +5>4,∴x 2+6x +5=(x +1)(x +5)>0.(4)原式=-(x 2+6x +9-9)-5=-(x +3)2+4,∵(x +3)2≥0,∴-(x +3)2≤0,∴当x =-3时,-x 2-6x -5有最大值,是4.。
北师大版初中数学八年级下册单元测试第四单元
图2 图3 图1(A) (B) (C) (D) 八年级数学下册第四章整章水平测试(A)本试卷满分120分安徽省泗县中学 魏大付 邮编:234300 邮箱:复习巩固与应用一、精心选一选(每小题3分,共24分)1.下列各组线段(单位:㎝)中,成比例线段的是( )(A )1、2、3、4 (B )1、2、2、4 (C )3、5、9、13 (D )1、2、2、32.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形,其中每个图案花边的宽度都相每个图案中花边的内外边缘所围成的几何图形不相似的是( )3.某校数学兴趣小组为测量学校旗杆AC 的高度,在点F 处竖立一根长为1.5米的标杆DF ,如图1所示,量出DF 的影子EF 的长度为1米,再量出旗杆AC 的影子BC 的长度为6米,那么旗杆AC 的高度为 ( )(A )6米 (B )7米 (C )8.5米 (D )9米4.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为(A)12.36cm (B)13.6cm (C)32.36cm (D)7.64cm5.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( )(A)3米 (B)0.3米 (C)0.03米 (D)0.2米6.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )(A)2DE=3MN , (B)3DE=2MN ,(C) 3∠A=2∠F (D)2∠A=3∠F7.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )(A)1∶4 (B)1∶2 (C)2∶1 (D)1∶28.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )(A)只有1个 (B)可以有2个 (C)有2个以上但有限 (D)有无数个二、耐心填一填(每小题3分,共24分)9.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为 m10.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米.则这棵树的高度为 米.11.如图4,A 、B 两处被池塘隔开,为了测量A 、B 两处的距离,在AB 外选一适当的点C ,连接AC 、BC ,并分别取线段AC 、BC 的中点E 、F ,测得EF=20m ,则AB=______m .12如图5,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度x= mm .13.如图6,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是2.7m ,则AB 与CD 间的距离是__________m . 14.如图,已知△OAB 与△OA /B /是相似比为1:2的位似图形,点O 为位似中心,若△OAB 内O B 'A 'B A y x一点P (x ,y )与△OA /B /内一点P /是一对对应点,则点P /的坐标是 . 15.关于对位似图形的表述,下列结论正确的是 .(只填序号) ①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 16.如图8,在ABC ∆中,D 是AB 边上一点,连接CD ,要使ADC ∆与ABC ∆相似,应添加的条件是 (只需写出一个条件即可).三、用心想一想(60分) 17、(12分)已知432c b a ==,求(1)b c b a ++ (2) ca cb a +-+23的值. 18、(12分)如图9,在△ABC 中,AB=4,点E 在AC 上,点D 在AB 上,若AE=2,EC=3,且ECAE DB AD =. (1)求AD 的长; (2)试问,AC EC AB DB =能成立吗?请说明理由.19.(12分)、如图10,在△ABC 和△ADE 中,∠BAD=∠CAE ,∠ABC=∠ADE . (1)写出图中两对相似三角形(不得添加辅助线); (2)请分别说明两对三角形相似的理由.20(12分)、如图11,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是 1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是多少?21.(本题满分121的正方形,△ABC 的顶点和O 点都在正方形的顶点上. (1)以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A ′B ′C ′;(2)△A ′B ′C ′绕点B ′顺时针旋转90,画出旋转后得到的△A ″B ′C ″,并求边A ′拓广探索与提升(12分)22(12分)、学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.AB CO 图10 A D E B C 图9 图12图11(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”。
八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件
知1-讲
例2 分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
ìïïíïïî
4x-4 y=96, x2-y2=960,
但直接解方程组很烦琐,可利用平方差公式分解
因式:x2-y2=(x+y)(x-y),再利用整体思想求
出x+y的值,从而转化为二元一次方程组求解.
知2-讲
解:设大正方形的边长为x cm,小正方形的边长为y cm,
由题意得
ìïïíïïî
4x-4 y=96,① x 2-y2=960,②
知1-练
3 将多项式a2-9b2+2a-6b分解因式为( D ) A.(a+2)(3b+2)(a-3b) B.(a-9b)(a+9b) C.(a-9b)(a+9b+2) D.(a-3b)(a+3b+2)
知1-练
4 分解因式x2-2xy+y2+x-y的结果是( A ) A.(x-y)(x-y+1) B.(x-y)(x-y-1) C.(x+y)(x-y+1) D.(x+y)(x-y-1)
知1-练
5 分解因式: (1) ac+ad+bc+bd=__(_a_+__b_)_(c_+__d_)__; (2) x2-xy+xz-yz=___(_x_-__y_)(_x_+__z_)_.
6 分解因式: a2-4ab+4b2-1=_(_a_-__2_b_+__1_)_(a_-__2_b_-___1_) .
2.分解技巧:分组分解是因式分解的一种复杂的方法, 让我们来须有预见性. 能预见到下一步能继续分解. 而“预见”源于细致的“观察”,分析多项式的特 点,恰当的分组是分组分解法的关键 .
北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 本章考点整合训练四
5.若多项式 mx2-n1 可因式分解为(3x-15 )(3x+15 ),则 m=__9__,n=___2_5. 6.在完成因式分解的练习时,小胡不小心将一道题弄污了:3m3■■■,他
【素养提升】 13.学习“因式分解”时,王老师发给大家许多硬纸片(a×a的正方形A,b×b 的正方形B,a×b的长方形C),如图①,并让大家完成下列问题:
(1)用1张A纸片、1张B纸片、2张C纸片拼成图②所示的一个大正方形,用两种 不同的方法表示大正方形的面积,可以得出的一个等式为
___a_2_+__2_a_b_+__b_2_=__(_a_+__b_)2____________; (2)想办法用4张A纸片、1张B纸片、4张C纸片拼成一个大正方形.在框一中画 出示意图,并将与大正方形面积对应的因式分解结果写出来:4a2+4ab+b2= ___(_2_a_+__b_)2___; (3)试一试:你能用2张A纸片、1张B纸片和3张C纸片拼成一个长方形或正方形 吗? 请设计一种拼法,在框二中画出示意图,并写出相应的因式分解的结果.
12.先阅读下面的内容,再解决问题. 例:若m2+2mn+2n2-6n+9=0,求m和n的值. 解:∵m2+2mn+2n2-6n+9=0, ∴m2+2mn+n2+n2-6n+9=0, ∴(m+n)2+(n-3)2=0, ∴m+n=0且n-3=0,解得m=-3,n=3. (1)若x2+2y2-2xy+4y+4=0,求xy的值; (2)已知a,b,c为△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中 最长的边,求c的取值范围.
数学 八年级下册 北师版
初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)
章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。
北师大版八年级下数学第四章《因式分解》单元测试(含答案)
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)
第四章 因式分解(提高)提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.m m(1);(2); (3);(4); (5).【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. 【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解. 【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A. B.C. D.【答案】B ;类型二、提公因式法分解因式2、(2019春•山亭区期中)把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3. 【思路点拨】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案; (2)直接提取公因式﹣4ab ,进而分解因式得出答案. 【答案与解析】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ] =2m (m ﹣n )(5m ﹣n );()a x y ax ay +=+2221(2)(1)(1)x xy y x x y y y ++-=+++-24(2)(2)ax a a x x -=+-221122ab a b =222112a a a a ⎛⎫++=+ ⎪⎝⎭21a 1a243(2)(2)3a a a a a -+=-++2244(2)x x x ++=+11(1)x x x+=+2(1)(1)1x x x +-=-(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 举一反三:【变式】(2019春•濉溪县期末)下列分解因式结果正确的是( ) A.a b+7ab ﹣b=b (a +7a ) B.3x y ﹣3xy+6y=3y (x ﹣x ﹣2) C.8xyz ﹣6x y =2xyz (4﹣3xy ) D.﹣2a +4ab ﹣6ac=﹣2a (a ﹣2b+3c ) 【答案】D.解:A 、原式=b (a +7a+1),错误;B 、原式=3y (x ﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确. 故选D .类型三、提公因式法分解因式的应用3、若、、为的三边长,且,则按边分类,应是什么三角形? 【答案与解析】解:∵∴当时,等式成立,当时,原式变为,得出, ∴∴是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型. 4、对任意自然数(>0),是30的倍数,请你判定一下这个说法的正确性,并说说理由. 【答案与解析】 解:∵为大于0的自然数,∴为偶数,15×为30的倍数, 即是30的倍数.222222222a b c ABC ∆()()()()a b b a b a a c a b a c -+-=-+-ABC ∆()()()()a b b a b a a c a b a c -+-=-+-()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--a b =a b ≠a b a c -=-b c =a b b c ==或ABC ∆n n 422n n +-()44422222221152n n n n n n +-=⨯-=-=⨯n 2n2n422n n +-【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式. 举一反三: 【变式】说明能被7整除.【答案】 解:所以能被7整除.5、(2019春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x y+xy 的值. 【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可. 【答案与解析】解:∵xy=—3,x+y=2,∴x y+xy =xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 【巩固练习】 一.选择题1. (2019春•北京期末)把多项式2x 3y ﹣x 2y 2﹣6x 2y 分解因式时,应提取的公因式为( )A .x 2yB .xy 2C .2x 3yD .6x 2y2. 观察下列各式:①;②;③;④;⑤;⑥.其中可以用提公因式法分解因式的有()A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥ 3. 下列各式中,运用提取公因式分解因式正确的是( )A. B.C. D.4. 分解因式的结果是( )A. B.C. D.422n n +-422n n +-200199198343103-⨯+⨯200199198343103-⨯+⨯()198219833431073=-⨯+=⨯200199198343103-⨯+⨯2222abx adx -2226x y xy +328421m m m -++3223a a b ab b ++-()()()22256p q x y x p q p q +-+++()()()24ax y x y b y x +--+()()()()22222a x a a x -+-=-+()32222x x x x x x ++=+()()()2x x y y x y x y ---=-()2313x x x x --=--2322212n n n x x x +++-+()22nx xx -+()2322n x x x -+()2122n xx x +-+()322n x x x -+5. (2019秋•西城区校级期中)把﹣6x y ﹣3x y ﹣8x y 因式分解时,应提取公因式( ) A.﹣3x y B.-2x yC.x yD.﹣x y6. 计算的结果是( )A. B.-1 C. D.-2二.填空题7. 把下列各式因式分解:(1)__________.(2)_________________.8. 在空白处填出适当的式子: (1);(2)9. 因式分解:______________.10. (2019•黔南州)若ab=2,a ﹣b=﹣1,则代数式a 2b ﹣ab 2的值等于___________. 11. .12. (2019春•深圳校级期中)若m ﹣n=3,mn=﹣2,则2m 2n ﹣2mn 2+1的值为_____________.三.解答题 13.已知:,求的值. 14. (2019春•北京校级月考)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x 3﹣x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3﹣x 2+m=(2x+1)(x 2+ax+b ),则:2x 3﹣x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b比较系数得,解得,∴解法二:设2x 3﹣x 2+m=A•(2x+1)(A 为整式) 由于上式为恒等式,为方便计算了取,32222322222222()2011201022+-2010220102-2168a b ab --=()()2232xx y x y x ---=()()()()111x y y x --=-+()()238423279ab b c a bc +=+()()()x b c a y b c a a b c +--+----=2011201222_________________-=213x x +=43261510x x x ++2×=0,故 .(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.15. 先分解因式(1)、(2)、(3),再解答后面问题; (1)1++(1+); (2)1++(1+)+;(3)1++(1+)++ 问题:.先探索上述分解因式的规律,然后写出:1++(1+)+++…+分解因式的结果是_______________..请按上述方法分解因式:1++(1+)+++…+(为正整数). 【答案与解析】 一.选择题1. 【答案】A ;【解析】2x 3y ﹣x 2y 2﹣6x 2y=x 2y (2x ﹣y ﹣6). 2. 【答案】D【解析】①;②;⑤;⑥.所以可以用提公因式法分解因式的有①②⑤⑥.3. 【答案】C ;【解析】;.4. 【答案】C ;5. 【答案】D .【解析】解:﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3=﹣x 2y 2(6x+3+8y ),因此﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3的公因式是﹣x 2y 2. 故选D .6. 【答案】C ; 【解析】.二.填空题7. 【答案】(1);(2)a a a a a a a ()21a +a a a a ()21a +a ()31a +a a a a a ()21a +a ()31a +()20121a +b a a a a ()21a +a ()31a +()1na +n ()abx adx axb d -=-()222623x y xy xy x y +=+()()()()()222225656p q x y xp q p q p q x y x p q ⎡⎤+-+++=+-++⎣⎦()()()()()2244ax y x y b y x x y a x y b ⎡⎤+--+=+--⎣⎦()()()()22222a x a a x -+-=--()322221x x x x x x ++=++()()()()2011201020102010201020102010222222222+-=+-⨯-=+-⨯=-()821ab a -+()()221xx y x --【解析】.8. 【答案】(1);(2); 【解析】. 9. 【答案】;【解析】 .10.【答案】-2;【解析】∵ab=2,a ﹣b=﹣1,∴a 2b ﹣ab 2=ab (a ﹣b )=2×(﹣1)=﹣2. 11.【答案】;【解析】.12.【答案】-11;【解析】解:∵2m 2n ﹣2mn 2+1=2mn (m ﹣n )+1将m ﹣n=3,mn=﹣2代入得: 原式=2mn (m ﹣n )+1 =2×(﹣2)×3+1 =﹣11.故答案为:﹣11.三.解答题 13.【解析】解:14.【解析】()()()()()()22222323221xx y x y x x x y x x y x x y x ---=---=--1y -2427b ()()()()()()111111y x x y y x y y -+=-+-=---()()1x y bc a -++-()()()x b c a y b c a a b c +--+----()()()x b c a y b c a b c a =+--+-++-()()1x y b c a =-++-20112-()201120122011201120112011222222122-=-⨯=-=-43261510x x x ++()()()43322222222226699691169333331313x x x x x x x x x x x x x x x x x x x =++++=++++=⨯+⨯+=+=+=⨯=解:设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),取x=1,得1+m+n ﹣16=0①, 取x=2,得16+8m+2n ﹣16=0②, 由①、②解得m=﹣5,n=20. 15.【解析】解:(1)原式=;(2)原式=;(3)原式=.结果为:,.原式= = ==……=平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.()()()2111a a a ++=+()()()()()()31111111a a a a a a a a ++++=+++=+⎡⎤⎣⎦()()()21111a a a a a a ⎡⎤++++++⎣⎦()()()1111a a a a a =+++++⎡⎤⎣⎦()()()2111a a a =+++()41a =+a ()20131a +b ()()()1111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()21111......1n a a a a a a a -⎡⎤++++++++⎣⎦()()()33111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()111111n n a a a a -++++=+()()22a b a b a b -=+-(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解.【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:a b a b 2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-(1); (2)(3); (4);【答案】解:(1)原式(2)原式= = (3)原式 (4)原式2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4). 【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】(2019•杭州模拟)先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.【答案】解:原式=(2a+3b+2a ﹣3b )(2a+3b ﹣2a+3b )=4a×6b=24ab ,当a=,即ab=时,()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x yx x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-原式=24ab=4.类型二、平方差公式的应用3、(2019春•新化县期末)在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x4﹣y4=(x﹣y)(x+y)(x2+y2),当x=9,y=9时,x﹣y=0,x+y=18,x2+y2=162,则密码018162.对于多项式4x3﹣xy2,取x=10,y=10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x3﹣xy2进行因式分解,得到4x3﹣xy2=x(2x+y)(2x﹣y),然后把x=10,y=10代入,分别计算出2x+y=及2x﹣y的值,从而得出密码.【答案与解析】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10,2x+y=30,2x﹣y=10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.4、(2019春•成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣. 【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【巩固练习】一.选择题1.(2019•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22. (2019春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( )A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C. D. 4. 下列各式,其中因式分解正确的是( )①;② ③④A.1个B.2个C.3个D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( )A .61,63B .61,65C .63,65D .63,676. 乘积应等于( ) ()()2292323a b a b a b -+=+-()()5422228199a ab a a b a b -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭A .B .C .D . 二.填空题 7. ; . 8. 若,将分解因式为__________. 9. 分解因式:_________. 10. 若,则是_________.11. (2019春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .12.(2019•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 . 三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)14.(2019秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设,,……,(为大于0的自然数) (1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】一.选择题1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】; ; 5121211202311_________m m a a +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422n x x x x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a ba b a a b a b a b -=+-=++-. 4. 【答案】C ;【解析】①②③正确. .5. 【答案】C ; 【解析】6. 【答案】C ;【解析】 二.填空题7. 【答案】;【解析】.8. 【答案】;【解析】. 9. 【答案】;【解析】原式=. 10.【答案】4;【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212*********=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111......11112233991010314253108119 (223344991010)1111121020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m a a a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x ++-=+-=-=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=216﹣1+1,=216因为216的末位数字是6,所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2, ∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4.三.解答题13.【解析】解:(1)-1998×2000 = (2)(3)14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±.15.【解析】解:(1)又为非零的自然数,∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256. 为一个完全平方数的2倍时,为完全平方数.21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (215050)=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式 .(2)原式 .2、(2019•大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab 3= ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】解:22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+x y ()()()()4234x y x y x y x y y +++++()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令∴上式即 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式? 因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 2254x xy y u ++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2019春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:所以a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2019春•萧山区期中)若(2019﹣x )(2019﹣x )=2019,则(2019﹣x )2+(2019﹣x )2= .【答案】4032.解:∵(2019﹣x )(2019﹣x )=2019,∴[(2019﹣x )﹣(2019﹣x )]2=(2019﹣x )2+(2019﹣x )2﹣2(2019﹣x )(2019﹣x )=4,则(2019﹣x )2+(2019﹣x )2=4+2×2019=4032. 【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A .-5B .7C .-1D .7或-12.(2019•富顺县校级模拟)下列各式中,不能用完全平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④;⑤.A .1个B .2个C .3个D .4个3. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2019•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c2﹣ab ﹣bc ﹣ac 的值为( )A . 0B . 1C . 2D . 35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是( )A. B. C. D.二.填空题7.(2019•赤峰)分解因式:4x 2﹣4xy +y 2= .8. 因式分解:=_____________. 9. 因式分解: =_____________.10. 若,=_____________.3(5)a b b c +=±-28a c b b c a +==-或a b c c a b -<8b c a b =-<2a c b +=22(3)16x m x +-+m 24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >()222224m nm n +-2221x x y ++-224250x y x y +-++=x y +11. 当取__________时,多项式有最小值_____________.12.(2019•宁波模拟)如果实数x 、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2019春•怀集县期末)已知a+=,求下列各式的值: (1)(a+)2;(2)(a ﹣)2;(3)a ﹣.15. 若三角形的三边长是,且满足,试判断三角形的形状.小明是这样做的:解:∵,∴.即∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D ;【解析】由题意,=±4,.2. 【答案】C ;【解析】② ③ ⑤ 不能用完全平方公式分解.3. 【答案】B ;【解析】,所以,选B. 4. 【答案】D ;【解析】解:由题意可知a ﹣b=﹣1,b ﹣c=﹣1,a ﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ca ),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2],x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -==[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D .5. 【答案】A ;【解析】原式=. 6. 【答案】B ;【解析】,由题意得,,所以.二.填空题 7. 【答案】(2x ﹣y )2 【解析】4x 2﹣4xy +y 2=(2x )2﹣2×2x •y +y 2=(2x ﹣y )2.8. 【答案】; 【解析】.9. 【答案】【解析】. 10.【答案】1;【解析】,所以,. 11.【答案】-3,1;【解析】,当时有最小值1. 12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x ﹣3y )2+(x ﹣2)2=0,因为x ,y 均是实数,∴x﹣3y=0,x ﹣2=0,∴x=2,y=,∴==.故答案为. 三.解答题13.【解析】解:将代入 ()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b ++=++-()22222a b a b =+-2ab =()222225a b a b +-=∵≥0,∴=3.14.【解析】解:(1)把a+=代入得:(a+)2=()2=10; (2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a ﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a ﹣=±=±.15.【解析】 解:∵∴∴∴,该三角形是等边三角形.十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.()()2222222259a b a b +-=+=22a b +22a b +2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==pq x q p x +++)(22. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:【答案与解析】解:原式=【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解:因为22(1)(6136)x a x a a++--+()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-a x23345xy y x y++--2(34)35(35)(1)y x y x y x y=+-+-=+-+()2a a-所以:原式=[-2][ -12] ==【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】解:(1)令, 则原式(2)令, 原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项→.()()()22221214a a a a a a ----=--22(2)(12)a a a a ----()()()()1234a a a a +-+-222(3)2(3)8x x x x ----()()223432x x x x =---+()()()()4112x x x x =-+--22(1)(2)12x x x x ++++-22(33)(34)8x x x x +-++-21x x t ++=222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++-2(2)(1)(5)x x x x =+-++23x x m +=2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++222332x xy y x y -++-+2()x y -3()x y -【答案与解析】解:原式【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】(2019秋•昌江区校级期末)分解因式:.【答案】解:= ==.类型三、拆项或添项分解因式5、(2019春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a )+3a][(x+a )﹣3]2()3()2x y x y =-+-+(1)(2)x y x y =-+-+22a b ac bc -++225533a b a b --+23345xy y x y ++--()()()()()a b a b c a b a b a b c =+-++=+-+()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-2242244241a b c ab ac bc ++--+-2242244241a b c ab ac bc ++--+-()()()2222444241a b ab ac bcc +-+-++-()()()()222222211b a c b a c c -+-++-()()222121b a c b a c -++-+-=(x+4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x 2﹣4xy+3y 2=0化为(x ﹣ )•(x ﹣ )=0并直接写出y 与x 的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y 与x 的关系式求值.【答案与解析】解:(1)x 2+2ax ﹣3a2 =x 2+2ax+a 2﹣4a2 =(x+a )2﹣4a2 =(x+a+2a )(x+a ﹣2a )=(x+3a )(x ﹣a );(2)x 2﹣4xy+3y2 =x 2﹣4xy+4y 2﹣y2 =(x ﹣2y )2﹣y2 =(x ﹣2y+y )(x ﹣2y ﹣y )=(x ﹣y )(x ﹣3y );x=y 或x=3y ;故答案为:y ;3y(3)原式===﹣, 若x=y ,原式=﹣2;若x=3y ,原式=﹣. 【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】一.选择题1. (2019秋·惠民县期末)如果多项式能因式分解为,那么下列结论正确的是 ( ).A.=6B.=1C.=-2D.=32. 若,且,则的值为( ). A.5 B.-6 C.-5 D.63. 将因式分解的结果是( ).2322mx nx --()()32x x p ++m n p mnp ()2230x a b x ab x x +++=--b a <b ()()256x y x y +-+-A. B.C. D.4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a+1)(b+1)C .(a+1)(b ﹣1)D .(a ﹣1)(b+1)5. 对运用分组分解法分解因式,分组正确的是( )A. B.C. D.6.如果有一个因式为,那么的值是( )A. -9B.9C.-1D.1二.填空题7.(2019•黄冈模拟)分解因式: .8. 分解因式:= .9.分解因式的结果是__________.10. 如果代数式有一因式,则的值为_________. 11.若有因式,则另外的因式是_________.12. 分解因式:(1);(2)三.解答题13. 已知,, 求的值.14. 分解下列因式:(1)(2)(3)(4) 15.(2019•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.()()23x y x y +++-()()23x y x y +-++()()61x y x y +-++()()61x y x y +++-224293x x y y +--22(42)(93)x x y y ++--22(49)(23)x y x y -+-22(43)(29)x y x y -+-22(423)9x x y y +--3233x x x m +-+()3x +m 2242y xy x --+=224202536a ab b -+-5321x x x -+-a 3223a a b ab b --+()a b -3)32(2-+-+k x k kx mn m x m n x -+-+22)2(0x y +=31x y +=2231213x xy y ++()()128222+---a a a a 32344xy xy x y x y -++42222459x y x y y --43226a a a +-如:ax+by+bx+ay=(ax+bx )+(ay+by )=x (a+b )+y (a+b )=(a+b )(x+y )2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2. 【答案与解析】一.选择题1. 【答案】B ;【解析】, ∴,解得.2. 【答案】B ;【解析】,由,所以. 3. 【答案】C ;【解析】把看成一个整体,分解.4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当时,代数式为零,解得.二.填空题()()()223233222x x p x p x p mx nx ++=+++=--22,32p p n =-+=-1n =()()23065x x x x --=-+b a <6b =-()x y +()()()()25661x y x y x y x y +-+-=+-++()()2323x y x y +-23x y-3x =-9m =-7. 【答案】. 【解析】解:===.8. 【答案】; 【解析】原式9. 【答案】;【解析】原式.10.【答案】16;【解析】由题意当时,代数式等于0,解得. 11.【答案】; 【解析】.12.【答案】;; 【解析】;.三.解答题13.【解析】解:由,解得 所以,原式.14.【解析】解:(1)原式;()()22x y x y -+--2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--()()256256a b a b -+--()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--()()()22111x x x x +--+()()()()()()()23222321111111x xx x x x x x x =-+-=-+=+--+4x =16a =()()a b a b -+()()322322a a b ab b aa b b a b --+=---()()2a b a b =-+()()31kx k x +-+()()x m x m n --+()()2(23)331kx k x k kx k x +-+-=+-+()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦()()22231213334x xy y x y x y y ++=+++0x y +=31x y +=12y =21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭()()()()()()22261223a a a a a a a a =----=+-+-。
北师大版数学八年级下册:第四章 因式分解 单元测试(附答案)
第四章因式分解单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是()A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是()A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是()A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为()A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是()A.x2+2x=x(x+2)B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)8.已知a-b=1,则a2-b2-2b的值为()A.4 B.3 C.1 D.09.对于任何整数m ,多项式(4m +5)2-9都能( )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m = .12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是 .13.若x +y =2,则代数式14x 2+12xy +14y 2= . 14.计算:1.222×9-1.332×4= .15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是 .三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ; (2)n 2(m -2)-n(2-m );(3)(a +b )3-4(a +b ); (4)8(x 2-2y 2)-x(7x +y )+xy.17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值.18.(9分)商贸大楼共有四层,第一层有商品(a+b)2种,第二层有商品a(a+b)种,第三层有商品b(a+b)种,第四层有商品(b+a)2种.若a+b=10,则这座商贸大楼共有商品多少种?19.(10分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式.【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为,图4中的几何体的体积为,根据它们的体积关系得到关于a,b的等式为:.(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.参考答案:一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是(B)A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是(C)A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是(D)A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是(C)A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B)A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为(A)A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是(D)A.x2+2x=x(x+2)B .x 2-2x +1=(x -1)2C .x 2+2x +1=(x +1)2D .x 2+3x +2=(x +2)(x +1)8.已知a -b =1,则a 2-b 2-2b 的值为(C )A .4B .3C .1D .09.对于任何整数m ,多项式(4m +5)2-9都能(A )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m =2m(m +2)(m -2).12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是±6.13.若x +y =2,则代数式14x 2+12xy +14y 2=1. 14.计算:1.222×9-1.332×4=6.32.15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是(x -3)2.三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(2)n 2(m -2)-n(2-m );解:原式=n 2(m -2)+n(m -2)=n(n +1)(m -2).(3)(a +b )3-4(a +b );解:原式=(a +b )[(a +b )2-4]=(a +b )(a +b +2)(a +b -2).(4)8(x 2-2y 2)-x(7x +y )+xy.解:原式=8x 2-16y 2-7x 2-xy +xy=x 2-16y 2=(x +4y )(x -4y ).17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值. 解:原式=(x -3y )2[7y +2(x -3y )]=(x -3y )2(2x +y ).∵⎩⎨⎧2x +y =6,x -3y =1,∴原式=12×6=6.18.(9分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a(a +b )种,第三层有商品b(a +b )种,第四层有商品(b +a )2种.若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b )2+a(a +b )+b(a +b )+(b +a )2=2(a +b )2+(a +b )(a +b )=2(a +b )2+(a +b )2=3(a +b )2.因为a +b =10,所以3(a +b )2=300.答:这座商贸大楼共有商品300种.19.(10分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.解:正确的解法如下:∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)[c2-(a2+b2)]=0.分三种情况讨论:①当a2-b2=0,c2-(a2+b2)≠0时,则a=b,∴△ABC为等腰三角形;②当a2-b2≠0,c2-(a2+b2)=0时,则c2=a2+b2,∴△ABC为直角三角形;③当a2-b2=0,且c2-(a2+b2)=0时,则a=b,c2=a2+b2,∴△ABC为等腰直角三角形.综上所述,△ABC为直角三角形或等腰三角形或等腰直角三角形.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式a2-b2=(a+b)(a-b).【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为a3-b3,图4中的几何体的体积为a2(a-b)+ab(a-b)+b2(a-b),根据它们的体积关系得到关于a,b的等式为:a3-b3=(a-b)(a2+ab+b2).(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.解:(1)8x3-1=(2x)3-1=(2x-1)(4x2+2x+1).(2)∵a-b=4,ab=3,∴a2+b2=(a-b)2+2ab=16+6=22.∴a3-b3=(a-b)(a2+ab+b2)=4×(22+3)=100.。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
第四章 因式分解 综合素质评价(含答案)北师大版数学八年级下册
第四章因式分解综合素质评价一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+dB.(x+2)(x-2)=x2-4C.6ab=2a·3bD.x2-8x+16=(x-4)22.课堂上老师在黑板上布置了下框所示的题目,小聪马上发现了其中有一道题目错了,错误的题目是()用平方差公式解下列各式:(1)a2-b2;(2)49x2-y2z2;(3)-x2-y2;(4)16m2n2-25p2.A.(1) B.(2) C.(3) D.(4)3.【2022·金华二模】下列多项式中,在实数范围内不能进行因式分解的是() A.a2-4 B.a2+6a+9 C.a2+16 D.9a2-6a+14.下列各组代数式中,没有公因式的是()A.ax+y和x+yB.2x和4yC.a-b和b-aD.-x2+xy和y-x5.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)6.【教材P105复习题T6变式】已知a+b=2,则a2-b2+4b的值是() A.2 B.3 C.4 D.67.【2022·石家庄二模】计算:1252-50×125+252=()A.100 B.150 C.10 000 D.22 5008.【教材P94习题T4变式】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图①),然后拼成一个平行四边形(如图②).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2-b2=(a-b)2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b) D.(a-b)2=a2-2ab+b29.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数10.已知a=2b-2,则代数式a2-4ab+5b2的最小值为()A.0 B.2 C.4 D.无法确定二、填空题(每题3分,共24分)11.18x3y2与12x6y的公因式为________.12.【2022·长春】分解因式:m2+3m=________.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是________.(写出一个即可)14.【2022·重庆渝北期末】利用1个a×a的正方形,1个b×b的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式:____________.15.【教材P105复习题T13改编】如果x2+kx+64是一个完全平方式,那么k的值是________.16.关于x的二次三项式2x2+bx+c分解因式后为2(x-3)(x+1),则b=________,c=________.17.已知x ,y 是二元一次方程组⎩⎨⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为________.18.一个两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.三、解答题(19题12分,20题6分, 21题8分,其余每题10分,共66分)19.把下列各式因式分解:(1)-5x 2y 2+10xy 3-15x 2y ; (2)2x 2-4x +2;(3)(x 2+1)2-4x 2; (4)a 4-8a 2b 2+16b 4.20.【教材P 97习题T 2(3)变式】已知a +b =72,ab =2,求12a 3b +a 2b 2+12ab 3的值.21.【教材P105复习题T14改编】232-1可以被10和20之间某两个整数整除,求这两个数.22.【教材P105复习题T12改编】已知a,b,c分别是△ABC的三边长.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解;(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.23.【教材P100随堂练习T3变式】如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m的正方形花坛(a>2b),其余的地方种草坪.(1)求种草坪的面积是多少平方米;(2)当a=84,b=8,且种每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.【教材P105复习题T10拓展】上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab +b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值.同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1.∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=________时,代数式x2-6x+12有最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”),这个值是________.写出求解过程.25.【探究题】在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,通过用不同的方法求同一个平面图形的面积验证了平方差公式和完全平方公式,我们把这种方法称为等面积法.类似地,通过不同的方法求同一个立体图形的体积,我们称为等体积法.根据课堂学习的经验,解决下列问题:在一个棱长为a的正方体中挖出一个棱长为b的正方体(如图①),然后利用切割的方法把剩余的立体图形(如图②)分成三部分(如图③),这三个长方体的体积依次为b2(a-b),ab(a-b),a2(a-b).(1)分解因式:a2(a-b)+ab(a-b)+b2(a-b)=______________.(2)请用两种不同的方法求图①中的立体图形的体积(用含有a,b的代数式表示):①____________;②______________________.思考:类比平方差公式,你能得到的等式为______________________________.(3)应用:利用在(2)中所得到的等式进行因式分解:x3-125=______________.(4)拓展:已知a-2b=6,ab=-2,求代数式a4b-8ab4的值.答案一、1.D 2.C 3.C 4.A 5.C 6.C7.C 8.C 9.A 10.C二、11.6x 3y 12.m (m +3) 13.-1(答案不唯一)14.a 2+2ab +b 2=(a +b )2 15.±1616.-4;-6 17.152 18.70三、19.解:(1)原式=-5xy (xy -2y 2+3x );(2)原式=2(x 2-2x +1)=2(x -1)2;(3)原式=[(x 2+1)+2x ][(x 2+1)-2x ]=(x 2+2x +1)(x 2-2x +1)=(x +1)2(x -1)2;(4)原式=(a 2-4b 2)2=(a -2b )2(a +2b )2.20.解:12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2)=12ab (a +b )2.∵a +b =72,ab =2,∴原式=12×2×⎝ ⎛⎭⎪⎫722=494. 21.解:232-1=(216)2-1=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)·(28+1)(24+1)(24-1).∵24=16,∴24+1=17,24-1=15.∴232-1能被15和17整除.∴所求的两个数为15和17.22.解:(1)ac -bc =c (a -b );-a 2+2ab -b 2=-(a 2-2ab +b 2)=-(a -b )2.(2)△ABC 是等腰三角形.理由:∵ac -bc =-a 2+2ab -b 2,∴c (a -b )=-(a -b )2,c (a -b )+(a -b )2=0,(a-b)(c+a-b)=0.∵a,b,c分别是△ABC的三边长,∴c+a-b>0.∴a-b=0,即a=b.∴△ABC是等腰三角形.23.解:(1)种草坪的面积是(a2-4b2) m2.(2)当a=84,b=8时,种草坪的面积是a2-4b2=(a+2b)(a-2b)=(84+2×8)×(84-2×8)=100×68=6 800(m2).所以种这块草坪共需投资5×6 800=34 000(元).24.解:(1)3;3(2)1;大;-2y=-x2+2x-3=-(x-1)2-2.∵-(x-1)2≤0,∴-(x-1)2-2≤-2.∴当x=1时,y有最大值,最大值是-2.25.解:(1)(a-b)(a2+ab+b2)(2)①a3-b3②b2(a-b)+ab(a-b)+a2(a-b)思考:a3-b3=(a-b)(a2+ab+b2)(3)(x-5)(x2+5x+25)(4)a4b-8ab4=ab(a3-8b3)=ab(a-2b)(a2+2ab+4b2)=ab(a-2b)[(a-2b)2+6ab].当a-2b=6,ab=-2时,原式=-2×6×(36-12)=-288.。
2021-2022学年度初中数学北师大版八年级下册第四章第三节 公式法 同步练习
初中数学北师大版八年级下册第四章第三节公式法同步练习一、单选题1.下列多项式能用平方差公式分解因式的是()A.4x2+y2B.-4x2-y2C.-4x2+y2D.-4x+y22.因式分解:x3−4x=()A.x(x2−4x)B.x(x+4)(x−4)C.x(x+2)(x−2)D.x(x2−4)3.下列式子直接能用完全平方公式进行因式分解的是()A.16a2+8a+1B.a2−3a+9C.4a2+4a−1D.a2−8a−164.若a,b,c分别是△ABC的三边长,且满足a2﹣2ab+b2=0,b2﹣c2=0,则△ABC的形状是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形5.a4b-6a3b+9a2b分解因式的正确结果是()A.a²b(a²-6a+9)B.a²b(a+3)(a-3)C.b(a²-3)D.a²b(a-3)²6.若一个三角形的三边长为a,b,c,且满足a2-2ab+b2+ac-bc =0,则这个三角形是() A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形7.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.498.如图,在长方形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG,边EF 交CD 于点H,在边BE 上取点M 使BM=BC,作MN∥BG 交CD 于点L,交FG 于点N.欧几里得在《几何原本》中利用该图解释了(a+b)(a−b)=a2−b2,连结AC,记△ABC的面积为S1,图中阴影部分的面积为S2.若a=3b,则S1S2的值为()A.32B.718C.34D.54二、填空题9.分解因式:7a2﹣63=10.4x2-(k-1)x+1能用完全平方公式因式分解,则k的值为11.已知x+y=2,则12(x2+2xy+y2)的值为.12.下列因式分解正确的是(填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+ 1=(2x+1)213.由多项式与多项式相乘的法则可知:即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x3+y3=.14.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为.15.在实数范围内因式分解:x2﹣3=,3x2﹣5x+2=.16.观察下列各式:(x−1)(x+1)=x²−1(x−1)(x²+x+1)=x³−1(x−1)(x³+x²+x+1)=x 4−1…根据以上规律,求1+2+2²+…+ 22016+22017=.三、计算题17.因式分解(1)a3b−ab(2)(x2+4)2−16x218.计算题:(1)因式分解:(x2+y2)2-4x2y2;(2)计算:8(1+72)(1+74)(1+78)(1+716). 19.利用因式分解进行计算(1)(1−122)×(1−132)×⋯×(1−1102)(2)(22+42+62+82+102)−(12+32+52+72+92)四、解答题20.分解因式(1)9(m+n)2−(m−n)2(2)(x2−6x)2+18(x2−6x)+81(3)−4m3+16m2−26m(4)(a2+4)2﹣16a221.第一环节:自主阅读材料:常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2-4y2+2x-4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:x2-4y2+2x-4y=(x2-4y2)+(2x-4y) ……分组=(x-2y)(x+2y)+2(x-2y) ……组内分解因式=(x-2y)(x+2y+2) ……整体思想提公因式这种分解因式的方法叫分组分解法。
北师大版数学八年级下册因式分解强化练习题
北师大版数学八年级下册因式分解强化练习题第四章因式分解期末复题题型一:直接提公因式1、因式分解:xy-y=y(x-1)2、分解因式:x^2+2x=x(x+2)3、分解因式:x^2-4=(x+2)(x-2)4、分解因式:2a^2-4a=2a(a-2)5、因式分解:2x^3-x^2=x^2(2x-1)6、分解因式:ax+ay=a(x+y)7、分解因式:7x^321x^2=7x^2(x-3)8、分解因式:x^23x=x(x+3)题型二:直接用公式平方差公式:a^2b^2(a b)(a b)a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^2完全平方公式:(a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^21、分解因式:x^2-25=(x+5)(x-5)2、分解因式:x^2-4=(x+2)(x-2)3、因式分解:a^2+5a=a(a+5)4、分解因式:x^2-4=-1(x+2)(x-2)5、因式分解:2-4y^2=-2(2y+1)(y-1)6、分解因式:4x^2-1=(2x+1)(2x-1)7、分解因式:4x+2x+1=2(2x+1)^28、分解因式:16-8(x-y)+(x-y)=(4-x+y)^2题型三:先提公因式,再套平方差或者完全平方公式。
A:先提后套平方差1、分解因式:2x8=2(x-4)2、因式分解:x^3-x=x(x+1)(x-1)3、分解因式:x^3-4x=x(x^2-4)=(x+2)(x-2)x4、分解因式:2x^2-18=2(x^2-9)=2(x+3)(x-3)5、分解因式:9a-ab^2=a(9-b^2)=a(3+b)(3-b)6、因式分解:a^3-a=a(a^2-1)=a(a+1)(a-1)7、因式分解:x^3-9x=x(x^2-9)=(x+3)(x-3)x8、分解因式:8a^2-2=2(4a^2-1)=2(2a+1)(2a-1)9、因式分解:x^3y^2-x^5=x^3(y^2-x^2)=x^3(y+x)(y-x)B:先提后套完全平方1、分解因式:x^2y2xy y=(x-y)^22、因式分解:x^32x^2y xy^2=x(x-y)^23、因式分解:a^2b+2ab+b=(a+b)^24、分解因式:8xy8xy2y=2y(1-4xy)5、把多项式(m+1)(m-1)+(m-1)提公因式(m-1)后,余下的部分是()A.m+1.B.2m。
2022-2023学年北师大版数学八年级下册课时练习3
北师大版数学八年级下册课时练习3.3《中心对称》一、选择题1.下列图形是轴对称图形而不是中心对称图形的是( )A. B. C. D.2.下面的图形中,既是轴对称图形又是中心对称图形的是( )3.下列图形中,既可以通过轴对称变换,又可以通过旋转变换得到的图形是( )A. B. C. D.4.如图,△ABC与△A′B′C′成中心对称,则下列说法不正确的是()A.S△ACB =S△A′B′C′B.AB=A′B′C.AB∥A′B′,A′C′∥AC,BC∥B′C′D.S△A′B′O =S△ACO5.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有( )A.1个B.2个C.3个D.4个8.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个二、填空题9.如果点A(1﹣x,y﹣1)在第二象限,那么点B(x﹣1,y﹣1)关于原点对称的点C在第象限.10.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是 .11.在下列图形:①圆②等边三角形③矩形④平行四边形中,既是中心对称图形又是轴对称图形的是(填写序号).12.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为.13.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是.14.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.三、作图题15.如图,在下面4×4的网格中已涂黑了三个方格,请按下面要求再涂黑一个方格.(1)使阴影图案只是中心对称图形;(2)使阴影图案只是轴对称图形;(3)使阴影图案既是中心对称图形,又是轴对称图形.四、解答题16.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.17.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点A逆时针旋转90°得到△A2B2C2,(2)回答下列问题:①△A1B1C1中顶点A1坐标为;②若P(a,b)为△ABC内的一点,则按照(1)中①作图,点P对应的点P1的坐标为 .18.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为点B关于y轴对称的点坐标为点C关于原点对称的点坐标为(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.19.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.20.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB的延长线的H点处,且BH=4,则∠BAG是多少度,△ABG的面积是多少.参考答案1.C2.C3.D4.D5.C6.C7.B8.B.9.答案为:三;10.答案为:②11.答案为:①③12.答案为:(-1,-1)13.答案为:点N.14.答案为:1.5;15.如图(1)是中心对称图形的图案;如图(2)是轴对称图形的图案;如图(3)既是中心对称图形,又是轴对称图形的图案.16.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.∵在△DOF和△BOE中,∴△DOF≌△BOE(SAS).∴FD=BE.17.解:(1)如图所示: (2)① (1,-2)② (-a,-b)18.解:(1)点A关于x轴对称的点坐标为 (-1,-3)点B关于y轴对称的点坐标为 (-2,0)点C关于原点对称的点坐标为(3, 1)(2)△ABC的面积是919.解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.20.解:依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°-50°×2=80°;作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.。
北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
北师大版八年级数学下册第四章综合素质评价 附答案
北师大版八年级数学下册第四章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.因式分解:a2-1=()A.(a-1)2B.(a+1)2C.(a+1)(a-1) D.(a+1)(a-2)2.下列各式从左到右的变形属于因式分解的是()A.(x+2)(x-3)=x2-x-6 B.6x2y3=2x2·3y3C.x2+2x+1=x(x+2)+1 D.x2-9=(x-3)(x+3)3.下列各组式子中,没有公因式的是()A.-a2+ab与ab2-a2b B.mx+y与x+yC.(a+b)2与-a-b D.5m(x-y)与y-x4.【2022·深圳期中】若x2+mx+4能用完全平方公式分解因式,则m的值是() A.4 B.-4 C.±2 D.±45.小钢是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a-b,x -y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:东、爱、我、广、丽、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是() A.我爱美B.广东美C.我爱广东D.广东美丽6.李老师布置了5道因式分解的题,小红同学的答案如下,你认为她做对的题的序号是()①1+4x2=(1+2x)2;②6xyz-8xy2=2xyz(3-4y);③4x+2y-6z=2(2x+y-3z);④a2-2ab+b2=(a-b)2;⑤x2y-4y=y(x2-4).A.①②B.③④C.④⑤D.②③④⑤7.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a-b)=a2-b2B.a2-b2=(a+b)(a-b)C.a2+2ab+b2=(a+b)2D.(a-b)2=a2-2ab+b28.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为() A.2m+6 B.3m+6 C.2m2+9m+6 D.2m2+9m+99.三角形的三边长分别为a、b、c,如果a、b、c满足a2-2ab+c2-2bc+2b2=0,则这个三角形是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形10.若一个正整数能表示成另两个正整数的平方差,即x=a2-b2(其中a、b、x为正整数),则称这个正整数为完美数.下列各数中不是完美数的是()A.2 022 B.2 021 C.2 020 D.2 019二、填空题:本大题共5小题,每小题3分,共15分.11.【2022·佛山禅城区期末】因式分解:x2y-xy2=__________.12.计算:2 021×512-2 021×492的结果是________.13.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为________.14.在完成因式分解的练习时,小明不小心将一道题4x3弄上了污渍,他只记得将这个多项式因式分解时应先提公因式,再用平方差公式分解,请你帮小明想一想,老师布置的原题可能是________,因式分解的结果是__________.(填一个合适的即可)15.为了烘托新年的节日氛围,市政部门在某广场上用鲜花摆放了一个圆形花坛.已知该花坛的面积为(πa2+18πab+81πb2)平方米(a>0,b>0),则这个圆形花坛的半径为______米.三、解答题(一):本大题共3小题,每小题8分,共24分.16.把下列各式因式分解:(1)x3+2x2y-9x-18y;(2)(a2-2ab+b2)+(-2a+2b)+1.17.因式分解(4x+y)2-9y2,并求值,其中x+y=2,y-2x=3.18.若一个长方形的周长为20,其长为a,宽为b,且满足a2-2ab+b2-4a+4b +4=0,求a,b的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如果△ABC的三边长分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积.20.如图,约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式.(1)求整式M、P;(2)将整式P因式分解.21.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a 厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为________________;(2)若图中空白部分的面积为20平方厘米,大长方形纸板的周长为30厘米,求图中阴影部分的面积.五、解答题(三):本大题共2小题,每小题12分,共24分.22.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式(x2-4x+1)(x2-4x+2)-12.解:设x2-4x=y,原式=(y+1)(y+2)-12=y2+3y-10=(y+5)(y-2)=(x2-4x+5)(x2-4x-2).(1)请你用换元法对多项式(x2-3x+2)(x2-3x-5)-8进行因式分解;(2)凭你的数感,大胆尝试解方程:(x2-2x+1)(x2-2x-3)=0.23.在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,通过用不同的方法求同一个平面图形的面积验证了平方差公式和完全平方公式,我们把这种方法称为等面积法.类似地,通过不同的方法求同一个立体图形的体积,我们称为等体积法.根据课堂学习的经验,解决下列问题:在一个棱长为a的正方体中挖去一个棱长为b的正方体(如图1),然后利用切割的方法把剩余的立体图形(如图2)分成三部分(如图3),这三部分长方体的体积依次为b2(a-b),ab(a-b),a2(a-b).(1)分解因式:a2(a-b)+ab(a-b)+b2(a-b)=____________;(2)请用两种不同的方法求图1中的立体图形的体积:(用含有a,b的代数式表示)①__________;②__________________;思考:类比平方差公式,你能得到的等式为__________;(3)应用:利用(2)中所得到的等式进行因式分解:x3-125;(4)拓展:已知a-2b=6,ab=-2,则代数式a4b-8ab4的值为________.答案一、1.C2.D3.B4.D5.C6.B7.B8.B 9.A提示:∵a2-2ab+c2-2bc+2b2=0,∴(a-b)2+(b-c)2=0,∵(a-b)2≥0,(b-c)2≥0,∴b-c=0且a-b=0,即a=b=c.∴△ABC是等边三角形.10.A提示:设k为正整数,∵(k+1)2-k2=(k+1+k)(k+1-k)=2k+1,∴除1以外,所有的奇数都是完美数,∴B,D选项都是完美数,不符合题意;∵(k+1)2-(k-1)2=(k+1+k-1)(k+1-k+1)=4k,∴除4以外,所有能被4整除的偶数都是完美数,∴C选项是完美数,不符合题意,∴2 022不是完美数,符合题意.故选A.二、11.xy(x-y)12.404 20013.7014.4x3-9x(答案不唯一);x(2x+3)(2x-3)15.(a+9b)提示:设花坛的半径为r米,∵πa2+18πab+81πb2=π(a2+18ab+81b2)=π(a+9b)2=πr2,∴r=a+9b.三、16.解:(1)x3+2x2y-9x-18y=x2(x+2y)-9(x+2y)=(x+2y)(x2-9)=(x+2y)(x+3)(x-3);(2)(a2-2ab+b2)+(-2a+2b)+1=(a -b )2-2(a -b )+1=(a -b -1)2.17.解:(4x +y )2-9y 2=(4x +y +3y )(4x +y -3y )=(4x +4y )(4x -2y )=8(x +y )(2x -y ),当x +y =2,y -2x =3时,原式=8×2×(-3)=-48.18.解:∵长方形的周长为20,其长为a ,宽为b ,∴a +b =20÷2=10,∵a 2-2ab +b 2-4a +4b +4=0,∴(a -b )2-4(a -b )+4=0,∴(a -b -2)2=0,∴a -b -2=0,由此得方程组⎩⎨⎧a +b =10,a -b -2=0,解得:a =6,b =4. 四、19.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2-6a +b 2-8b +c 2-10c +50=0,a 2-6a +9+b 2-8b +16+c 2-10c +25=0,(a -3)2+(b -4)2+(c -5)2=0,∵(a -3)2≥0,(b -4)2≥0,(c -5)2≥0,∴a -3=0,b -4=0,c -5=0,即a =3,b =4,c =5,∵a 2=9,b 2=16,c 2=25,∴a 2+b 2=c 2,∴△ABC 是直角三角形,∴S △ABC =12ab =6.20.解:(1)根据题意得:M =(3x 2-4x -20)-3x (x -3)=3x 2-4x -20-3x 2+9x=5x -20;P =3x 2-4x -20+(x +2)2=3x 2-4x -20+x 2+4x +4=4x 2-16;(2)P =4x 2-16=4(x 2-4)=4(x +2)(x -2).21.解:(1)(2a +b )(2b +a );(2)∵空白部分的面积为20平方厘米,大长方形的周长为30厘米,∴5ab =20,2(2a +b +2b +a )=30,由⎩⎨⎧5ab =20,2(2a +b +2b +a )=30,知:⎩⎨⎧ab =4,a +b =5,∴阴影部分的面积为2a 2+2b 2=2[(a +b )2-2ab ]=34(平方厘米),答:图中阴影部分的面积为34平方厘米.五、22.解:(1)设x 2-3x =y ,原式=(y +2)(y -5)-8=y 2-3y -18=(y -6)(y +3)=(x 2-3x -6)(x 2-3x +3);(2)设t =x 2-2x ,则(t +1)(t -3)=0.解得t =-1或t =3.当t =-1时,x 2-2x =-1,即(x -1)2=0.解得x 1=x 2=1.当t =3时,x 2-2x =3,即(x -3)(x +1)=0.解得x 3=3,x 4=-1.综上所述,原方程的解为 x 1=x 2=1,x 3=3,x 4=-1.23.解:(1)(a-b)(a2+ab+b2)(2)①a3-b3②b2(a-b)+ab(a-b)+a2(a-b)思考:a3-b3=(a-b)(a2+ab+b2)(3)x3-125=x3-53=(x-5)(x2+5x+25)(4)-288提示:a4b-8ab4=ab(a3-8b3)=ab(a-2b)(a2+2ab+4b2)=ab(a-2b)[(a-2b)2+6ab],当a-2b=6,ab=-2时,原式=-2×6×(36-12)=-288.。
难点详解北师大版八年级数学下册第四章因式分解达标测试练习题(无超纲)
北师大版八年级数学下册第四章因式分解达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式能用平方差公式进行分解因式的是( )A .x 2-1B .x 2+2x -1C .x 2+x +1D .x 2+4x +42、当n 为自然数时,(n +1)2﹣(n ﹣3)2一定能( )A .被5整除B .被6整除C .被7整除D .被8整除32210b b -+=,则-a b 的值为( )A .3B .3-C .1D .1-4、下列各式从左到右的变形中,是因式分解的是( )A .()()2339a a a +-=-B .2211m m m m ⎛⎫+=+ ⎪⎝⎭C .()()2211a b a b a b -+=+-+D .()()2422m m m -=+- 5、把多项式a 2﹣9a 分解因式,结果正确的是( )A .a (a +3)(a ﹣3)B .a (a ﹣9)C .(a ﹣3)2D .(a +3)(a ﹣3)6、下列多项式中能用平方差公式分解因式的是( )A .﹣a 2﹣b 2B .x 2+(﹣y )2C .(﹣x )2+(﹣y )2D .﹣m 2+17、若一个三角形的三边长为a ,b ,c ,且满足a 2-2ab +b 2+ac -bc =0,则这个三角形是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8、下列各式的因式分解中正确的是( )A .2()a ab ac a a b c -+-=-+-B .22963(32)xyz x y xyz xy -=-C .()2236332a x bx x x a b -+=-D .22111()222xy x y xy x y +=+9、下列等式中,从左到右的变形是因式分解的是( )A .()()2224m m m +-=-B .()23232m m m m ++=++C .()22442m m m ++=+D .()233m m m m -=- 10、下列因式分解正确的是( )A .2244(2)a a a ++=+B .24(4)a a a a -+=-+C .22(3)69a a a -=-+D .221(2)1a a a a -+=-+第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、a 、b 、c 是等腰△ABC 的三边长,其中a 、b 满足a 2+b 2﹣4a ﹣10b +29=0,则△ABC 的周长为 _____.2、若多项式5x 2+17x ﹣12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a ,b ,c 的中位数是_____3、分解因式:5x 4﹣5x 2=________________.4、当x =4,a +b =-3时,代数式:ax +bx 的值为________.5、因式分解:23322212820x y x y x y -+=______.三、解答题(5小题,每小题10分,共计50分)1、已知2220m m --=,求2(2)(2)+(2)m n m n n m +--的值.2、(1)按下表已填的完成表中的空白处代数式的值:(2)比较两代数式计算结果,请写出你发现的2()a b -与222a ab b -+有什么关系?(3)利用你发现的结论,求:222021404220202020-⨯+的值.3、因式分解:3269xy xy xy -+4、分解因式:(1)22363x xy y -+-(2)()()216a x y y x -+-5、因式分解:228ax a-参考答案-一、单选题1、A【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为()()22 a b a b a b +-=-,根据平方差公式的构成特点,逐个判断得结论.【详解】A .能变形为x 2﹣12,符合平方差公式的特点,能用平方差公式分解因式;B .多项式含有三项,不能用平方差公式分解因式;C .多项式含有三项,不能用平方差公式分解因式;D .多项式含有三项,不能用平方差公式分解因式.故选:A .【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.2、D【分析】先把(n +1)2﹣(n ﹣3)2分解因式可得结果为:()81,n -从而可得答案.【详解】 解: (n +1)2﹣(n ﹣3)2()()1313n n n n =++-+--⎡⎤⎣⎦()=224n -⨯()=81n -n 为自然数所以(n +1)2﹣(n ﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“()()22a b a b a b -=+-”是解题的关键.3、B【分析】根据算术平方根、偶次方的非负性确定a 和b 的值,然后代入计算.【详解】 解:22210a b b ++-+=,2(1)0b -=,20a ∴+=,10b -=,解得2a =-,1b =,所以213a b -=--=-.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.4、D因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.【详解】解:()()2339a a a +-=-是整式的乘法,故A 不符合题意;2211m m m m ⎛⎫+=+ ⎪⎝⎭不是化为整式的积的形式,故B 不符合题意; ()()2211a b a b a b -+=+-+不是化为整式的积的形式,故C 不符合题意;()()2422m m m -=+-是因式分解,故D 符合题意;故选D【点睛】本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.5、B【分析】用提公因式法,提取公因式a 即可求解.【详解】解:a 2﹣9a =a (a ﹣9).故选:B .【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.6、D根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、22a b --,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B 、()2222x y x y +-=+,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意; C 、()()2222x y x y -=++-,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D 、()()2221111m m m m -+=-=+-,可以利用平方差公式进行分解,符合题意; 故选:D .【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.7、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a ,b ,c 之间的关系判断即可.【详解】解:a 2-2ab +b 2+ac -bc =0,2()()0a b c a b -+-=,()()0a b c a b -+-=,∵0a b c >-+∴0a b =-,故选:C .【点睛】本题考查了因式分解的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系.8、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a 2+ab -ac =-a (a -b +c ) ,故本选项错误;B 9xyz -6x 2y 2=3xy (3z -2xy ),故本选项错误;C 3a 2x -6bx +3x =3x (a 2-2b +1),故本选项错误;D 22111()222xy x y xy x y +=+,故本选项正确.故选:D .【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.9、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.【详解】A. ()()2224m m m +-=-,变形是整式乘法,不是因式分解,故A 错误;B. ()23232m m m m ++=++,右边不是几个因式乘积的形式,故B 错误;C. ()22442m m m ++=+,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C 正确; D. ()233m m m m -=-,变形是整式乘法,不是因式分解,故D 错误.【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键.10、A【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.【详解】解:A 、2244(2)a a a ++=+,选项说法正确,符合题意;B 、24(4)a a a a -+=--,选项说法错误,不符合题意;C 、22(3)69a a a -=-+是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D 、2221(1)a a a -+=-,选项说法错误,不符合题意;故选A .【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.二、填空题1、12【分析】先利用完全平方公式把a 2+b 2﹣4a ﹣10b +29=0化为()()22250,a b -+-=再利用非负数的性质求解,,a b再分两种情况讨论:当2a =为腰时,当2a =为底时,结合三角形的三边关系,从而可得答案.【详解】 解: a 2+b 2﹣4a ﹣10b +29=0,224410250,a a b b ∴-++-+=()()22250,a b ∴-+-= 20,50,a b ∴-=-=2,5,a b ∴==a 、b 、c 是等腰△ABC 的三边长,当2a =为腰时,则另一腰2,c = 此时225,+< 三角形不存在,舍去,当2a =为底时,则腰5,b c == 此时255,+> 三角形存在,∴△ABC 的周长为25512.++=故答案为:12【点睛】本题考查的是利用完全平方公式分解因式,非负数的性质,三角形三边的关系,等腰三角形的定义,掌握以上基础知识是解题的关键.2、4【分析】首先利用十字交乘法将5x 2+17x -12因式分解,继而求得a ,b ,c 的值.【详解】利用十字交乘法将5x 2+17x -12因式分解,可得:5x 2+17x -12=(x +4)(5x -3)=(x +a )(bx +c ).∴4,5,3a b c ===-,∵453-、、的中位数是4∴a ,b ,c 的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a 、b 、c 的值是得出正确答案的关键.3、5x 2(x +1)(x -1)【分析】直接提取公因式5x 2,进而利用平方差公式分解因式.【详解】解:5x 4-5x 2=5x 2(x 2-1)=5x 2(x +1)(x -1).故答案为:5x 2(x +1)(x -1).【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.4、-12【分析】本题可先代入x 的值得4(a +b ),再把a +b =-3整体代入求值即可.【详解】解:∵x =4,a +b =-3∴ax +bx ()()=4444312a b a b +=+=⨯-=-故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.5、()224325x y y x -+【分析】直接提取公因式224x y 整理即可.【详解】解:()23322222128204325x y x y x y x y y x -+=-+,故答案是:()224325x y y x -+.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.三、解答题1、4【分析】先利用平方差公式计算,再合并,然后根据2220m m --=,得到222m m -=代入即可求解.【详解】解:()()()2222m n m n n m +-+-22242m n n m =-+-242m m =-.∵2220m m --=,∴222m m -=.∴22(2)4m m =-=原式.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键.2、(1)见解析;(2)()2222a b a ab b -=-+;(3)1【分析】(1)把每组,a b 的值分别代入2()a b -与222a ab b -+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b -=-+可得2021,2020,a b 再代入进行简便运算即可. 【详解】解:(1)填表如下:(2)观察上表的计算结果归纳可得:()2222a b a ab b -=-+(3)222021404220202020-⨯+=2220212202120202020-⨯⨯+=()220212020-=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.3、()23xy y -【分析】直接提取公因式xy ,再利用完全平方公式分解因式得出答案【详解】解:3269xy xy xy -+()269xy y y =-+()23xy y =- 【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.4、(1)23)x y --(;(2)()(4)(4)x y a a -+-【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y ),再利用平方差公式分解因式.【详解】解:(1)22363x xy y -+-=223-2x xy y -+()=23)x y --((2)()()216a x y y x -+-=()()216a x y x y ---=()2(16)x y a --=()(4)(4)x y a a -+-.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.5、2(2)(2)a x x +-【分析】根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.【详解】解:228ax a22(4)a x =-2(2)(2)a x x =+-【点睛】本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.。
北师大版八年级数学下册《第四章总复习》练习题教学课件PPT初二公开课
数学·北师大版·八年级下册因式分解第四章1 因式分解1.[2021河南驻马店驿城区期末]下列各式从左到右的变形中,是因式分解的是( )A.x2-4+y2=(x+2)(x-2)+y2B.x2-9=(x+3)(x-3)C.x(a-b)=ax-bxD.x2+ 1=x(x+ )1.B2.下列多项式因式分解的结果为-(2a+b)(2a-b)的是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b22.D3.[2021河北保定清苑区期末]如果多项式x2-mx-35分解因式为(x-5)(x+7),那么m的值为( )A.-2B.2C. 12D.- 123.A 因为(x-5)(x+7)=x2+2x-35=x2-mx-35,所以m=-2.4.[教材P94习题T4变式]如图为两个边长为a的正方形纸片,一个边长为b的正方形纸片,三个边长分别为a和b的长方形纸片.你能否用图中所有纸片拼成一个长方形?如果能,请画出草图,并写出相应的因式分解;如果不能,请说明理由.4.解:能.拼图前几个图形的面积和为2a2+3ab+b2,因此可以拼成长为(2a+b)、 宽为(a+b)的长方形,拼图如图所示.因式分解为2a2+3ab+b2=(2a+b)(a+b).5.[2020北京交大附中期末]仔细阅读下面例题,解答问题.【例题】 已知二次三项式x 2-4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,得x 2-4x +m =(x +3)(x +n ),则x 2-4x +m =x 2+(n +3)x +3n ,∴ + 3 = −4,解得 = −7,∴另一个因式为x -7,m 的值为-21.【问题】 仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是2x -5,求另一个因式及k 的值.m = 3 , m = −21,5.解:设另一个因式为x+a,得2x2+3x-k=(2x-5)(x+a),则2x2+3x-k=2x2+(2a-5)x-5a,∴2a−5=3,解得a=4,−5a = −k, k = 20,∴另一个因式为x+4,k的值为20.6.( 1)3.2 × 154+ 154×2.8-2 × 154能被4整除吗?为什么?(2)2 0213-2 021能被2 022整除吗?为什么?6.解:(1)能.理由如下:3.2 × 154+ 154×2.8-2 × 154=154×(3.2+2.8-2)=154×4.∵154×4能被4整除,∴3.2 × 154+ 154×2.8-2 × 154能被4整除.(2)能.理由如下:2 0213-2 021=2 021×(2 021- 1) (2 021+ 1)=2 021×2 020×2 022.∵2 021×2 020×2 022能被2 022整除,∴2 0213-2 021能被2 022整除.2 提公因式法11. [2021天津河北区期末]多项式12ab3+8a3b各项的公因式是( )A.abB.2abC.4abD.4ab21.C2.多项式2(a+b)2-8(a+b)(a-b)各项的公因式是( )A.a+bB.2(a+b)C.2(a+b)2(a-b)D.2(a+b)(a-b)2.B3.写出下列多项式各项的公因式: ( 1)2x2+6x3;(2)-24m2x3+ 16n2x2;(3)5(a-b)3+ 10(a-b).3.解:(1)2x2.(2)-8x2.(3)5(a-b).4.[2021吉林长春宽城区期中]把多项式a2-4a分解因式的正确结果是( )A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-44.A5.[2021湖南怀化期末]多项式2x2-4xy+2x提取公因式2x后,另一个因式为( )A.x-2yB.x-4y+1C.x-2y+1D.x-2y- 15.C 2x2-4xy+2x=2x(x-2y+1).6.[2021湖南株洲中考]因式分解:6x2-4xy= .6.2x(3x-2y)7.分解因式:mn(n-m)-n(m-n)= .7.n(n-m)(m+1) mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1).8.用提公因式法将下列各式分解因式.( 1)-a2b3c+2ab2c3-ab2c;(2)5x(x-2y)3-20y(2y-x)3.8.解:(1)-a2b3c+2ab2c3-ab2c=-ab2c(ab-2c2+ 1).(2)5x(x-2y)3-20y(2y-x)3=5x(x-2y)3+20y(x-2y)3=5(x-2y)3(x+4y).如果多项式的首项系数是负数,通常先提出“-”号.可按下列口诀分解因式:首项有“负”先提“负” ,各项有“公”要提 “公” ,某项提出莫漏“1” ,括号里面分到底.9.[2020浙江湖州吴兴区期末]已知长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值是 .9.30 ∵长和宽分别是a,b的长方形的周长为10,面积为6, ∴2(a+b)=10,ab=6, ∴a+b=5, ∴a2b+ab2=ab(a+b)=30.10.利用因式分解简化运算:( 1)2 021+2 0212-2 021×2 022; (2)56.2 × 1 999-462× 199.9.10.解:(1)2 021+2 0212-2 021×2 022 =2 021×(1+2 021-2 022)=0.(2)56.2 × 1 999-462× 199.9=562× 199.9-462× 199.9=199.9 ×(562-462)=199.9 × 100=19 990.11.先因式分解,再求值:( 1)(a+b)(a-b)-(a-b)2,其中a=1,b=- ; (2)a(a-b)+c(b-a),其中a=-2,b=8,c =- 12.11.解:(1)(a+b)(a-b)-(a-b)2=(a-b)(a+b-a+b)=2b(a-b).因为a=1,b=- ,所以原式=2×(- )×(1+ )=- . (2)a(a-b)+c(b-a)=(a-b)(a-c).因为a=-2,b=8,c=- 12,所以原式=(-2-8)×(-2+ 12)=- 100.1.[2021北京怀柔区期末]将3a2m-6amn+3a分解因式,下面是四位同学分解的结果:①3am(a-2n+1);②3a(am+2mn- 1);③3a(am-2mn);④3a(am-2mn+1).其中正确的是( )A.①B.②C.③D.④1.D 3a2m-6amn+3a=3a(am-2mn+1).2.[2021辽宁铁岭期末]下列各式中,没有公因式的是( )A.3x-2与6x2-4xB.ab-ac与ab-bcC.2(a-b)2与3(b-a)3D.mx-my与ny-nx2.B3.计算(-2)101+(-2)100的结果是( )A.-2B.-2100C.2D.21003.B (-2)101+(-2)100=(-2)100×(-2+ 1)=-(-2)100=-2100.4.[2020湖南娄底期末]已知ab=2,a-3b=-5,则代数式a2b-3ab2+ab的值为( )A.-6B.-8C.- 10D.- 124.B a2b-3ab2+ab=ab(a-3b+1), ∵ab=2,a-3b=-5, ∴原式=2×(-5+ 1)=-8.5.把-a(x-y)-b(y-x)+c(x-y)分解因式,结果正确的是( )A.(x-y)(-a-b-c)B.(y-x)(a-b-c)C.-(x-y)(a+b+c)D.-(y-x)(a+b-c)5.B -a(x-y)-b(y-x)+c(x-y)=-a(x-y)+b(x-y)+c(x-y)=(x-y)(-a+b+c)=(y-x)(a-b-c).6.多项式(x+2)(2x- 1)-(x+2)可以因式分解成2(x+m)(x+n),则m-n的值是( )A.0B.4C.3或-3D. 16.C ∵(x+2)(2x- 1)-(x+2)=(x+2)(2x-2)=2(x+2)(x- 1),(x+2)(2x- 1)-(x+2)可以因式分解成2(x+m)(x+n), ∴2(x+2)(x-1)=2(x+ m)(x+n), ∴m=2,n=- 1或m=- 1,n=2, ∴m-n=3或m-n=-3.7.[2020山东聊城中考]因式分解:x(x-2)-x+2= .7.(x-2)(x- 1) x(x-2)-x+2=x(x-2)-(x-2)=(x-2)(x- 1).8.已知x2-x- 1=0,则-x3+2x2+2 021= .8.2 022 因为x2-x- 1=0,所以x2-x=1.-x3+2x2+2 021=-x3+x2+x2+2 021=-x(x2-x)+x2+2 021,将x2-x=1代入,得原式=- x+x2+2 021=x2-x+2 021=2 022.9.已知在Rt△ABC中, ∠A, ∠B, ∠C的对边分别为a,b,c, ∠C=90° ,c=11, △ABC的周长为24.求证:代数式3a(a2+b2)+3b(a2+b2)-363(a+b)的值为0.9.解:∵Rt△ABC的周长为24,∴a+b+c=24.∵c=11, ∠C=90° ,∴a+b=13,a2+b2=112=121.3a(a2+b2)+3b(a2+b2)-363(a+b)=3(a2+b2)(a+b)-363(a+b)=3(a+b)(a2+b2- 121).∵a+b=13,a2+b2=121,∴原式=3× 13×(121- 121)=0.∴代数式3a(a2+b2)+3b(a2+b2)-363(a+b)的值为0.10.先阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=( 1+x)[1+x+x(x+1)]=( 1+x)2( 1+x)=( 1+x)3.( 1)上述分解因式的方法是 , 共应用了 次;(2)若分解1+x+x(x+1)+x(x+1)2+ ‧ ‧ ‧ +x(x+1)2022,则需应用上述方法 次,结果是 ;(3)分解因式:1+x+x(x+1)+x(x+1)2+ ‧ ‧ ‧ +x(x+1)n(n为正整数).10.解:(1)提公因式法 2(2)2 022 ( 1+x)2023(3) 1+x+x(x+1)+x(x+1)2+ ‧ ‧ ‧ +x(x+1)n=( 1+x)[1+x+x(x+1)+x(x+1)2+ ‧ ‧ ‧ +x(x+1)n-1] =( 1+x)2[ 1+x+x(x+1)+x(x+1)2+ ‧ ‧ ‧ +x(x+1)n-2]‧ ‧ ‧=( 1+x)n+1.3 公式法课时1 用平方差公式分解因式1.[2021浙江杭州中考]因式分解:1-4y2=( )A.( 1-2y)(1+2y)B.(2-y)(2+y)C.( 1-2y)(2+y)D.(2-y)(1+2y)1.A 1-4y2=1-(2y)2=( 1-2y)(1+2y).2.[2021江苏无锡模拟]下列各式中,能用平方差公式分解因式的是( )A.x2+4y2B.-x2+4y2C.x2-2y+1D.-x2-4y22.B A项,x2+4y2中两项的符号相同,不能用平方差公式分解因式;B项,-x2+4y2是2y与x的平方的差,能用平方差公式分解因式;C项,x2-2y+1是三项,不能用平方差公式分解因式;D项,-x2-4y2中两项的符号相同,不能用平方差公式分解因 式.3.把x2-(y+1)2分解因式,结果正确的是( )A.(x+y+1)(x-y- 1)B.(x+y- 1)(x-y- 1)C.(x+y- 1)(x+y+1)D.(x-y+1)(x+y+1)3.A x2-(y+1)2=[x+(y+1)][x-(y+1)]=(x+y+1)(x-y- 1).4.某同学粗心大意,分解因式时,把等式x4-■=(x2+4)(x+2)(x- ▲)中的两个数字弄污了,则式子中的■ , ▲对应的一组数字是( )A.8, 1B. 16,2C.24,3D.64,84.B 当 ■=16, ▲=2时,等式的右边为(x2+4)(x+2)(x-2)=x4- 16,等式左边为x4- 16,等式左边=等式右边.5.[2021山东威海中考]分解因式:2x3- 18xy2= . 5.2x(x+3y)(x-3y) 2x3- 18xy2=2x(x2-9y2)=2x(x+3y)(x-3y).6.把下列多项式分解因式:( 1) 16m2-9n2;(2)a3b-ab;(3)(x+y+z)2-(x-y+z)2.6.解:(1) 16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).(2)a3b-ab=ab(a2- 1)=ab(a+1)(a- 1).(3)(x+y+z)2-(x-y+z)2=[(x+y+z)+(x-y+z)][(x+y+z)-(x-y+z)]=(x+y+z+x-y+z)(x+y+z-x+y-z)=2y(2x+2z)=4y(x+z).7.[2021河南南阳三中月考]若a,b,c是三角形的三边长,则代数式(a-b)2-c2的值是( )A.正数B.负数C.0D.不能确定7.B (a-b)2-c2=(a-b+c)(a-b-c), ∵a,b,c是三角形的三边长, ∴a+c-b>0,a-b-c<0, ∴(a-b)2-c2的值是负数.8.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为( )A.200B.-200C. 100D.- 1008.B ∵2m+n=25,m-2n=2, ∴(m+3n)2-(3m-n)2=[(m+3n)+(3m-n)][(m+3n)-(3m-n)]=(4m+2n)(-2m+4n)=-4(2m+n)(m- 2n)=-4 ×25×2=-200.9.利用因式分解简化运算(要求写出完整计算过程): ( 1)2012- 1992;(2)(30 )2-(29 )2.9.解:(1)2012- 1992=(201+ 199)×(201- 199)=400×2=800.(2)(30 )2-(29 )2=(30 +29 )×(30 -29 )=60× =80.10.解:(1)2a ·a -2b 2=2(a 2-b 2),∴题图中阴影部分的面积为2(a 2-b 2).(2)当a =15.7,b =4.3时,2(a 2-b 2)=2(a +b )(a -b )=2( 15.7+4.3)(15.7-4.3)=456.∴题图中阴影部分的面积为456.的正方形孔.( 1)求图中阴影部分的面积(用含a ,b 的式子表示);(2)当a =15.7,b =4.3时,用因式分解的方法计算阴影部分的面积.10.[教材P100随堂练习T3变式][2020广东汕头潮南区期末]如图,一长方形模具长为2a ,宽为a ,中间开出两个边长为b1.小明在抄分解因式的题目时,不小心漏抄了二项式x2- □y2中“□”的部分,若该二项式能分解因式,则“□”不可能是( )A.xB.4C.-4D.91.C A项,若“□”是x,则x2-xy2=x(x-y2),所以A项不符合题意;B项,若“□”是4,则x2-4y2=(x+2y)(x-2y),所以B项不符合题意; C项,若“□”是-4,则x2+4y2无法分解因式,所以C项符合题意;D项,若“□”是9,则x2-9y2=(x+3y)(x-3y),所以D项不符合 题意.2.分解因式:3y4-3x4=( )A.3(y2+x2)(y2-x2)B.3(y2+x2)(y-x)(y+x)C.3(y2+x2)(y-x)2D.3(y+x)2(y-x)22.B 3y4-3x4=3(y4-x4)=3(y2+x2)(y2-x2)=3(y2+x2)(y+x)(y-x).3.对于任意整数m,多项式(4m+5)2-9都能( )A.被8整除B.被m整除C.被(m- 1)整除D.被(2m- 1)整除3.A (4m+5)2-9=(4m+5)2-32=(4m+8)(4m+2)=8(m+2)(2m+1). ∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数, ∴该多项式肯定能被8整除.4.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2 ,a 2-b 2分别对应昌、 爱、我、宜、游、美.现将(x 2-y 2)a 2-(x 2-y 2)b 2 因式分解,结果呈现的密码信息可能是( )4.C (x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x -y )(x +y )(a +b )(a -b ),结合题意及选项知C 正确.A.我爱美C.爱我宜昌 B.宜昌游D.美我宜昌5.[2021江苏南通崇川区期末]多项式4a2-9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n的值共有个.5.5 因为多项式4a2-9b n(其中n是小于10的自然数,b≠0)可以分解因式,所以n的值为0,2,4,6,8,共5个.6.设a=192×918,b=8882-302,c=6982-2202,则数a,b,c的大小关系是 .(用“<”号连接)6.a<c<b a=192×918=361×918,b=8882-302=(888-30)×(888+30)=858×918,c=6982-2202=(698+220)×(698- 220)=918× 478,所以a<c<b.7.已知x,y,z是△ABC的三边长,且满足2xy+x2=2yz+z2,则△ABC的形状是 .7.等腰三角形 ∵2xy+x2=2yz+z2, ∴2xy+x2-2yz-z2=0, ∴(x-z)(x+z+2y)=0. ∵x,y,z是△ABC的三边长, ∴x+z+2y≠0, ∴x-z=0, ∴x=z, ∴△ABC是等腰三角形.8.分解因式:( 1)a2(a-b)+b2(b-a);(2)x2-y2+2x-2y;(3)x4- 16y4.8.解:(1)a2(a-b)+b2(b-a) =a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)(a-b)(a+b)=(a-b)2(a+b).(2)x2-y2+2x-2y=(x2-y2)+(2x-2y)=(x+y)(x-y)+2(x-y)=(x-y)(x+y+2).。
北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第2课时 利用完全平方公式因式分解
第四章 因式分解
4.3 公式法
第2课时 利用完全平方公式因式分解
1.(3分)下列各式中能用完全平方公式进行因式分解的是( D )
A.x2+x+1 B.x2+2x-1
C.x2-1
D.x2-6x+9
2.(4分)将x2-2xy+y2分解因式,结果正确的是( D )
A.(x+y)(x-y) B.x(x-2y)+y2
5.(4分)把代数式3x3-12x2+12x因式分解结果正确的是( D ) A.3x(x2-4x+4) B.3x-(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2
6.(4分)(攀枝花中考)因式分解:x3y-2x2y+xy=___x_y_(x_-__1_)_2____.
7.(12分)把下列各式因式分解: (1)x3-2x2y+xy2; 解:原式=x(x-y)2
【素养提升】 14.(14分)(平顶山郏县期末)阅读材料:常用的分解因式方法有提公因式、公式 法等,但有的多项式只有上述方法就无法分解,如x2-4y2+2x-4y,细心观察这 个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别 分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过 程为:x2-4y2+2x-4y=(x2-4y2)+(2x-4y)=(x+2y)(x-2y)+2(x-2y)=(x- 2y)(x+2y+2). 这种分解因式的方法叫分组分解法,利用这种方法解决下列问题: (1)分解因式:x2-6xy+9y2-3x+9y; (2)若△ABC的三边a,b,c满足a2-b2-ac+bc=0,判断△ABC的形状,并说 明理由.
二、解答题(共36分) 12.(12分)将下列各式因式分解: (1)x2(y2-1)+2x(y2-1)+(y2-1); 解:原式=(y2-1)(x2+2x+1)=(y+1)(y-1)(x+1)2 (2)a2-2ab+b2-9; 解:原式=(a-b)2-32=(a-b+3)(a-b-3) (3)(x2y2+1)2-4x2y2. 解:原式=(xy+1)2(xy-1)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级下数学第四章随堂练习3
一、选择题(共5小题;共25分)
1. 下列由左边到右边的变形,属分解因式的是
A. B.
C. D.
2. 在分解多项式时,正确的分组方法是
A. B.
C. D.
3. 设多项式是二项式,是三项式,则的结果的多项式的项数一定是
A. 等于项
B. 不多于项
C. 多于项
D. 不多于项
4. 下列添括号正确的是
A.
B.
C.
D.
5. 定义一种新的运算:,如,则
A. B. C. D.
二、填空题(共4小题;共20分)
6. 已知,则因式分解为.
7. 若,则代数式的值为.
8. 因式分解:.
9. 因式分解:()()().
三、解答题(共4小题;共52分)
10. 因式分解:.
11. 如果有一个因式是,求的值,并求另一个因式.
12. 求多项式除以的商式和余数.
13. 已知,满足:,;求的值.
答案
第一部分
1. D
2. C
3. D 【解析】多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.多项式是个是二项式,是三项式,因此合并同类项之后不多于项.
4. D
5. B
【解析】,
.
第二部分
6.
7.
8.
9. ,,
第三部分
10.
11. 因为,,
又有一个因式是,
因此只能分解为,
所以可以分解为,
即.
而,
所以,且另一个因式为.
12. 商式,余数.
13. 由得:.
由得:.
得;;,
.。