第九届高数竞赛(经济类)试题
陕西省第九次大学生高等数学竞赛复赛试题_
陕西省第九次大学生高等数学竞赛复赛试题
( 且 1 1 5 分) ″( x)连续 , 设f π)= 2, f( ] x) ″( x) s i n xd x = 6, +f f( ∫[
0
( 使得 8 1 0 分) b 的值 , 求 a,
π
a x +b ≥l n x,
且积分
4
) 求 f( 0 .
( 设r 是x O θ) y 平面上的与x 轴正向夹角 为θ 的单位向量 . 质点 M 在变力
2 } F= { x z, 2 z z, y
的作用下 , 在曲面 Σ 上从原点出发 , 沿方 ( ( 向r 运动到z =1的位置 0≤θ≤π) θ) 上. 问θ取何值时 , 变力 F 所作的功 W 最 小? 并求此 W 的最小值 . ( 且 1 2 1 0 分 ) 设 f( x)三阶可导 , )=-1 1 f( 是其极小值 , 而 )= 3 -1 f( ) , 是其极大值 . 证明存在ξ ∈ ( 使 1 -1,
0 1 0 1
x)= y(
是微分方程
∑ax
n n=0
n
∫ ) ( 2 x) d d f( f( y) y. ∫x ∫
x
2 2 z =4 x 3 x Σ: +2 y, y +2 槡
( 1 1 1 0 分 ) 给定椭圆抛物面
x ″+y ′-y = 0 y
的满足初始条件 )= y )= 1 0 ′( 0 y( 的解 , 求此幂级数 . ( 6 1 5 分) 已知
y) y x, 1+e c o s x -y e f( y)= (
( ) 2 k-1 π π . 2 l i m n 1- ∑s i n n→ ∞ 2 nk=1 4 n
n
(
第九届高数竞赛(医学类)试题
第九届高数竞赛(医学类)试题二、单项选择题(每题3分,共15分)得分评阅人1、设函数f(某)在[1,2]上具有二阶导数,且f(1)f(2)0,F(某)(某1)2f(某),则F(2)(某)在开区间(1,2)内()(A)没有零点;(B)至少有一个零点;(C)恰好有两个零点;2、设lim某1(D)有且仅有一个零点.f(某)f(a)1,则(某a)2f(某)在某a处().(B)导数不存在;(D)取得极大值.(A)可导且f(1)(a)0;(C)取得极小值;3、设函数f(某)与g(某)在开区间(a,b)内可导,考虑如下两个命题,''''(1)若f(某)g(某),则f(某)g(某);(2)若f(某)g(某),则f(某)g(某).则()(A)两个命题均正确;(C)命题(1)正确,命题(2)不正确;(B)两个命题均不正确;(D)命题(2)正确,命题(1)不正确.)4、设函数(A)f(某)连续,则下列函数中必为偶函数的是(某[f(t)]2dt;f(t2)dt;(B)某t[f(t)f(t)]dt;某某(C)(D)t[f(t)f(t)]dt.5、考虑二元函数f(某,y)在点(某0,y0)处的下面四条性质:a.连续;b.可微;f(某,y)f(某,y)f(某,y)f(某,y)|(某0,y0)存在;d.|(某0,y0)与c.与yy连续;某某若用“PQ”表示可由性质P推出性质Q,则有((A)bca;(B)dba;)(D)dcb.(C)bda;第2页共7页得分评阅人三、(本题满分6分)求常数a,b,使1a某1,某0,某f(某)a某b,某1,1arctan,某1某1在所定义的区间上连续。
得分评阅人四、(本题满分6分)对t的不同取值,讨论函数f(某)t,上是否有最大值或最小值,若存在最大值或最小值,求出相应的最大值点和最大值或最小值点和最小值。
12某2某2在区间第3页共7页得分评阅人3某2lim五、(本题满分7分)求极限某3某12某1.得分评阅人某e某d某.六、(本题满分7分)计算(某1)2第4页共7页得分评阅人七、(本题满分8分)设某产品的边际成本为边际收入dC(某)某4(万元/百台),d某4dR(某)8某(万元/百台),求:d某(1)产量由1百台增到5百台的总成本与总收入的增量;(2)产量为多少时,总利润最大?得分评阅人八、(本题满分7分)设函数f(某,y)在点(1,)处可微,且f(1,1)1,d3ff|(1,1)2,|(1,1)3,(某)f(某,f(某,某)),求(某)|某1.某yd某第5页共7页得分评阅人九、(本题满分7分)z设f(u,v)有一阶连续偏导数,u某2y2,vco(某y),某rco,yrin,证明:z1zzzcoin2某yin(某,y).rruv得分评阅人十、(本题满分7分)设函数f(某)连续,求d某220tf(某t)dt.d某第6页共7页得分评阅人十一、(本题满分8分)设f(某)在[0,)上可导,f(0)0,其反函数为g(某),若某f(某)某g(t某)dt某2ln(1某),求f(某).得分评阅人十二、(本题满分7分)计算定积分22(|某|某)e|某|d某.第7页共7页。
2017-2018学年度第九届高等数学竞赛(答案)
中山大学新华学院第九届高等数学竞赛姓名 学号 班级 成绩一、填空题(每题3分,共18分) 1.函数()11y ln x =++()()1,00,-⋃+∞。
2. 2111.dx x+∞=⎰。
3.曲线236x x y +=的拐点横坐标为=x 2-;4. 11(1x x -+=⎰2π. 5.a =6.设A =“某人投注的号码中一等奖”,则P (A )=861331615.64310C C -=⨯二、计算题(每题7分,共49分) 1. 设)1ln(2x x y ++=,求dy . )1ln(2++=x x d dy )1(1122++++=x x d x x ............3分dx x xx x ⎪⎪⎭⎫⎝⎛++++=111122 ----------5分.112dx x +=------------7分2、已知函数32()f x x ax bx =++在1x =处有极小值2-,(1) 求a 与b 的值; (2) 求()f x 的极大值点与极大值。
解:(1)由(1)2f =-且为极小值知,12320a b a b ++=-⎧⎨++=⎩,解得0;3a b =⎧⎨=-⎩------------------ 2分(2)322()3,()333(1)3(1)(1),f x x x f x x x x x '=-=-=-=+-由上表可得,极大值(1)2f -=。
------------------ 7分 3.设函数()f x 在0x =处有二阶导数,且 0()lim0,x f x x→=(0)4,f ''= 求(0),(0),f f '10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解:4、设211()x x f x e-⎧⎪+=⎨⎪⎩00x x >≤,求31(2)d f x x -⎰. 解:令2=-t x,则d d =x t ,当1=x 时,1=-t ; 当3=x 时,1=t ------------------ 3分3101111(2)d ()d ()d ()d ---==+⎰⎰⎰⎰f x x ft t f t t f t t 0211d 1+x x -=⎰1-0e d x x +⎰114eπ=-+ ------------------ 7分5. 计算40⎰t =,则2,2x t dx tdt == ------------------ 2分4202t te dt =⎰⎰ ------------------- 4分222220002()2422(1)t t t te e dt e e e =-=-=+⎰ -----------------7分2000011()1()()lim ln 1lim lim 0000()1()(0)1limlim (0)222002()(0)lim ()lim 000,()(0)()(0)lim lim 0,()lim 1.x x x x f x f x f x xx x xx xx x x x f x f x f f xxx x f x f f x x xf x f f x f x xf x e eex eeee →→→→⎛⎫+•⎪⎝⎭→→→==→'''-''→→===⨯=-'===⎛⎫+= ⎪⎝⎭====6.解:)1ln(y xe e xzy x y x +++=∂∂++, ------------------ 2分yx xe y z y x +++=∂∂+11, ------------------ 4分 于是 =)0,1(dz dy e edx )2(2++. ------------------ 7分7. 计算二次积分 23120y xx I dx e dy =⎰⎰.解:被积函数是22y e ,对于y 而言,它的原函数不能用初等函数表示,需改变积分次序才能进行.区域D : 3,01,y x y y ⎧≤≤⎨≤≤⎩ 如图所示.--------- 2分2312y xxI dx e dy=⎰⎰2312y yye dy dx=⎰⎰=2122201(1)2y e y dy -⎰, 令22y u =, 由上式得----- 4分 1112220111222(12)212()|23uuu u u I e u du e du ue du e ue e e =-=-=---=-⎰⎰⎰------------------ 7分 三、(10分)0()()()()2.().设有任意阶导数,且满足试求xf x x t f t dt f x x f x -=-⎰12()()()2()+()()()2()=()2()()()xxxxx x f t dt tf t dt f x xx f t dt x f x xf x f x f t dt f x x f x f x f x c e c e -=-'⋅-'-''==+⎰⎰⎰⎰000解:由题意: 等式两端对变量求导:-=即:等式两端再次对变量求导: 上式微分方程对应通解为:12 0,(0)0,(0)21,()xx x x f f c c f x e e --'=====-令可得,从而=-1,故.四、应用题(每题9分,共18分)3x y =oxy x=-111 1y o1. 解:如图(略),曲线与x 轴的交点为)0,1(-和)0,1(,..........2分(1) ⎰112)1(--=dx x S 34=............5分(2) 12V dy π=⎰()12101122y dy y y πππ⎛⎫=-=-= ⎪⎝⎭⎰ .......9分 2. 解:设L 为获得的总利润,L R C =-= 1p 1q +2p 2q -C=1p ()1120.1p -+2p ()220.01p --(())123540q q ++=2211220.1160.01 2.4595p p p p -+-+- (2)分解方程组1112220.2160,0.02 2.40,p p L p p L p p =-+=⎧⎪⎨=-+=⎪⎩解得1p =80, 2p =120,唯一驻点是(80,120).又 ..........6分A =L 11=-0.2<0,B =L 12=0,C =L 22=-0.02<0,因此 Δ=AC -B 2=0.004>0.故L 在驻点(80,120)处有极大值. .........8分于是可以断定,当两个市场售价分别为80和120个单位时,利润最大,最大利润为L (80,120)=189. ...............9分五、综合拓展题(5分)兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家中的狗一直在二人之间来回奔跑。
2018年第九届决赛
一.填空题(每小题6分,共30分)
4. 满足 du(t) u(t) 1 u(t)dt及u(0) 1,则可微函数u(t) ________ .
dt
0
方程 du(t ) u(t ) 1 u(t )dt两边对t求导得微分方程
dt
0
u(t ) u(t ) u(t ) C1et C2
u(0) 1 u(t ) C1et 1 C1 u(0) C1
x3 ).
证明 : 令
F ( x) arctan x
x
f (t)dt
1
f ( x)dx
0
80
则F (0)
1
f ( x)dx,
F (1)
1 f ( x)dx,且F ( x)在[0,1]上可导
80
80
F (0) F (1) 0
证明 : 根据介值定理存在x3 (0,1),使F ( x3 ) 0
b y cda,cz dab,d w abc,则行列式 1 y 1 1 ___0_____ . 1 1 z 1 1 1 1 w
二(11分)设函数 f ( x)在(0,1)内连续且存在两两互异的点
x1 , x2 , x3 , x4 (0,1),使得
f ( x1 ) f ( x2 ) x1 x2
1
e
0
e
1
0 ln xdx 1
五.(12分)设 x ( x1, x2 , n 2.
n
n1
, xn )T Rn , H ( x) xi2 xi xi1,
i 1
i 1
(1)证明:对于任意的非零x Rn , H ( x) 0;
(2)求H ( x)满足条件xn 1的最小值.
1
1 2
大学生高等数学竞赛试题汇总及答案
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
2023年天津市高等数学竞赛真题答案经管类
2023年 天津市大学数学竞赛试题参照解答 (经管类)一. 填空题(本题15分,每题3分):1. 设()f x 是持续函数, 且0()lim41cos x f x x →=-, 则01()lim 1x xf x x →⎛⎫+= ⎪⎝⎭ 2e .2. 设223()2x f x ax b x +=++- , 若 lim ()0,x f x →∞= 则 a =2,- b =4.- 3.1e ln d x x x x ⎛⎫+= ⎪⎝⎭⎰ e ln .xx C + 4. 设(,)f x y 是持续函数, 且(,)(,)d d ,Df x y xy f x y x y =+⎰⎰其中D 由x 轴、y 轴以及直线1x y +=围成, 则(,)f x y =1.12xy +5.ln 4ln 2x =⎰.6π二. 选择题(本题15分,每题3分):1. 设()(2)ln(1),f x x x =+- 则()f x 在0x =处(A) (0)2f '=-, (B) (0)0f '=, (C) (0)2f '=, (D) 不可导. 答: (A)2. 设函数()y f x =具有二阶导数, 且满足方程sin e 0.x y y '''+-=已知0()0,f x '=则(A) ()f x 在0x 旳某个邻域中单调增长, (B) ()f x 在0x 旳某个邻域中单调增少,(C) ()f x 在0x 处获得极小值, (D) ()f x 在0x 处获得极大值. 答: ( C)3. 图中曲线段旳方程为()y f x =, 函数()f x 在区间[0,]a 上有持续旳导数, 则积分()d a x f x x '⎰表达(A) 直角三角形AOB 旳面积, (B) 直角三角形AOC 旳面积, (C) 曲边三角形AOB 旳面积, (D) 曲边三角形AOC 旳面积答: (D)4. 设在区间[,]a b 上旳函数()0,f x >且 ()0,f x '< ()0.f x ''> 令 1()d ,b aS f x x =⎰2()(),S f b b a =- 31[()()](),2S f a f b b a =+- 则 (A) 123,S S S << (B) 312,S S S << (C) 213,S S S << (D) 231.S S S << 答: (C )5. 设函数(,)f x y 持续, 且011d (,)d d (cos ,sin )d b dx acx f x y x f r r r r θθθ-+=⎰⎰⎰⎰, 则,,,a b c d 取值为(A) 1,,,1;2sin cos a b c d ππθθ====+(B) 1,,,1;2sin cos a b c d ππθθ====-(C) 0,,sin cos ,1;2a b c d πθθ===+=(D) 0,,sin cos , 1.2a b c d πθθ===-=答: (B)三. (7分) 设函数()f x 在点0x 处可微, 求极限 002lim cos ()cos ().n n f x f x n →∞⎡⎤--⎢⎥⎣⎦解 由导数旳定义和复合函数旳求导法则00002cos ()cos ()2lim cos ()cos ()(2)lim 2n n f x f x n n f x f x n n→∞→∞--⎡⎤--=-⋅⎢⎥⎣⎦-000(2)[cos ()]2sin()().x x f x f x f x =''=-⋅=⋅四. (7分) 设函数()f x 在(,)-∞+∞上二阶可导,且0()lim0x f x x→=,记10()()x f xt dt ϕ'=⎰,求)(x ϕ旳导数,并讨论)(x ϕ'在0x =处旳持续性. 解 由已知旳极限知(0)0,(0)0,f f '== 从而有 10(0)(0)d 0.f t ϕ'==⎰当 0x ≠时, 1100011()()()()d()()d ,x f x x f x t dt f x t x t f u u x x x ϕ'''====⎰⎰⎰从而有 (),0()0,0.f x x x xx ϕ⎧≠⎪=⎨⎪=⎩由于()lim ()lim0(0),x x f x x xϕϕ→→===因此, ()x ϕ在0x =处持续. 当 0x ≠时, 2()()(),xf x f x x x ϕ'-'=在0x =处, 由(0)0,ϕ= 有200()(0)()()1(0)limlimlim (0)22x x x x f x f x f xx x ϕϕϕ→→→'-'''==== 因此,2()(),0()1(0),0.2xf x f x x x x f x ϕ'-⎧≠⎪⎪'=⎨⎪''=⎪⎩而20000()()()()lim ()limlim lim lim 2x x x x x f x f x f x f x x x x xx ϕ→→→→→''''=-=- 001()1()(0)1lim lim (0)(0),222x x f x f x f f x x ϕ→→'''-'''==== 故 ()x ϕ'在0x =处持续.五. (7分) 已知函数()((,))y f x x =∈-∞+∞旳导函数()y f x ''=是三次多项式,其图像如下图所示:(Ⅰ)有关函数()x f y =,填写下表:(Ⅱ)若还懂得()x f y =旳极大值为6,点()2,2在曲线()x f y =上,试求出()x f y =旳体现式. 解(Ⅰ)(Ⅱ)设32,y ax bx cx d '=+++ 则由(0)0,(2)0,(2)0,y y y '''=-== 得0,0,4,d b c a ===- 故34,y ax ax '=- 从而422.4a y x ax m =-+ 再由(0)6,(2)2,y y == 得 1, 6.a m == 因此 4212 6.4y x x =-+ 六. (7分)设函数()y y x =在(,)-∞+∞上可导, 且满足22,(0)0.y x y y '=+=(Ⅰ) 研究()y x 在区间(0,)+∞旳单调性和曲线()y y x =旳凹凸性.(Ⅱ) 求极限 30()lim.x y x x →解 (Ⅰ) 当0x >时, 有220,y x y '=+>故 ()y x 在区间(0,)+∞单调增长. 从而当0x >时, 22y x y '=+也单调增长. 可见, 曲线()y y x =在区间(0,)+∞向下凸.(或当0x >时, 可得222222()0.y x y y x y x y '''=+⋅=++> 可见, 曲线()y y x =在区间(0,)+∞向下凸. ) (Ⅱ) 由题设知, (0)(0)0.y y '== 应用洛必达法则22322000()()lim lim lim 33x x x y x y x x y x x x→→→'+== []22011111lim (0).33333x y y x →⎛⎫'=+=+= ⎪⎝⎭七. (7分) 设()f x 在[0,1]上具有持续导数, 且0()1,(0)0.f x f '<≤= 试证211300()d ][()]d .f x x f x x ⎡⎤≥⎢⎥⎣⎦⎰⎰证 令 2300()()d [()]d ,x xF x f t t f t t ⎡⎤=-⎢⎥⎣⎦⎰⎰ 则 ()F x 在 [0,1]持续, 且对 (0,1)x ∈,30()2()()d [()]x F x f x f t t f x '=-⎰20()2()d ().xf x f t t f x ⎡⎤=-⎢⎥⎣⎦⎰ 又由题设知, 当(0,1)x ∈时, ()0.f x > 令20()2()d (),x g x f t t f x =-⎰则()g x 在[0,1]上持续, 且()2()[1()]0,(0,1),g x f x f x x ''=-≥∈故有()(0)0(0,1).g x g x ≥=∈因此()0,(0,1),F x x '≥∈于是()F x 在[0,1]上单调增长, ()(0)0,[0,1].F x F x ≥=∈ 取1x =, 即得211300(1)()d [()]d 0.F f t t f t t ⎡⎤=-≥⎢⎥⎣⎦⎰⎰ 所证结论成立.八. (7分) (Ⅰ) 设函数(),()f x g x 在区间 [,]a a - 上持续(0)a >, ()g x 为偶函数, ()f x 满足条件()()f x f x c +-= (c 为常数). 证明:()()d ()d a aaf xg x x c g x x -=⎰⎰;(Ⅱ) 设 ()()sin ,u x x nx ϕ= 其中n 为正整数, 22,0,(),0.x x x x x x x ππϕππ⎧+-≤<=⎨-≤≤⎩计算定积分()arccot e d x I u x x ππ--=⎰.解 (Ⅰ)()()d ()()d ()()d .a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰对于上式右边旳第一种积分, 令,x t =- 有()()d ()()d (())()d a aaf xg x x f t g t t c f x g x x -=--=-⎰⎰⎰0()d ()()d aacg x x f x g x x =-⎰⎰因此()()d ()()d ()()d ()d .a aaaaf xg x x f x g x x f x g x x c g x x --=+=⎰⎰⎰⎰(Ⅱ) 由于 22e (arccot e arccot e )0,1e 1x xxxx xe e ----'+=+=++ 而当 0x =时, arccot 1arccot 1,2π+=因此, arccot e arccot e .2x x π-+=轻易验证,()u x 是偶函数. 应用(Ⅰ)旳结论20()arccot ed ()sin d 2xI u x x x x nx xπππππ--==-⎰⎰2011()cos (2)cos d 02x x nx x nx x n n πππππ⎡⎤=--+-⎢⎥⎣⎦⎰2212(2)sin sin d 02x nx nx x nn ππππ⎡⎤=-+⎢⎥⎣⎦⎰33(1cos )[1(1)].nn nnπππ=-=--九. (7分) 设函数()f x 在闭区间[,]a b 上持续, 并且对任一[,]x a b ∈, 存在[,]y a b ∈使得1()|()|.2f y f x =证明: 存在[,],a b ξ∈ 使()0.f ξ= 证法一 应用闭区间上持续函数旳最值定理, 存在12,[,]x x a b ∈, 使 12[,][,]()min ()()max ().x a b x a b f x m f x f x M f x ∈∈====由题设, 对于 [,]x a b ∈, 存在[,]y a b ∈, 使得1()|()|0.2f y f x =≥ 可见 0.M ≥ 目前证明: 1[,]()min ()0.x a b f x m f x ∈==≤ 实际上, 假如1()0,f x m => 由题设, 存在0[,]x a b ∈, 使011111()()()()22f x f x f x f x ==<此与“1()f x 是()f x 在 [,]a b 上旳最小值 ” 矛盾.综上, 得到结论: 0.m M ≤≤ 于是, 应用介值定理, 存在[,],a b ξ∈ 使()0.f ξ= 证法二 任取一种0[,],x a b ∈ 由题设存在1[,],x a b ∈ 使101()().2f x f x =从而存在2[,],x a b ∈ 使210211()()().22f x f x f x ==如此继续下去, 可得数列{}[,],n x a b ⊂ 使01()()0().2n n f x f x n =→→∞ 由于有界无穷数列{}n x 必有一种收敛旳子数列{}kn x , 可设存在一种[,]a b ξ∈, 使lim .k kn x ξ→∞=由()f x 旳持续性, ()lim ()0.k kn f f x ξ→∞== 证毕.十. (7分) 设函数()y f x =具有二阶导数, 且()0.f x ''>直线a L 是曲线()y f x =上任意一点(,())a f a 处旳切线, 其中[0,1].a ∈ 记直线a L 与曲线()y f x =以及直线0,1x x ==所围成旳图形绕y 轴旋转一周所得旋转体旳体积为().V a 试问 a 为何值时 ()V a 获得最小值.解 切线a L 旳方程为 ()()(),y f a f a x a '-=- 即 ()()().y f a x af a f a ''=-+ 于是10()2[()()()()]d V a x f x f a x af a f a x π''=-+-⎰10112()d ()()().322a xf x x f a f a f a π⎡⎤''=-+-⎢⎥⎣⎦⎰ 可见, ()V a 在[0,1]持续, 在(0,1)可导. 令1()2[()()]()(32)0323a V a f a f a f a a ππ'''''''=-+=-=,由于 ()0,f a ''> ()V a 在(0,1)内有唯一旳驻点2.3a =并且, 当 2(0,)3a ∈时, ()0V a '<; 当2(,1)3a ∈时, ()0,V a '> 因此, ()V a 在23a =处获得最小值.十一. (7分) 设(1)闭曲线Γ是由圆锥螺线 OA :θθθθθ===z y x ,sin ,cos ,(θ从0变到2π)和直线段 AO 构成, 其中()0,0,0O , ()2,0,2A ππ; (2)闭曲线Γ将其所在旳圆锥面z =∑是其中旳有界部分. ∑在xOy 面上旳投影区域为D .(Ⅰ) 求D 上认为∑曲顶旳曲顶柱体旳体积; (Ⅱ) 求曲面∑旳面积.解(Ⅰ) ∑在xOy 面上旳投影区域为D , 在极坐标系下表达为:0,02.r θθπ≤≤≤≤故所求曲顶柱体旳体积为d d V x y =⎰⎰220d d r r πθθ=⎰⎰234014d .33πθθπ==⎰(Ⅱ) Γ所在旳圆锥面方程为z =曲面上任一点处向上旳一种法向量为(,,1)x y n z z =--=故所求曲面∑旳面积d d d DDS x y x y ==⎰⎰⎰⎰2223d d d .23r r πθπθθθ===⎰⎰十二.(7分) 设圆 222x y y += 含于椭圆 22221x y a b +=旳内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆均有公共切线).(Ⅰ) 求 a 与 b 满足旳等式; (Ⅱ) 求 a 与 b 旳值, 使椭圆旳面积最小解 (Ⅰ) 根据条件可知, 切点不在y 轴上. 否则圆与椭圆只也许相切于一点. 设圆与椭圆相切于点00(,)x y , 则00(,)x y 既满足椭圆方程又满足圆方程, 且在00(,)x y 处椭圆旳切线斜率等于圆旳切线斜率, 即2002001b x xa y y -=--. 注意到00,x ≠ 因此, 点00(,)x y 应满足2200222200022001(1)2(2)1(3)1x y a b x y y b a y y ⎧+=⎪⎪⎪+=⎨⎪⎪=-⎪⎩由(1)和(2)式, 得222200220.b a y y a b--+= (4)由 (3) 式得 2022.b y b a =- 代入(4) 式2242222222220.()b a b b a b b a b a-⋅-+=-- 化简得 2222,b a b a=- 或 22420.a b a b --= (5) (Ⅱ) 按题意, 需求椭圆面积S ab π=在约束条件 (5) 下旳最小值. 构造函数2242(,,)().L a b ab a b a b λλ=+-- 令2322242(24)0(6)(22)0(7)0(8)a b L b ab a L a a b b L a b a b λλλ⎧=+-=⎪=+-=⎨⎪=--=⎩(6) ·a − (7)·b , 并注意到 0λ≠, 可得 242b a =. 代入 (8) 式得 644220a a a --=, 故a =从而2b == 由此问题旳实际可知, 符合条件旳椭圆面积旳最小值存在,因此当2a b ==时, 此椭圆旳面积最小.。
高等数学竞赛选拔考核试卷
A.定积分的换元法可以简化被积函数
B.定积分的换元法需要引入雅可比行列式
C.定积分的换元法只能用于线性换元
D.定积分的换元法可以推广到多变量函数的积分
17.关于向量场的散度和旋度,以下说法正确的是()
A.散度描述了向量场源和汇的性质
B.旋度描述了向量场的旋转性质
A. f(x)在[0,1]上的平均值
B. f(x)在[0,1]上的定积分
C. f(x)在[0,1]上的变上限积分
D. f(x)在[0,1]上的原函数
17.三阶行列式的值为0,则()
A.行列式的三行(或三列)线性相关
B.行列式的三行(或三列)线性无关
C.行列式至少有一行(或一列)为零向量
D.行列式的元素至少有一个为零
A. 1/3
B. 1/6
C. 1/12
D. 1/24
5.设f(x) = x^3 - 6x^2 + 9x + 1,则f(x)的极大值为()
A. 1
B. 3
C. 5
D. 7
6.矩阵A的行列式为0,则()
A. A一定是奇异矩阵
B. A一定可逆
C. A的列向量线性无关
D. A的行向量线性相关
7.若f(x) = (sin x)/x,则f'(π/2)等于()
A.必有极大值
B.必有极小值
C.必有拐点
D.以上都不一定
3.若级数∑(n=1 to ∞) a_n的收敛半径为R,则级数∑(n=1 to ∞) a_n^2的收敛半径是()
A. R
B. R/2
C. 2R
D. √R
4.二重积分∬_D f(x,y) dσ中,区域D为y=x^2,x属于[0,1],则该二重积分的值为()
高等数学竞赛试题含答案
高等数学竞赛试题一、选择题1.设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim (C )(A)存在且等于零;(B)存在但不一定等于零;(C)不一定存在;(D)一定不存在.2.设)(x f 是连续函数,)()(x f x F 是的原函数,则(A )(A)当)(x f 为奇函数时,)(x F 必为偶函数;(B)当)(x f 为偶函数时,)(x F 必为奇函数;(C)当)(x f 为周期函数时,)(x F 必为周期函数;(D)当)(x f 为单调增函数时,)(x F 必为单调增函数.3.设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记⎰-=a adx x f I )(,则有(B )(A)0=I ;(B)0>I ;(C)0<I ;(D)不确定.4.设)(x f 有连续导数,且0)0(',0)0(≠=f f ,⎰-=x dt t f t x x F 022)()()(,当0→x 时,kx x F 与)('是同阶无穷小,则=k (B )(A)4;(B)3;(C)2;(D)1.5.设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,则),(y x f 在点)0,0((D)(A)不连续;(B)连续但偏导数不存在;(C)可微;(D)连续且偏导数存在但不可微.6.设k j b j i a+-=+=2,,则以向量a、b为边的平行四边形的对角线的长度为(A )(A)11,3;(B)3,11;(C)10,3;(D)11,2.7.设21L L 与是包含原点在内的两条同向闭曲线,12L L 在的内部,若已知2222L xdx ydykx y +=+⎰ (k 为常数),则有1222L xdx ydyx y ++⎰(D)(A)等于k ;(B)等于k -;(C)大于k ;(D)不一定等于k ,与L 2的形状有关.8.设∑∞=0n nn x a 在1=x 处收敛,则∑∞=-+0)1(1n n nx n a 在0=x 处(D )二、设)(1lim)(2212N n x bxax x x f n n n ∈+++=-∞→,试确定a 、b 的值,使与)(lim 1x f x →)(lim 1x f x -→都存在.解:当||1x <时,221lim lim 0n n n n x x -→∞→∞==,故2()f x ax bx =+;当||1x >时,1()f x x=112111,1,lim ()1,lim (),1(),11,1,1,lim (),lim ()1,1x x x x x f x f x a b a b x f x ax bx x x f x a b f x a b x -+-+→-→-→→⎧<-=-=--=⎪⎪⎪=+-<<⎨⎪⎪>=+=+=⎪⎩0a =,1b =。
经济类高数竞赛试题及答案(2)
2003年天津市大学数学竞赛试题参考答案(经济治理类)一、填空:(此题15分,每空3分。
请将最终结果填在相应的横线上面。
) 1.设对一切实数x 和y ,恒有)()()(y f x f y x f +=+,且知1)2(=f ,那么=⎪⎭⎫⎝⎛21f 21 。
2.设⎪⎪⎩⎪⎪⎨⎧=≠+-+=⎰,0,;0,1e 2e )1ln()(2222sin 0x a x dtt x f x x x 在x = 0处持续,那么a = 21 。
3.设2e ),,(yz z y x f z =,其中),(y x z z =是由方程0=+++xyz z y x 所确信的隐函数,那么=-')1,1,0(y f e2。
4.=+⎰+∞12)1(x x dx2ln 21 。
5。
设⎩⎨⎧==;),(2kt y t x ϕ其中)(t ϕ具有二阶导数,那么=22dy x d 324)()(t k t t t ϕϕ'-'' 。
二、选择题:(此题15分,每题3分。
每一个小题的四个选项中仅有一个是正确的,把你以为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1. 当0→x 时,以下无穷小量① x x sin 1tan 1+-+; ② 33121x x +-+; ③ x x x sin cos 3134⎪⎭⎫⎝⎛--; ④ 14--x x e , 从低阶到高阶的排列顺序为( D )(A ) ①②③④; (B ) ③①②④; (C ) ④③②①; (D ) ④②①③。
2. 设⎩⎨⎧=≠=0,00,cot )(3x x x arc x x f ,在x = 0处存在最高阶导数的阶数为( B )(A ) 1阶; (B ) 2阶; (C ) 3阶; (D )4阶。
3. 设函数)(x f y =在 x = 1处有持续的导函数,又21)(lim1=-'→x x f x ,那么x = 1是( B ) (A )函数)(x f y =的极大值点; (B )函数)(x f y =的极小值点;(C )曲线)(x f y =拐点的横坐标; (D )以上答案均不正确。
丽水学院第9届高等数学竞赛经管类试卷
丽水学院第九届高等数学(微积分)竞赛试卷(经管类)时间:2015年03月28日.上午:8:30-11:00学院: 班级: 姓名:一计算题:(本大题共6小题,每小题10分,满分60分)1.计算 )214121(lim 222nn n n n n ++++++∞→ . 解:2)214121(22222222+≤++++++≤+n n n n n n n n n n 12lim 2lim 2222=+=+∞→∞→nn n n n n n 2.求极限 )3sin 12sin(lim 0xx x x x +→. 解: 31333sinlim0)3sin 12sin (lim 00=⋅+=+→→x xx x x x x x 3.已知xx y )(cos =,,求dy 与dxdy.解:)tan cos ln ()(cos x x x x x dxdyx -=. 4.计算不定积分 ⎰+dx x 2ln.解:⎰⎰+-+=+)2(2ln 2ln x xd x x dx x ⎰+⋅+⋅-+=dx x x x x x 221212ln⎰+--+=dx x x x )221(212lnC x x x x +++-+=)2ln(212ln5.求由函数曲线 1,,===-x e y e y x x 所围成的图形的面积.解:(1)(图略)解方程组⎩⎨⎧==-xx ex e y 得⎩⎨⎧==1011y x 所求的平面图形面积为:2)()(11010-+=+=-=---⎰e e e e dx e e S x x x x6.求常数c b a ,,值,使得3(sin )lim 0ln(1)x x b x a x c t dtt →-=≠+⎰. 解:由于0)sin (lim ,)1ln()sin (lim030=-=+-→→⎰x a x c dtt t x a x x x b x 故30ln(1)lim 0,x bx t dt t→+=⎰从而0.b =又由于)1ln()cos 1(lim )1ln()sin (lim3030x x a x dtt t x a x x x b x +-=+-→→⎰ 30)cos 1(limx x a x x -=→20)cos 1(lim x x a x -=→ 01)cos 1(lim 0=-=-→a x a x故有1,a = 从而212sin lim )cos 1(lim020==-=→→x x x x c x x . 二(满分20分)过圆922=+y x 上任意一点M y x M )(,(在第一象限)处的切线分别交x 轴于A ,交y 轴于B .将OAB ∆面积S 表示为x 的函数,并求)(x S 的最大值.解:922=+y x 两边关于x 求导得yxdx dy dx dy yx -==+,022。
第九届全国大学生数学竞赛参考答案(非数学类)
2017年数学竞四川赛区(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l nc o sl n c o s211==cos cos cos x x e e dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n co s xx c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。
高等数学竞赛练习题(含答案)
高等数学竞赛练习题1、单项选择题(1)已知()f x 在区间(,)-∞+∞上单调递减,则2(4)f x +的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在(2)设函数(),0,x a x f x x ⎧=⎨⎩是有理数是无理数,10<<a ,则 ( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 (3)设函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=和()()()x g x f x G -=在0x 处 ( D )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数(4) 若ln x 是()f x 的一个原函数,则()f x 的另一个原函数是( A )A. ln axB. 1ln ax aC. ln x a +D. 21(ln )2x(5) 设()f x 连续,则[]sin ()()aax f x f x dx -+-⎰等于 ( A )A.0B.aC.a -D. 2a(6) 下列命题中正确的命题有几个? ( A )(1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个. (7). 设1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x x x ⎧≠⎪=⎨⎪=⎩ 则0x =是间断点的函数是 ( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}max (), ()f x g x ; (D) {}min (), ()f x g x .. (8) 设ξ为()arctan f x x=在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则 22limb b ξ→=( C )(A) 1; (B) 12; (C) 13; (D) 14.(9) 设() , ()f x g x 连续,当0→x 时,()f x 与()g x 为等价无穷小,令0()()xF x f x t dt=-⎰,1() () G x x g xt dt =⎰, 则当0→x 时,() ()F x G x 是的 ( D )(A) 高阶无穷小; (B) 低阶无穷小; (C) 同阶无穷小但非等价无穷小; (D) 等价无穷小.(10) 设),(y x f 在点)0,0(的某邻域内连续,且满足 220(,)(0,0)lim31sin cos x y f x y f x x y y→→-=-+--,则),(y x f 在点)0,0(处 ( A )(A) 取极大值;(B) 取极小值; (C) 无极值; (D) 不能确定是否有极值. (11)设f 有连续的一阶导数,则 (1,2)(0,0)()d ()d f x y x f x y y +++=⎰( B )(A) 102() d f x x⎰; (B) 3() d f x x ⎰; (C) (3)(0)f f -; (D) 0 .(12) 设任意项级数 1n n a ∞=∑条件收敛,将其中的正项保留负项改为0所组成的级数记为1n n b ∞=∑, 将其中的负项保留正项改为0所组成的级数记为1n n c ∞=∑,则1nn b ∞=∑与1n n c ∞=∑( B )(A) 两者都收敛; (B) 两者都发散; (C)一个收敛一个发散; (D) 以上三种情况都可能发生.(13)设0()f x '存在,则下列四个极限中等于0()f x '的是( B ) (A )000()()lim x f x x f x x →-- ; (B )000()()lim h f x f x h h →--;(C )000()()limx x f x f x x x →--; (D )000()()lim h f x h f x h h →+--.(14)0()0f x ''=是曲线()y f x =有拐点00(,())x f x 的( D )(A )充分而非必要条件; (B )必要而非充分条件;(C )充分必要条件; (D )既非充分又非必要条件.(15)设2222{(,,),0},0x y z x y z R z a Ω=++≤≥≠,则I axdV Ω==⎰⎰⎰( C )( A )0I >; ( B )0I <; ( C )0I =; ( D ) I 的符号与a 有关.2、求极限201sin lim ln x xx x →答案: 22001sin 1sin limln lim ln 1(1)x x x x x x x x →→⎛⎫=+- ⎪⎝⎭ 32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-3、设220()()()xF x x t f t dt '=-⎰,若0x →时,()F x '与2x 为等价无穷小,求(0)f '答案:220()()()xxF x xf t dt t f t dt ''=-⎰⎰,220()2()()()2()x x F x x f t dt x f x x f x x f t dt '''''=+-=⎰⎰, 由020002()()1limlim lim 2()2(0)xx x x f t dtF x f x f xx→→→''''====⎰,解得1(0)2f '=4、求220081(tan )dxx π+⎰ 答案:令2x t π=-,则2200801tan dx x π+⎰2008022008200802tan 1cot 1tan dt tdt t tππ-==++⎰⎰ 22200820080021tan 21tan dt dx t xππππ=-=-++⎰⎰所以220081tan 4dx x ππ=+⎰ 5、设函数()()10f x t t x dt =-⎰,01x <<,求()f x 的极值和单调区间. 答案: 11220()()()()()xxxxf x t x t dt t t x dt tx t dt t tx dt =-+-=-+-⎰⎰⎰⎰31323x x =-+ 21()2f x x '=-,令()0f x '=,得2x =.由()20(01)f x x x ''=><<知1(263f =-+为极小值,由21()2f x x '=-知,()f x的单调减区间是(0,2,单调增区间是 6、说明级数nn ∞=(1)(1)](1)1(1)11111n n n n n n n ----===----,而交错级数2(1)1nn ∞=-∑收敛,调和级数211n n ∞=-∑发散,故原级数发散 7、已知20()()8f x f x dx '=⎰,且(0)0f =,求2()f x dx ⎰及()f x答案:已知2()f x dx ⎰为一常数,由28()()f x f x dx'=⎰,积分得28()()f x x f x dx=⎰, 再积分得2()4f x dx =±⎰,所以()2f x x =±8、求内接于椭圆12222=+by a x ,而面积最大的矩形的边长答案:设内接矩形的边长分别为2,2u v ,则(,)u v 在椭圆上,所以22221u v a b+=,矩形面积()44S u uv u u a ==<<,222()S u '==,令()0S u '=,得唯一驻点u =,从而v =,由实际问题知,当u =时,有最大面积2S ab =,这时矩形边长分别为a 29、设函数()f x 在[0,1]上连续,在(0,1)内可导,且1233()(0)f x dx f =⎰,求证在(0,1)内至少存在一点c ,使()0f c '=答案:由定积分中值定理得1232(0)3()3()(1)()3f f x dx f f ξξ==-=⎰,其中213ξ≤≤, 在[0,]ξ上应用罗尔定理,至少存在一点(0,)(0,1)c ξ∈⊂,使()0f c '=10、设{}n a 是单调不减的数列,令12nn a a a b n+++=,若lim n n b a →∞=,试证lim n n a a →∞=.若去掉“单调不减”这个条件,试问这个结论是否成立?(要求说明理由)证:因对任意1,n n n a a +≤,故12n nn n a a a na b a n n+++=≤= .(夹逼)固定n ,并令m n >,则1111nk n mk m k k n k k n a m n b a a a m m m ===+-⎛⎫=+≥+ ⎪⎝⎭∑∑∑ 令m →∞,得lim m n m a b a →∞=≥,从而n n a a b ≥≥,令n →∞,得lim n n a a →∞=若去掉“单调不减”这个条件,则结论不一定成立.例如,取1(1),1,2,n n a n -=-= ,则12lim lim 0nn n n a a a b n→∞→∞+++== ,但数列{}n a 发散. 11、设在[0,](0)a a >上|()|f x M ''≤,且()f x 在(0,)a 内取得最大值,试证|(0)||()|f f a Ma ''+≤证:因()f x 在(0,)a 内取得最大值,由费马定理得存在(0,)b a ∈使()0f b '=.对()f x '使用拉格朗日中值定理得,111(0)()()(),(0,)f f b f b bf b ξξξ''''''=-=-∈222()()()()()(),(,)f a f b f a b a b f b a ξξξ''''''=+-=-∈ 从而(0)()()f f a Mb M a b Ma ''+≤+-=.12、设()f x 在[0,]n 上连续(n 为自然数,2n ≥),(0)()f f n =,试证存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+证:令()(1)()g x f x f x =+-,则()g x 在[0,1]n -上连续 令[0,1][0,1]min (),max ()x n x n m g x M g x ∈-∈-==,则11(),0,1,2,,1,()n i m g i M i n m g i M n -=≤≤=-≤≤∑ ,1()()(0)0n i g i f n f -==-=∑,对函数()g x 应用介值定理得,存在[0,1]n ξ∈-,使11()()0n i g g i n ξ-===∑,即存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+.13、设函数()f x 在[,]a b 上可积,且()0baf x dx >⎰,试证存在区间[,][,]a b αβ⊂使()0,[,]f x x αβ>∈.证:反证法. 若不然,则对于[,]a b 的任何子区间[,]αβ上都有点ξ,使()0f ξ≤,从而对于[,]a b 的任何分划T :012n a x x x x b =<<<<= ,在每个子区间1[,]i i x x -上都有点i ξ,使()0i f ξ≤.那么由()f x 在[,]a b 上的可积性知,max 01()lim()0i nbiiax i f x dx f xξ∆→==∆≤∑⎰,矛盾.14、设()f x 在点0x =二阶可导,且0()lim 11cos x f x x→=-,求(0),(0)f f '和(0)f ''的值解:0()lim11cos x f x x→=- 0(0)lim ()0x f f x →∴==又00()()1lim lim 1cos sin x x f x f x x x→→'==- 0(0)lim ()0x f f x →''∴==000()(0)()()sin (0)lim lim lim .10sin x x x f x f f x f x xf x x x x→→→''''-''====-15、设(,)()z f x y x y g x ky =-+++,,f g 具有二阶连续偏导数,且0g ''≠,如果222222224z z z f x x y y ∂∂∂''++=∂∂∂∂,求常数k 的值 解:设,,x y u x y x ky w ν-=+=+=,则1212,z zf fg f f kg x y ∂∂''''''=++=-++∂∂ 2111221222zf f f fg x∂''''''''''=++++∂ 211122122zf f f f kg x y∂''''''''''=-+-++∂∂ 22111221222z f f f f k g y∂''''''''''=--++∂ ∴由222222224z z zf x x y y ∂∂∂''++=∂∂∂∂得2(1)0kg ''+=,故1k =-.16、设()f x 在[0,1]上可积,证明22()()01f x f y x y e dxdy π-≤+≤≥⎰⎰证: 2112!xe e x x x ξ=++≥+ ()()1()()f x f y e f x f y -∴≥+-[]2222()()01011()()f x f y x y x y e dxdy f x f y dxdy -≤+≤≤+≤≥+-⎰⎰⎰⎰ 22220101()()x y x y f x dxdy f y dxdy ππ≤+≤≤+≤=+-=⎰⎰⎰⎰17、设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,起点为(,)a b ,终点为(,)c d ,令21[()][()]L xI yf xy dx xf xy dy y y=++-⎰.要求:(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值. 证明(1) 因为211[()]()()yf xy f xy xyf xy y y y ∂'+=-+∂2[()]xxf xy x y∂=-∂在上半平面内处处成立,所以曲线积分I 与上半平面内路径L 无关.解(2) 由于曲线积分I 与路径无关,所以可取积分路径L 为由点(,)a b 到点(,)c b ,再到点(,)c d 的折线段,从而2221[1()][()1]cd ab c I b f bx dx y f cy dyby =++-⎰⎰()()c d a b c a c cbf bx dx cf cy dy b d b -=+++-⎰⎰()()bc cd ab bc c a f t dt f t dt d b =-++⎰⎰ ()cd abc af t dt d b =-+⎰所以,当ab cd =时,c aI d b=-.18、设()f x 在区间(,)-∞+∞连续,01()() d (>0), ()() d 2x ax x aF x f t t aG x f t t a +-==⎰⎰, 试求下列问题:(1)用()G x 表示()F x ;(2)求()F x ';(3)求证:0lim ()()a F x f x →==; (4)设()f x 在[],x a x a -+内的最大值和最小值分别是M m、,求证:()()F x f x M m -≤-.解(1)00111()()[()()][()()]222x a x a x a x a F x f t dt f t dt f t dt G x a G x a a a a ++--==-=+--⎰⎰⎰ (2)11()['()'()][()()]22F x G x a G x a f x a f x a a a'=+--=+--(3)000()()[()()][()()]lim ()lim lim22a a a G x a G x a G x a G x G x G x a F x a a→→→+--+-+--== 1['()'()]'()()2G x G x G x f x =+== (4)11|()()||()()||[()()]()()|22x a x a F x f x f t dt f x x a x a f f x a aξ+--=-=+---⎰|()()|()f f x M m x a x a ξξ=-≤--≤≤+19、求曲线 ln ln 1x y += 所围成的平面图形的面积.[解1]去掉绝对值曲线为:,11,1,101,0111,0101xy e x y y x x y ey ex x y xy x y e =≥≥⎧⎪⎪=≥<<⎪⎨=<<≥⎪⎪=<<<<⎪⎩且且且且11111()()e ee x A ex dx dx e ex x e e =-+-=-⎰⎰ [解2]令ln ,ln ,,,:||||1,uv x u y v x e y e D u v '====+≤则00uuv u v v uv x x e J e e y y e===⋅. ||DD dxdy J dudv '==⎰⎰⎰⎰u vD e e dudv '⋅=⎰⎰01111111u uu v u v u u e du e dv e du e dv e e+-----+=-⎰⎰⎰⎰. 20、设曲面S 为曲线 e 0yz x ⎧=⎨=⎩ (12y ≤≤) 绕z 轴旋转一周所成曲面的下侧,计算曲面积分 24 d d 2 d d (1) d d SI zx y z z z x z x y =-+-⎰⎰[解1]S的方程为22(14)z x y =≤+≤补两平面2222212:(1,):(4,)S z e x y S z e x y =+≤=+≤下侧上侧122S S S VzdV ++=⎰⎰⎰⎰⎰ 2()2e eD z zdz d σ=⎰⎰⎰224252ln 22e ez zdz e e πππ==-⎰1222242(1)(1)(1)(1)xyS D zxdydz zdzdx z dxdy e dxdy e eππ-+-=--=--⋅=-⎰⎰⎰⎰;2121244225(1)4(1);(1)4(1)22xyS D S S S S S e dxdy e I e e e e πππππ44++=-=-=--=-----⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 42332e e πππ13=--2 [解2]2(4,2,1)(,,1)x y DI zx z z z z dxdy =--⋅-⎰⎰222220142221(4cos 2sin 1)(41)1333(:14)22DD r edxdy dxdyd e r rdr e e D x y πθθθππππ⎡⎤⎥=+-⎥⎦=-+--=--≤+≤⎰⎰⎰⎰⎰⎰21、设幂级数 0n n n a x ∞=∑, 当1n >时2 (1) n n a n n a -=-,且014, 1a a ==; (1)求幂级数0n n n a x ∞=∑的和函数()S x ;(2)求和函数()S x 的极值..解(1)令101(),()nn n n n n S x a x S x na x ∞∞-=='==∑∑则22222()(1)()n n n n n n n n n S x n n a x a x a x S x ∞∞∞---===''=-===∑∑∑,()()0S x S x ''-=1201()(0)4,(0)1x x S x c e c e S a S a -'=+====由,求得125353,,()2222x x c c S x e e -===+(2)由000531313()0ln ,()0,()(ln )222525x x S x e e x S x S x S -'''=-==>∴得又为极小值.22、设函数),(y x f 可微,(,), 0,12ff x y f x π∂⎛⎫=-= ⎪∂⎝⎭, 且满足()c o t y 1 ( 0, )lim e 0,nn f y n f y →∞⎛⎫+ ⎪= ⎪ ⎪ ⎪⎝⎭求 (,)f x y .解 1(0,)(0,)lim (0,)11(0,)(0,)(0,)lim lim 1(0,)(0,)n nnf y f y n f y nn n f y f y f y n n e f y f y →∞+-→∞→∞⎡⎤⎡⎤++-⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(0,)(0,)y f y f y e = (0,)ln (0,)cot (0,)y f y d f y y f y dy==,对y 积分得ln (0,)lnsin ln (0,)sin f y y c f y c y =+= 代入(0,)112f c π==得,(0,)sin ff y y f x∂==-∂又已知(,)()x f x y c y e -⇒=,(0,)sin f y y = ,()sin (,)sin .x c y y f x y e y -∴==故23、如图所示,设河宽为a ,一条船从岸边一点O 出发驶向对岸,船头总是指向对岸与点O 相对的一点B 。
高等数学竞赛模拟试题【精品】
1 1 a + b f (b) = f (a) + (b − a ) f ' (a ) + f ' (b) + 4 f ' − (b − a ) 5 f (5) (ξ ). 6 2 2880
四、 (本题满分 14 分) 求经过三条平行直线 L1 : x = y = z , L2 : x − 1 = y = z + 1 , L3 : x = y + 1 = z − 1 的圆柱 面的方程.
(2)求
∑
k =1
1
∏ ( k + m)
m =0
2017
.
第九届全国大学生数学竞赛初赛模拟试题(二) 第 1 页 共 2 页
三、 (本题满分 14 分) 计算三重积分
∫∫∫ xyzdxdydz ,其中 Ω 位于第一象限,由下列曲面所围成:x
Ω
2
+ y 2 = mz ,
x 2 + y 2 = nz , xy = a 2 , xy = b 2 , y = αx , y = βx ,其中 0 < a < b , 0 < α < β ,
.
(−1) n 2.使级数 ∑ ln 1 + n p n=2
( p > 0) 条件收敛的 p 的取值范围为
.
3.设 f (u , v) 具有一阶连续偏导数,且满足 f (tu , tv ) = t 2 f (u , v) , f (1,2) = 0, f u (1,2) = 3 ,
n →∞
. .
2.设 f ( x) =
∫
1
0
ln x − t dt ,则 max f ( x) =
大学高数竞赛题和答案.docx
2006 年天津市大学数学竞赛试题参考答案(经济类)一、填空:(本题 15 分,每空 3 分。
请将最终结果填在相应的横线上面。
)1 1 x2x 0,是(,) 上的连续函数,则a = 01.若f (x)e x cos x。
ae2 x1x02.函数f x x x在区间,上的最大值为23。
() 2 sin[]23 22 。
3.(| x | x)e| x|dx = 2 6e24.设区域D( x, y) | x2y21, y0 , 则12 dxdy ln 2 .D1x2y25.设函数z z(x,y) 由方程 z y x xe z y x 2 所确定,则dz 1 (x1)e z y x dx dy 。
1xe z y x二、选择题:(本题 15 分,每小题 3 分。
每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1.设函数f ( x)可导 ,并且 f ( x0 )5, 则当 x 0 时,该函数在点 x0处微分 dy是 y 的(A)( A )等价无穷小;( B)同阶但不等价的无穷小;( C)高阶无穷小;( D)低阶无穷小。
2.设函数f (x)在点 x = a 处可导 ,则 |f(x)| 在点 x = a 处不可导的充要条件是(C)( A )f ( a)0, 且 f ' (a)0 ;(B )f (a)0, 但 f ' (a)0 ;( C)f ( a)0, 且 f ' (a)0 ;(D )f ( a)0, 且 f ' (a)0 。
3.曲线y x x 2x 1 (B)(A)没有渐近线 ;(B)有一条水平渐近线和一条斜渐近线;(C)有一条铅直渐近线 ;(D)有二条水平渐近线。
4.曲线y x( x1) 3 ( x2) 与x轴所围成的平面图形的面积为( D )2323( A )x x x dx ;(B)-1) (x( x 1)( x2)dx;0011) 3 ( x21)3 (x2)dx ;(C)-x( x2)dx +x( x01.1 323( D )x xxdx+。
第九届全国大学生数学竞赛初赛非数学类试题word版可编辑
2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分)1. 已知可导函数f (x )满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________. 2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π. 3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x→=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________.6. 记曲面222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b a b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。
2017-2018学年度第九届高等数学竞赛试题
中山大学新华学院第九届高等数学竞赛姓名 学号 班级 成绩 一、填空题(每题3分,共18分)1.函数()11y ln x =++的定义域为 。
2. 211dx x+∞⎰= 。
3.曲线236x x y +=的拐点横坐标为=x .4. 11(1x x -+=⎰________. 5. 设222{(,)|,0}D x y x y a a =+≤>,则当a =___________时,18Ddxdy π=⎰⎰.6.福利彩票中“双色球”投注规则为:每注号码由6个红色球号码和1个蓝色球号码组成。
红色球号码从1--33中不重复选择;蓝色球号码从1--16中不重复选择;抽奖规则为: 通过摇奖器确定中奖号码。
摇奖时先摇出6个红色球号码,再摇出1个蓝色球号码,摇出的红色球号码按从小到大的顺序和蓝色球号码一起公布。
彩民所投注号码与公布中奖号码全对上则为一等奖,若某人随机投了一注,则他中一等奖的概率为_______.二、计算题(每题7分,共49分)1. 设)1ln(2x x y ++=,求dy .2、已知函数32()f x x ax bx =++在1x =处有极小值2-,(1) 求a 与b 的值; (2) 求()f x 的极大值点与极大值。
3.设函数()f x 在0x =处有二阶导数,且 0()lim 0,x f x x→=(0)4,f ''= 求 (0),(0),f f '10()lim 1.x x f x x →⎛⎫+ ⎪⎝⎭4、设211()x x f x e-⎧⎪+=⎨⎪⎩ 00x x >≤,求31(2)d f x x -⎰. 5.计算40⎰6.设二元函数)1ln()1(y x xe z y x +++=+,则()1,0dz7. 计算二次积分2120y x I dx e dy =⎰.三、(10分)0()()()()2.().设有任意阶导数,且满足试求x f x x t f t dt f x x f x -=-⎰ 四、应用题(每题9分,共18分)1. 设平面图形是由曲线21x y -=与x 轴所围成,求:(1)此平面图形的面积S ;(2)此平面图形绕y 轴旋转而成的旋转体的体积y V .2. 某服装厂生产的童装同时在两个市场销售,售价分别为1p 和2p ,销售量分别为1q 和2q ,需求函数分别为11q 120.1p =-和22q 20.01p =-,总成本函数为()123540C q q =++。
历届全国大学生数学竞赛真题及答案非数学类
高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,那么v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,那么21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f , 解得。
因此。
3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。
4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,那么.解:方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故,即,因此二、〔5分〕求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解:因 故 因此三、〔15分〕设函数)(x f 连续,⎰=10d )()(t xt f x g ,且,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解:由与函数)(x f 连续知,0)(limlim )(lim )0(000===→→→xx f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,,故 当0≠x 时,这说明)(x g '在0=x 处连续.四、〔15分〕平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:〔1〕⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;〔2〕2sin sin 25d d π⎰≥--Ly y x ye y xe .证:因被积函数的偏导数连续在D 上连续,故由格林公式知 〔1〕y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 与y 是对称的,即知 因此 〔2〕因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、〔10分〕x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,那么x x e e y y 212-=--与x e y y -=-13都是二阶常系数线性齐次微分方程的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''与 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、〔10分〕设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令 得 即 因此七、〔15分〕)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且, 求函数项级数之与.解 即由一阶线性非齐次微分方程公式知 即 因此 由知,0=C , 于是下面求级数的与:令 那么 即由一阶线性非齐次微分方程公式知 令0=x ,得C S ==)0(0,因此级数的与 八、〔10分〕求-→1x 时, 与等价的无穷大量.解令2)(t x t f =,那么因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减。
2021年历届全国大学生高等数学竞赛真题及答案非数学类
前三届高数竞赛初赛试题(非数学类)(参加高等数学竞赛同窗最核心是好好复习高等数学知识,适当看某些辅导书及有关题目,核心是某些各大高校试题。
)第一届全国大学生数学竞赛初赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 和两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是持续函数,且满足⎰--=2022d )(3)(x x f x x f ,则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 切平面方程是__________. 解:因平面022=-+z y x 法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 和)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 切平面方程是0122=--+z y x 。
大连市、天津市大学生高等数学竞赛试题
大连市、天津市大学生高等数学竞赛试题(有删减)大连市第九届大学生高等数学竞赛试题1. 确定正整数n ,使极限12arcsin sin 0(1)limsin t xxnx t dtI e x-→+=⎰存在,并求出此极限。
2. 讨论由x y a r c t g y x =+22ln在区域⎭⎬⎫⎩⎨⎧><=0,2),(x xy y x D 内确定的隐函数)(x f y =的极值点的极值,并说明是极小值还是极大值。
3. 设)(x f y =在⎥⎦⎤⎢⎣⎡2,0π上有二阶导数且0)0(='f ,证明:存在⎥⎦⎤⎢⎣⎡∈2,0,,321πξξξ,使)()2sin()(21132ξξξξπf f '=⋅''⋅。
4. 求极限,lim n n u ∞→其中)11(2n u n +=)21(2n +…)11(2nn -+)1(2n n +。
5. ⎰+=22sin u x xytdt z , ),(y x u u =可微,求dz 。
6. 平面1π为椭球面42x 1422=++z y 在点)21,1,1(A 处的切平面,平面2π是此椭球面的另一切面,切点为2.πB 平行于1π,求以点)0,0,2(,C B A 及为顶点的三角形的面积。
7. 求曲线⎰-==1)(:dt t x x f y C ,[]1,0∈x 绕x 轴旋转所成的曲面的表面积。
大连市第八届大学生高等数学竞赛试题1、求323112arcsin )11ln(lim--+→x x x 。
2、讨论x x x f sin )(=在0=x 处二阶可导性。
3、求证:+nx +-1n x……+2x x =1在(0,1)内必有唯一根3,2(=n x n ……)并求n n x ∞→lim4、w uv z arcsin +=其中xe u = ,y v cos = ,22yx x w +=, 求dz 。
5、设)1()(1-≥=⎰-x dt t t x f x求)(x f 与x 轴围成封闭圆形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
y
2
) ,直线 x 1 以及 y
2
围成的闭区域,计算二重积分
cos y
1)dxdy 。
得分
评阅人
八、 (本题满分 7 分)
设 a0 , a1 , a2 ,..., an ,... 为等差数列,其中 a0 0 。试求:(1)幂级数 an x n 的收敛半径 R;
第 6 页 共 7 页
得分
评阅人
十一、 (本题满分 7 分)
设 f ( x) 在 [a, b] 上连续,在 (a, b) 内可导且 f ( x) 单增。 证明:ⅰ)对一切 x (a, b) ,恒有
f ( x)
f (b) f (a ) ( x a) f (a ) ; ba
ⅱ)
南昌大学第九届高等数学竞赛(经济类)试题
序号: 班级:
题号 题分 得分 一 18 二 18 三 7 四 7
姓名: 第
五 7 六 8
学号: 考场
七 7 八 7 九 7
学院(学科部) : 考试日期: 2012 年 10 月 14 日
十 7 十一 7 总分 100
注: 本卷共七页, 十一道大题, 考试时间为 8:30——11:30. 一、 填空题(每空 3 分,共 18 分)
0 c c
) B、 2 f (c x)dx
0 a
A、 2 f (2a x)dx C、 2 f (2a x)dx
0
D、 0
y z z ) ,其中 f 为可微函数,则 x 2 y ( 2 x x y
4、设二元函数 z xf ( A、 xz B、 z
)
C、 2xz
D、 yz
sin x 2ae x, x0 试确定常数 a, b ,使得 f ( x) 在 x 0 点可导。 9arctan x 2b( x 1)3,x 0
第 3 页 共 7 页
得分
评阅人
五、 (本题满分 7 分)
已知 lim(
x
c xc x ) te 2t dt ,求常数 c 。 xc
n0
(2)
页
得分
评阅人
九、 (本题满分 7 分)
设函数 f ( x) 的定义域为 (0, ) ,在点 x 1 处可导, f (1) 2 ,且对一切 x 0, y 0 满足
f ( xy) f ( x) f ( y) 。(1)求 f ( x) 和 f ( x) ;(2)计算定积分
第 1 页 共 7页
二、 单项选择题(每小题 3 分,共 18 分)
得分 评阅人
1、若 lim( 3 1 x3 x ) 0 ,则必有(
x
)
A、 1, 1 C、 1, 0
B、 2, 2 D、 1, 0 )
b
a
f ( x)dx (b a )
f (a ) f (b) 。 2
第 7 页 共 7 页
5、设常数 R 0 , f ( x, y ) 是连续函数,则 A、 d
2 0
2R
0
dx
2 Rx x 2
0
2 R cos
f ( x, y )dy (
)
2 R sin
0
f (r cos , r sin )rdr
B、 2 d
0
0
f (r cos , r sin )rdr
得分
评阅人
六、 (本题满分 8 分)
求函数 f ( x, y) x 2 y 2 12 x 16 y 在平面闭区域 D ( x, y ) x 2 y 2 25 上的最大值和最小 值。
第 4 页 共 7 页
得分
评阅人
七、 (本题满分 7 分)
设 D 是由曲线 x sin y(
C、 d
0
2 R sin
0
f (r cos , r sin )rdr
D、 d
0
2 R cos
0
f (r cos , r sin )rdr
)
6、若级数 an 收敛,则下列必收敛的级数为(
n 1
A、 (1) n
n 1
an n
B、 an 2
2、若常数 c 0 ,则方程 x3 3x c 0 在区间 [0,1] 上( A、无实根 C、有二个实根 B、有一个实根 D、有三个实根
3、若连续函数 y f ( x) 的图形关于点 (a,0)(a 0) 对称,则对于任意的实常数 c ,必有
c
c
f (a x)dx (
(2 x) 2 n 3、幂级数 的收敛域为________。 n n 1
4、设连续函数 f ( x) 满足 f (t )dt 2 x3 ,则 2 cos x f ( sin x)dx ________。
0
0
x
5、设位于曲线 y e x ( x 0) 下方,x 轴上方的平面图形为 G,则 G 绕 y 轴旋转而成的旋 转体的体积为________。 6、微分方程 xy y 3 满足条件 y x 1 0 , y x 1 1 的解为________。
n 1
C、 (an an 1 )
n 1
D、 an an 1
n 1
第 2 页 共 7 页
得分
评阅人
三、 (本题满分 7 分)
(cos x e x )sin x 2 求极限 lim x0 1 2 x 1 1 x2 2
2
。
得分
评阅人
四、 (本题满分 7 分)
1
0
f (1 x) dx 。 1 x2
得分
评阅人
十、 (本题满分 7 分)
设 f ( x) 是闭区间 [1,1] 上的连续函数, y (t ) 足条件: y(t )
1
1
如果 y (t ) 满 t x f ( x)dx , t [1,1] 。
y(t ) 1 ,试求 f ( x) 。
得分 评阅人
1 x 2 1 k x sin x , x 0 1 1、若 f ( x ) 在 x 0 连续,则 k ______。 x 2x 1 x0 1,
x 2、设 f ( x) 3cos sin 2 x ,则 f (36) ( ) ________。 2