第七章 无穷级数
高等数学第七章无穷级数.ppt
推论 (比较审敛法) 设
是两个正项级数,
且存在
对一切
有
则有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
例1.
讨论
p
级数1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
知存在 N Z , 当n N 时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
(2) 当 1 或 时,必存在 N Z , uN 0,当n N
时
从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
不存在 , 因此级数发散.
由定义, 讨论 级数敛散性的方法 1. 先求部分和; 2. 求部分和的极限.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
利用此结论,可以直接判别某此级数的敛散性。例如:
例如:
公比 q 1 ,
2
q 1,
n1
(1) n1 2n1
3.按基本性质.
第三节 正项级数
第七章
一、正项级数收敛的基本定理 二、比较审敛法 三、比值审敛法 四、根值审敛法
一、正项级数收敛的基本定理
若 un 0, 则称 un 为正项级数 . n1
分析特点:部分和序列 单调递增。
当
高等数学无穷级数
第七章无穷级数10常数项级数概念及性质1、定义P264 ∑an=a1+a2+ +an+n=1∞an称为一般项或通项 Sn=u1+u2+ +un称为前n项部分和例1、1 =3+3+ +3+ =0.331010210n1+2+3+ +n+1-1+1-1+ +(-1)n-1+2、定义Sn=∑uKK=1nan=Sn+1-Sn如{Sn}收敛,则∑an收敛n=1∞3、几个重要极限等比级数(几何)∑aqn,当q<1 收敛,q≥1 发散;n=0∞P级数∑Pn=1∞1nP>1 收敛,P≤1 发散;∞1P=1当,∑ 又称调和级数。
n=1n4、级数性质 P266性质5是级数收敛的必要条件即∑an收敛→liman=0n=1n→∞∞例1、∑n=1∞n-11n-1 发散,∵ liman=lim=≠0 n→∞n→∞2n+122n+1 3n例2、∑ 发散,∵ lim=-1≠0 nnn→∞n-3n=1n-3∞3n例3、∑11 发散,但lim=0 n→∞nn=1n∞20正项级数判别法∑un∞n=1un≥0正项级数部分和数列{Sn}单调递增∴正项级数收敛部分和数列有上界1、比较判别法设Vn≥un,如∑Vn收敛,则∑un收敛n=1∞n=1∞∞∞ 如∑un发散,则∑Vn发散n=1n=1例、判别下列级数敛散性∞(1)∑n=114n+n2 (2)∑∞sin2n=1n2nπ 解(1)由于∞14n2+n≥14n2+n2=11⋅ 5n∵∑1发散,∴原级数发散 nn=1sin2(2)由于nπ∞1≤1,而∑收敛,∴原级数收敛 222n=1nnn比较判别法的极限形式如limun=A 则有n→∞Vn∞∞0<A<+∞时∑un,∑Vn,同时收敛,同时发散 n=1n=1A=0 如∑Vn 收敛,则∑un收敛n=1∞n=1∞∞∞A=+∞ 如∑un 收敛,则∑Vn收敛 n=1n=1判别下列级数敛散性例、∑lnn=1∞n+1 nlnn+1∞1=1 又∑发散,∴原级数发散 1n=1nn limn→∞1例、(1)∑ (2)∑(1-cos) nn=1n2+1+nn=1∞1∞ (3)∑lnn n=2n∞1解:(1)由limn→∞nn2+n+n=lim=1 21n→∞n+n+nn111-cos21(2)lim=lim= 1n→∞n→∞12n2n2∵ ∑∞12n=1n 收敛∴原级数收敛lnn1(3)∵ >nn∴∑例、P2712、比判别法∞(n≥3) ∵ ∑1 发散,nn=1∞lnn 发散 n=1n例7.7 7.8 设正项级数∑un的一般项满足n=1∞un+1lim=ρ n→∞un则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定3、根值法设∑un为正项级数,如limun=ρn=1∞n→∞则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定正项级数判别其敛散性的步骤:⎧≠0发散首先考察limun⎨ n→∞=0需进一步判别⎩①如un中含n!或n的乘积通常选用比值法;②如un是以n为指数幂的因子,通常用根值法,也可用比值法;③如un含形如nα(α可以不是整数)因子,通常用比较法;④利用级数性质判别其敛散性;⑤据定义判别级数敛散性,考察limSn是否存在,实际上考察{Sn}n→∞是否有上界。
第七章-无穷级数
11
(1 ) ( ) L ( )
2 23
n n1
1
lim
n
Sn
lim(1
n
n
) 1
1
1 1 n1
故级数收敛,其和为1. (例2解法称为连锁相销法)
例3 讨论几何级数(等比级数)
aqn1 a aq aq2 L aqn1 L
n1
的敛散性.若收敛,则求出其和.u(n 参 aq见n1书P272例1)
其中的一种各项正负相间的特殊情形 ——交错级数,
它是一种常见而有实用价值的特殊级数.
(二) 交错级数的莱布尼兹判别法
设un>0,(n=1,2,…),则称
(1)n1 un u1 u2 u3 u4 L
n1
为交错级数。例如
(1)n1 1
n1
n
等等。
(7.7)
对于交错级数,判定其敛散性,有如下使用方便的莱
a n n
a0 1
.
由上面的性质5,级数
un
发散。
n1
例2 若级数 un 收敛,则下列级数不收敛的是( B ) 1
A. 2un 1
B. (un 2) 1
C. 2 un
1
D. un nk
分析与解:注意到已知
un
收敛,由性质2知
1
2un
是收敛的;
1
由性质3 知,C、D 所示级数也是收敛的;
n1
aun收敛到aS ;若级数 un 发散,则 aun
n1
n1
n1
也发散。
性质3. 将级数 un 的前面加上(或去掉)有限项, n1
级数的敛散性不变。(当然,收敛时,和一般要变)
性质4. 收敛级数加括号后得到的级数仍收敛,且和不 变。
7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))
,
使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,
,
故
在
上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有
,
而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】
设
在
点的邻域
存在任意阶导数,则称幂级数
为
在
点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.
在
内存在任意阶导数,则其泰勒级数收
,
其中
.
【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于
,
又级数
与
均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)
设
,则下列命题正确的是 .
(A)若
条件收敛,则
与
都收敛.
【解析】因
当
时,因级数
设
,所以收敛半径
.
及
发散,故收敛域为
(整理)第七章 无穷级数
第七章无穷级数一、选择题1.下列关于级数的论述中一定错误的是(A) 若,则.(B) 若,则.(C) 若un≥0,且,则.(D) 若un≥0,且不存在,则.2.下列结论正确的是(A) 发散级数加括弧所成的级数仍发散.(B) 若加括弧后的级数收敛,则原级数收敛.(C) 若去括弧后的级数收敛,则原级数收敛。
(D) 若去括弧后的级数发散,则原级数发散.3.设都是正项级数,且级数收敛,则下列结论正确的是(A) 若un >vn,则级数发散. (B) 若,则级数收敛.(C) 若,则级数收敛. (D) 若,则级数发散.4.设级数,则下列结论正确的是(A) 因为,所以与p-级数比较得收敛.(B) 因为,所以.(C) 因为,所以收敛.(D) 因为,所以发散.5.设正项级数与任意项级数具有关系,则下列结论正确的是(A) 由收敛推知收敛. (B) 由发散推知发散.(C) 由收敛推知收敛. (D) 由发散不能断定的敛散性.6.下列命题中正确的是(A) 设正项级数发散,则.(B) 设收敛,则收敛.(C) 设至少有一个发散,则发散.(D) 设收敛,则均收敛.7.下列命题正确的是(A) 若收敛,则收敛.(B) 若条件收敛,则发散.(C) 若收敛,则收敛.(D) 若,则收敛.8.下列命题正确的是(A) 设复敛,则收敛.(B) 设收敛且n→∞时,an ,bn是等价无穷小,则收敛.(C) 设收敛,则.(D) 设收敛,令,且Sn为正项级数的前n项部分和(n=1,2,…),则发散.9.下列命题正确的是(A) 若都收敛,则也收敛.(B) 若收敛,发散,则必发散.(C) 若收敛,绝对收敛,则绝对收敛.(D) 若条件收敛,绝对收敛,则条件收敛.10.已知都发散,则(A) 必发散. (B) 必发散.(C) 必发敞. (D) 必发散.11.设绝对收敛,则(A) 发散. (B) 条件收敛.(C) 绝对收敛. (D)12.对于常数k>0,级数(A) 绝对收敛. (B) 条件收敛.(C) 发散. (D) 的收敛性与k的取值有关.13.设级数收敛,则其中的常数(A) a=-2,b=1. (B) a=b=1.(C) a=1,. (D) a=b=-2.14.设正项级数收敛,且bn =(-1)n ln(1+a2n)(n=1,2,…),则级数(A) 发散. (B) 绝对收敛.(C) 条件收敛. (D) 的敛散性不能仅由所给条件确定.15.下列级数①②③④中收敛的个数是(A) 1个. (B) 2个. (C) 3个. (D) 4个.16.设有幂级数,则R为其收敛半径的充要条件是(A) 当|x|≤R时,收敛,且当|x|>R时发散.(B) 当|x|<R时,收敛,且当|x|≥R时发散.(C) 当|x|<R时,收敛,且当|x|>R时发散.(D) 当-R<x≤R时,收敛,且当R<x或x≤-R时发散.17.下列命题正确的是(A) 若幂级数的收敛半径为R≠0,则.(B) 若不存在,则幂级数没有收敛半径.(C) 若的收敛域为[-R,R],则幂级数的收敛域为[-R,R].(D) 若的收敛域为(-R,R),则的收敛域可能是[-R,R].18.设收敛,则(A) 条件收敛. (B) 绝对收敛.(C) 发散. (D) 的敛散性仅由此还不能确定.19.设幂级数在x=-1处收敛,则此级数在x=1处(A) 绝对收敛. (B) 发散.(C) 条件收敛. (D) 的敛散性仅由此不能确定.20.设幂级数的收敛半径为2,则幂级数的收敛域包含点集(A) {2,3,4,e}. (B)(C) {1,5}. (D) {1,2,3,4,5,e}.21.设在x=1处收敛,则在x=0处(A) 绝对收敛. (B) 条件收敛.(C) 发散. (D) 的收敛性取决于{an}的给法.22.设级数收敛,则级数的收敛半径(A) R=2. (B) R=3. (C) R>2.(D) R≥2.23.下列结论不正确的是(A) 若函数f(x)在区间[a,a+2π]上导函数连续,则展开成傅里叶级数时,有(B) 若函数f(x)在区间[-π,π]上有则必有(C) 设连续函数f(x)满足f(x)+f(x+π)=0,则f(x)在[-π,π]上展开成傅里叶级数时,必有a 0=a2k=b2k=0(k=1,2,…).(D) 若函数f(x)满足狄利克雷条件,则必有其中24.下列命题①若函数f(x)为[-π,π]上的奇(偶)函数,则f(x)的傅里叶级数必为正(余)弦级数②若函数f(x)在[0,π]上有定义,则f(x)的傅里叶级数展开式是唯一的③设,不论收敛与否,总有④将函数f(x)=x2(0≤x≤1)做偶延拓,得到令x=2得中正确的是(A) ①、③.(B) ①、④.(C) ②、③.(D) ②、④.25.将函数在[0,π]上展开为余弦级数,则其和函数在x=0,1,π处的函数值分别为(A) (B) 0,2,0.(C) 1,2,π+1. (D)1.设,则=______.2.设幂级数的收敛半径是2,则幂级数的收敛半径是______.3.设幂级数,则该幂级数的收敛半径等于______.4.若幂级数的收敛域是(-8,8],则的收敛半径R=______,的收敛域是______.5.已知幂级数当x=-2时条件收敛,则该幂级数的收敛区间为______.6.设幂级数的收敛区间为(-2,4),则幂级数的收敛区间为______.7.幂级数的收敛域为______.8.幂级数的收敛域为______.9.函数展开成x的幂级数及其收敛区间分别为______.10.设函数f(x)=x+|x|(-π≤x≤π)的傅里叶级数展开式为,则其中系数b=______.n11.设则其以2π为周期的傅里叶级数在x=π处收敛于______,在x=2π处收敛于______.1.判别下列级数的敛散性:(Ⅰ)(Ⅱ)(Ⅲ)(Ⅳ)2.讨论下列级数的敛散性,若收敛,需指出是条件收敛还是绝对收敛,并说明理由.(Ⅰ)(Ⅱ)(Ⅲ)(Ⅳ)3.设常数p>0,试判断级数的敛散性.4.设b=1,,讨论级数的敛散性.1=1,对于n=1,2,…,设曲线上点处的切线与x轴交5.已知a1点的横坐标是a.n+1(Ⅰ)求a(n=2,3,…);n(Ⅱ)设Sn 是以和(an+1,0)为顶点的三角形的面积,求级数的和.6.设un>0(n=1,2,…),证明:(Ⅰ)若存在常数a>0,使当n>N时,,则级数收敛;(Ⅱ)若当n>N时,,则级数发散.7.设函数f(x)在区间[0,1]上有一阶连续导数且f(0)=0,设,证明级数绝对收敛.8.设f(x)在|x|≤1有一阶连续导数且,证明级数发散而级数收敛.9.设f(x)是[-1,1]上具有二阶连续导数的偶函数,且f(0)=1,试证明级数绝对收敛.10.设函数f(x)在|x|≤1上具有二阶连续导数,当x≠0时f(x)≠0,且当x→0时f(x)是比x高阶的无穷小.证明级数绝对收敛.11.求下列幂级数的收敛域:(Ⅰ)(Ⅱ)(Ⅲ)(Ⅳ)12.求下列幂级数的和函数:(Ⅰ) (Ⅱ)13.已知a0=3,a1=5,且对任何自然数n>1,,证明:当|x|<1时,幂级数收敛,并求其和雨数.14.分别求幂级数的和函数与幂级数当x≥0时的和函数·15.将函数展开为x的幂级数.16.(Ⅰ)将展开成x-1的幂级数;(Ⅱ)在区间(-1,1)内将展开为x的幂级数,并求f(n)(0).17.将展开成x的幂级数.18.求证:19.将展开成以2π为周期的傅里叶级数.20.将函数展开成正弦级数,并求级数的和.一、选择题1.A[分析] 由级数发散.而只在级数收敛时才成立,故(A)不正确.应选(A).2.C[分析] 对于(A):例如级数,它是发散的,但添加括号后的级数(1-1)+(1-1)+…+(1-1)+…=0+0+…+0+…=0是收敛的.故(A)不对.对于(B):例如级数(1-1)+(1-1)+…收敛于零,但级数1-1+1-1+…却是发散的.故(B)不对,同时也说明(D)也不对.这说明:若加括号后所成的级数收敛,则不能断定去括号后原来的级数也收敛.由排除法可知,应选(C).3.C[分析] 根据比较原理的极限形式:设有正项级数,又设,则1°当0<l<+∞时,级数〈A〉与〈B〉有相同的敛散性;2°当l=0时,若级数〈B〉收敛,则级数〈A〉也收敛;3°当l=+∞时,若〈B〉发散,则〈A〉也发散.由此可知(C)正确,应选(C).4.D[分析] 设〈A〉:为正项级数,1°若,即为有限数,即a与n为同阶无穷小,则p>1时,〈A〉收敛;p≤1时,〈A〉发散.2° 若,且p>1,则〈A〉收敛.3° 若即a是比低阶的无穷小,p≤1,则n〈A〉发散.由此可知(D)正确.应选(D).5.A[分析] 由于,由比较判别法可知,级数与级数有相同的敛散性,即由收敛推知收敛.故(A)正确,应选(A).6.C[分析] 对于(A):令,则正项级数发散,但,故(A)不正确.=(-)n,则收敛,但发散,所以(B)不正对于(B):令an确.对于(D):令,则收敛,但发散,所以(D)不正确.若收敛,则由比较判别法知都收敛,因此都收敛,矛盾,所以发散,(C)正确.故应选(C).7.B[分析] 令,则收敛,但发散,故(A)不正确.令u=(-1)n,则收敛,但发散,所以(C)不正确.n令un=(-1)n,则,但发散,所以(D)不正确.对于(B),可用反证法证明其成立.若收敛,则收敛,说明绝对收敛,与题设矛盾.故发散.所以应选(B).8.D[分析] 对于(A):令,则收敛,但发散,故(A)不对.对于(C):令,则收敛,但,故(C)不对.对于(B):令,则收敛且当n→∞时an 与bn是等价无穷小,但发散,故(B)也不对.对于(D):由于收敛,根据收敛的必要条件可得,又,所以,故发散.因此选(D).9.C[分析] 令,则都收敛,但发散,所以(A)不正确.令,则收敛,发散,而绝对收敛,所以(B)、(D)不正确.事实上,由于收敛,所以,因此数列{an}有界,不妨假设存在M>0,对任意的n都有|an |≤M,从而|anbn|≤M|bn|,又绝对收敛,从而根据正项级数的比较判别法知,收敛,所以绝对收敛.故应选(C).10.C[分析] 取,则都收敛.又因为都发散,故都是发散的正项级数,从而必发散.故应选(C).11.C[分析] 由于绝对收敛,所以,从而存在正整数N,当n>N 时,有,而,所以,由正项级数的比较判别法可得都收敛.故(A)不成立,而(C)成立.令,则绝对收敛,但(B)、(D)不成立,所以应选(C).12.B[分析] 因为数列单调下降,且,故级数收敛.但,由于,而发散,因此条件收敛.故应选(B).13.A[分析] 由于[lnn+aln(n+1)+bln(n+2)]由题设知,故应选(A).14.B[分析] 由于正项级数收敛,所以正项级数收敛,从而,因此有|bn |=|(-1)n|ln(1+a2n)|~a2n(n→∞),由正项级数的比较判别法可知绝对收敛.应选(B).15.C[分析]对,由于,所以该级数收敛.对,由于,而级数收敛,故该级数收敛.对级数,由于,所以n充分大时ln(lnn)·lnlnlnn<lnn,从而.由于发散,所以该级数发散.由于,所以级数条件收敛.16.C[分析] 由幂级数的收敛半径的定义:“如果幂级数不是仅在x=0一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R存在,使得:(i)当|x|<R时,幂级数绝对收敛;(ii)当|x|>R时,幂级数发散;(iii)当x=R 与x=-R时,幂级数可能收敛也可能发散,则称正数R为该幂级数的收敛半径.”可知,(C)正确,应选(C).17.D[分析] 对任意的幂级数都存在收敛半径,收敛半径R可为R=+∞,0<R<+∞,或R=0,因此(B)不正确.对任意的幂级数不一定存在.例如,收敛半径为,由于a2n =2n,a2n+1=0,于是不存在,因此(A)也不正确.(C)也不正确,如收敛域为[-1,1],但收敛域为[-1,1).事实上,若,则其收敛域为(-1,1),而的收敛域为[-1,1],所以应选(D).18.B[分析] 考察幂级数,由于收敛,所以幂级数在x=-2处收敛,根据阿贝尔定理可得当|x|<|-2|时,对应的幂级数都绝对收敛,所以当x=1时,对应的幂级数绝对收敛,而此时对应级数为.所以应选(B).19.A[分析] 根据阿贝尔定理可得:当|2x-1|<|-2-1|=3时,幂级数绝对收敛.而当x=1时|2·1-1|<3,因此与x=1对应的级数绝对收敛.故应选(A).20.A[分析] 由于有相同的收敛半径,所以当|x-3|<2时级数3)n绝对收敛,显然只有集合{2,3,4,e}中的点都满足不等式|x-3|《2,因此应选(A).21.D[分析] 令,则级数在x=1处收敛,而在x=0处对应的级数发散.所以选项(A),(B)不正确.又如,则级数在x=1处收敛,而在x=0处对应的级数收敛.所以选项(C)不正确.由排除法可知应选(D).22.D[分析] 由于收敛,所以级数在x=-1处收敛,根据阿贝尔定理得:当|x-1|<2时,对应的级数都绝对收敛,再根据收敛半径的定义可知R≥2,故选(D).23.[分析] 对于(A):将函数f(x)作周期延拓,所得周期函数仍记为f(x),则f(x)cosx是周期为2π的周期函数,从而积分与a无关(事实上,=f(a+2π)cos(na+2nπ)-f(a)cosna=0).令a=-π,则同理可证:故(A)正确.对于(B):设,则应用三角函数系的正交性可得代入上述不等式,整理得式中右端为一与m无关的数,这说明级数收敛,于是,即.故(B)正确.对于(C):据题设知函数f(x)是周期为2π的连续函数,则两式相加,由于f(x)+f(x+π)=0,则可得a0=a2k=b2k=0 (k=1,2,…).故(C)也正确.对于(D):若函数f(x)满足狄利克雷条件,则有其中,当x为f(x)的连续点时,故(D)不正确,应选(D).24.A=0[分析] 对于①:设f(x)为奇函数,则f(x)cosnx也为奇函数,从而an(n=0,1,2,…),因此f(x)~.故①正确.对于②:在区间[0,π]上定义的函数f(x)既可以做偶延拓展成余弦级数,也可以做奇延拓展成正弦级数.故②不正确.对于③:设,可证F(x)在[-π,π]上连续,且以2π为周期,从而满足狄利克雷条件,可将F(x)展成傅里叶级数其中,令z=0得为了求A即因此即故③正确.对于④:由于f(2)=f(0)=0,即,故④不正确.综上分析,应选(A).25.D[分析] 将f(x)延拓成[-π,π]上的偶函数F(x),根据狄利克雷定理可得所以选(D).二、填空题1.8[分析] 1°先求由2°3°由收敛而是添加括号而得.因此,由2.2[分析] 由于有相同的收敛域,而所以与有相同的收敛半径,而有相同的收敛域.因此有相同的收敛半径,故的收敛半径为2.3.[分析] 由于令ρ(x+1)<1,可得,所以收敛半径为.4.(-2,2][分析] 因幂级数的收敛域为(-8,8],所以其收敛半径R=8.又因幂级数是由幂级数逐项求导两次所得,从而幂级数的收敛半径R=8.对于=,因-8<x3≤8-2<x≤2,所以的收敛域为(-2,2].5.[-2,4)[分析] 由于级数存x=-2处条件收敛,所以级数的收敛半径为R=3,故收敛区间为[-2,4).6.(-4,2)[分析] 由于幂级数有相同的收敛域,所以收敛区间也一样;而幂级数有相同的收敛区间和收敛半径.又幂级数和幂级数有相同的收敛域,综上可得:级数有相同的收敛区间.又因为收敛半径一样,由的收敛区间为(-2,4)可得的收敛半径为3,所以收敛半径为3.从而幂级数的收敛区间为(-4,2).7.[-1,1)[分析] 因为当x→0时,故,于是幂级数的收敛半径R=1.易知当x=1时幂级数发散,x=-1时幂级数收敛.故幂级数的收敛域为[-1,1).8.[-1,1)[分析] 收敛半径幂级数在x=1对应的级数,发散;在x=-1时对应的级数收敛.所以收敛域为[-1,1).9.[分析] 由于所以故10.[分析]11.,1[分析] 根据狄利克雷定理知:f(x)以2π为周期的傅里叶级数在x=π处收敛于f(x)以2π为周期的傅里叶级数在x=2π处收敛于三、解答题1.(Ⅰ)由于以及级数收敛,故由正项级数比较判别法可得:收敛.(Ⅱ)此题用比值判别法失效,所以选用比较判别法.注意,常数k>0有极限,因此,因为级数收敛,所以由正项级数的比较判别法知级数收敛.(Ⅲ)该正项级数的通项是以积分形式给出的,因此需对积分进行估值.显然这是正项级数,因当时,所以由于收敛,所以原级数收敛.(Ⅳ)因为又收敛,所以原级数绝对收敛.2.(Ⅰ)先讨论级数的敛散性,因为而级数发散,所以根据比较判别法的极限形式可得级数发散.又因为级数用比值判别法可得,级数收敛,所以绝对收敛,又因为收敛,所以级数收敛,因此原级数条件收敛.(Ⅱ)先讨论级数的敛散性,由于而级数发散,所以根据比较判别法的极限形式可得级数发散.由于级数是交错级数,但不单调,莱布尼兹判别法不适用.注意到,由于是收敛交错级数,级数是收敛的正项级数,根据级数的性质可得条件收敛。
军队文职人员招聘考试《专业科目(数学1)》辅导书-高等数学-第7章 无穷级数【圣才出品】
ቤተ መጻሕፍቲ ባይዱ
u 称无穷级数
i 收敛,极限 s 称为该级数的和,并写成
i1
s u1 u2 ui
s u 如果 n 没有极限,则称无穷级数
i 发散。
i1
4.几何级数与 P 级数
(1)几何级数
aqi a aq aq2 aqi
i0
其中 a≠0,q 为级数的公比,则
u1v1 u1v2 u2v1 u1vn u2vn1 unv1
也绝对收敛,且其和为 sσ。
第二节 幂级数
一、函数项级数
1.函数项级数
un(x) (n 1, 2, 3, ) 定义在数集 E 上,则称
un (x) u1(x) u2 (x) un (x)
n1
为函数项级数。
其中第 n 项 un 称为级数的一般项。
2.部分和
级数前 n 项的和
n
sn u1 u2 u3 un ui
i 1
sn 称为级数的部分和。
3.数项级数的收敛与发散
s 如果级数 ui 的部分和数列 n 有极限 s,即 i1
lim
n
sn
s
1 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 7 章 无穷级数
第一节 数项级数
一、数项级数
1.数项级数
给定一个数列 u1, u2, u3, , un, , 由这数列构成的表达式 u1 u2 u3 un
称为(常数项)无穷级数,简称(常数项)级数,记为 ui ,即 i1 ui u1 u2 u3 ui i1
un
0 ,则
(1)n1un 收敛。
第七章:无穷级数
第七章:无穷级数本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设{}n u 是一个数列,则称表达式121nn n uu u u ∞==++++∑为一个数项级数,简称级数,其中第n 项n u 称为级数的通项或一般项,1nn kk S u==∑称为级数的前n 项部分和. 2.级数收敛的定义 定义:若数项级数1nn u∞=∑的部分和数列{}n S 有极限,则称级数1nn u∞=∑收敛,极限值lim n n S →∞称为此级数的和.当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.利用级数收敛的定义,易知当1q <时,几何级数1n n q ∞=∑收敛,和为11q-;当1q ≥,几何级数发散.[例1.1] 判断下列级数的敛散性⑴11(1)n n n ∞=+∑⑵1n ∞=∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+111111(1)()()122311n n n =-+-++-=-++ 所以 1lim lim(1)11n n n S n→∞→∞=-=+,故级数11(1)n n n ∞=+∑收敛.⑵由于(11n S n =++++=所以lim n n S →∞=+∞,故级数1n ∞=∑发散.二、级数的基本性质及收敛的必要条件1.设11,n nn n u v∞∞==∑∑都收敛,和分别为,a b ,则1()nn n uv ∞=±∑必收敛,且1()n n n u v a b ∞=±=±∑;2.设k 为非零常数,则级数1nn u∞=∑与1nn ku∞=∑有相同的敛散性;3.改变级数的前有限项,不影响级数的敛散性; 4.级数收敛的必要条件:如果1nn u∞=∑收敛,则lim 0n n u →∞=;[例1.2] 判断下列级数的敛散性⑴111111210420210n n+++++++ ⑵1(21)(1)(2)n n n n n ∞=+++∑ 解:⑴由于112n n ∞=∑收敛,1110n n∞=∑发散,所以 111()210n n n ∞=+∑发散,由性质5的“注”可知级数111111210420210n n+++++++发散;⑵ 由于(21)lim20(1)(2)n n n n n →∞+=≠++,不满足级数收敛的必要条件,所以级数1(21)(1)(2)n n n n n ∞=+++∑发散. 三、正项级数及其敛散性判别法各项为非负(0n u ≥)的级数1nn u∞=∑称为正项级数.1.正项级数收敛的基本定理 定理:设{}n S 是正项级数1nn u∞=∑的部分和数列,则正项级数1nn u∞=∑收敛的充要条件是数列{}n S 有界.当1p >时,p 级数11pn n∞=∑收敛;当1p ≤时,p 级数发散.(1p =时的p 级数也叫调和级数)2.正项级数的比较判别法 定理:(正项级数比较判别法的非极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设0,()n n u v n N ≤≥,则⑴ 若1nn v∞=∑收敛,则1nn u∞=∑收敛;⑵ 若1nn u∞=∑发散,则1nn v∞=∑发散.定理:(正项级数比较判别法的极限形式) 设11,n n n n u v ∞∞==∑∑都是正项级数,并设limnn nu v ρ→∞=或为+∞,则⑴ 当ρ为非零常数时,级数11,nnn n u v∞∞==∑∑有相同的敛散性;⑵ 当0ρ=时,若1nn v∞=∑收敛,则必有1nn u∞=∑收敛;⑶ 当ρ=+∞时,若1nn v∞=∑发散,则必有1nn u∞=∑发散.定理:设1n n u ∞=∑是正项级数,若1limn n nu u ρ+→∞=或为+∞,则级数1n n u ∞=∑有 ⑴ 当1ρ<时,收敛; ⑵ 当1ρ>或∞时,发散; ⑶ 当1ρ=时,敛散性不确定.1,2,),则级数如果正项级数通项中含有阶乘,一般用比值判别法判定该级数的敛散4.正项级数的根值判别法将比值判别法中的1n nu u +,其它文字叙述、结论均不改动,即为根值判别法. 5.利用通项关于无穷小1n的阶判定正项级数的敛散性 定理:设1n n u ∞=∑是正项级数,n u 为1()n n →∞的k 阶无穷小,则当1k >时,正项级数1nn u ∞=∑收敛;当1k ≤时,正项级数1nn u∞=∑发散.[例1.3] 判断下列级数的敛散性 ⑴1111n nn∞+=∑⑵213n n n ∞=∑ ⑶11(ln(1))n n n ∞=+∑ ⑷1n ∞=解:⑴ 由于111lim lim 11nnn nn+→∞==,而级数11n n ∞=∑发散,故原级数发散; ⑵ 由于2112(1)31lim lim133n n n n n nu n u n ++→∞→∞+=⨯=<,所以由比值判别法可得,原级数收敛;⑶ 由于1lim 01ln(1)n n n →∞==<+,所以由根值判别法可知,原级数收敛;⑷ 为1()n n →∞的32阶无穷小,所以原级数收敛. 四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑的级数,称为交错级数.2.交错级数的莱布尼兹判别法 定理:若交错级数11(1),(0)n n n n u u ∞-=->∑满足条件⑴ 1(1,2,)n n u u n +≥=;⑵ lim 0n n u →∞=,则交错级数11(1),(0)n n n n u u ∞-=->∑收敛,其和1S u ≤其余项n S S -满足1n n S S u +-≤.五、任意项级数及其绝对收敛若级数1nn u∞=∑的各项为任意实数,则称它为任意项级数.1.条件收敛、绝对收敛 若1nn u∞=∑收敛,则称1nn u∞=∑绝对收敛;若1nn u∞=∑发散但1nn u∞=∑收敛,则称1nn u∞=∑条件收敛.2.任意项级数的判别法 定理:若级数1nn u∞=∑收敛,则级数1nn u∞=∑收敛.即绝对收敛的级数一定收敛.[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴111(1)3n n n n ∞--=-∑ ⑵111(1)ln(1)n n n ∞-=-+∑ 解:⑴ 记11(1)3n n n nu --=- 因为 11131l i m l i m 133n n n n n nu n u n -+→∞→∞+=⨯=< 所以级数1nn u∞=∑收敛,故原级数收敛且为绝对收敛;⑵ 记11(1)ln(1)n n u n -=-+由于1n u n >,而11n n ∞=∑发散,所以级数1n n u ∞=∑发散又1nn u∞=∑是一交错级数,10()ln(1)n u n n =→→∞+,且1n n u u +>,由莱布尼兹定理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑的和等于__________.解:由于11(1)2n n n a ∞-=-=∑,所以根据级数的性质可得 21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n aa a a ∞∞--===-=--=∑∑因此21211()538n n n n n a aa ∞∞-===+=+=∑∑.[例7.1.2] 设10n u n≤≤,则下列级数中肯定收敛的是 (A )1nn u∞=∑; (B )1(1)nnn u∞=-∑; (C)n ∞=; (D )21(1)nnn u∞=-∑解:取11n u n =+,则10n u n ≤≤,此时(A )1n n u ∞=∑与(C)n ∞=都发散;若取1(1)2n n u n +-=,则10n u n ≤≤,此时(B )111(1)2nn n n u n∞∞==-=∑∑发散;由排除法可得应选(D ).事实上,若10n u n ≤≤,则2210n u n≤≤,根据“比较判别法”得21nn u∞=∑收敛.从而21(1)nnn u∞=-∑收敛,故应选(D ).[例7.1.3] 已知级数2121()n n n uu ∞-=+∑发散,则(A )1nn u∞=∑一定收敛, (B )1nn u∞=∑一定发散(C )1nn u=∑不一定收敛 (D )lim 0n n u →∞≠解:假设1nn u∞=∑收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数仍然收敛,即2121()n n n uu ∞-=+∑也收敛.这与已知矛盾,故1n n u ∞=∑一定发散.应选(B ). [例7.1.4] 设正项级数1n n u ∞=∑的部分和为n S ,又1n nv S =,已知级数1n n v ∞=∑收敛,则级数1nn u ∞=∑必(A )收敛 (B )发散 (C )敛散性不定 (D )可能收敛也可能发散 解:由于级数1n n v ∞=∑收敛,所以根据收敛的必要条件可得lim 0n n v →∞=,又1n nv S =,所以lim n n S →∞=∞,故级数1n n u ∞=∑发散,故应选(B ).[例7.1.5] 设有命题 (1) 若1nn a∞=∑收敛,则21nn a∞=∑收敛;(2)若1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=,则1n n a ∞=∑收敛;(3)若存在极限lim 0nn nu l v →∞=≠,且1n n v ∞=∑收敛,则1n n u ∞=∑收敛;(4)若(1,2,3,)n n n w u v n <<=,又1n n v ∞=∑与1n n w ∞=∑都收敛,则1n n u ∞=∑收敛.则上述命题中正确的个数为(A )1 (B )2 (C )3 (D )4解:关于命题(1),令(1)n n a n -=,则1n n a ∞=∑收敛,但21112n n n a n ∞∞===∑∑发散,所以不正确;关于命题(2),令1n a n =,则1n n a ∞=∑为正项级数,且11(1,2,)n na n a +<=,但1n n a ∞=∑发散,所以不正确;关于命题(3),令1nnn n u v n ==则在极限lim 0n n nu l v →∞=≠,且1n n v ∞=∑收敛,但1nn u=∑发散,所以不正确;关于命题(4),因为(1,2,3,)n n n w u v n <<=,所以0n n n n u w v w <-<-,因为1n n v ∞=∑与1nn w∞=∑都收敛,所以由“比较判别法”知1()nn n uw ∞=-∑收敛,故1n n u ∞=∑收敛.故应选(A ). 二、正项级数敛散性的判定正项级数1nn u∞=∑判别敛散的思路:①首先考察lim n n u →∞(若不为零,则级数发散;若等于零,需进一步判定);②根据一般项的特点选择相应的判别法判定.[例7.1.6] 判断下列级数的敛散性(1)21sin 2n n n π∞=∑ (2)1!2n n n n n ∞=∑ (3)221(1)2n n n n n n∞=+∑(4)312ln n n n∞=∑(5)1n ∞= (6)321n n∞= 解:(1)用比值法.221122(1)sin(1)122limlim12sin22n n n n nn n n n n ππππ++→∞→∞++⋅==<⋅,所以原级数收敛. (2)用比值法.11(1)!22(1)lim2lim 1!2(1)n n n n n n n nn n n n n en ++→∞→∞++==<+, 所以原级数收敛. (3)用根值法.1(1)lim 122n n n n n e n →∞+==>, 所以原级数发散.(4)用比较法.取541n v n =,因为14ln lim lim 0n n n n u n v n →∞→∞==,而5141n n∞=∑收敛, 所以原级数收敛.(5)用比较法.取1n v n =,因为lim 1n n n nu v →∞==,而11n n ∞=∑发散,所以原级数发散. (6)由于3210n =≠,故由级数收敛的必要条件知原级数发散.[例7.1.7] 判断下列级数的敛散性(1)1(sin )n n n ππ∞=-∑ (2)111(ln(1))n n n ∞=-+∑ 分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小1n的阶判定正项级数的敛散性. 解:(1)考查 sin lim 1()n k nn nππ→∞-换成连续变量x ,再用罗必达法则,2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kxπππππππ+++--→→→--== 取3k =,上述极限值为316π.所以原级数与311n n∞=∑同敛散,故原级数收敛.(2)考查 11ln(1)lim 1()n k nn n→∞-+ 换成连续变量x ,再用罗必达法则,1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+ 取2k =,上述极限值为12. 所以原级数与211n n ∞=∑同敛散,故原级数收敛. [例7.1.8] 研究下列级数的敛散性(1)1!n n n a n n∞=∑(0a >是常数); (2)1nn n αβ∞=∑,这里α为任意实数,β为非负实数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记!n n n a n u n=,由比值判别法可得111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a au n a n e n+++→∞→∞→∞+=⋅==++ 显然,当a e <时,级数收敛;当a e >时,级数发散;当a e =时,由于111(1)!11(1)!(1)n n n n n nn u e n n eu n e n n++++=⋅=>++,所以lim 0n n u →∞≠,故级数发散. (2)记n n u n αβ=,由比值判别法可得11(1)1l i m l i m l i m ()n n n n n n nu n n u n nαααββββ++→∞→∞→∞++==⋅= 显然,当01β≤<,α为任意实数时,级数收敛;当1β>时,α为任意实数时,级数发散;当1β=时,比值判别法失效.这时n u n α=,由p 级数的敛散性知,当1α<-时,级数收敛;当1α≥-时,级数发散.[例7.1.9] 判别下列级数的敛散性(1)1n ∞=∑ (2)11n n n e ∞+=∑⎰ 分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项. 解:(1)因为10x n <<<<132410()1n dx x n<<+⎰由于级数3211()n n∞=∑收敛,所以原级数收敛.(2)因为函数e在区间[,1]n n +上单减,所以110n n nne e e ++<<=⎰⎰由于22lim01n n e n→∞==,又因为级数211n n∞=∑收敛,所以原级数收敛. 三、交错级数判定敛散判别交错级数1(1),(0)nnnn u u∞=->∑敛散性的方法:法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.[例7.1.10] 判定下列级数的敛散性 (1)111(1)ln n n n n ∞-=--∑(2)nn ∞=(3)11111112223334-+-+-+⨯⨯⨯ (4)2011sin 46(1)2n n nn n ∞-=-∑ 解:(1)该级数是交错级数,显然1lim0ln n n n→∞=-.令1()ln f x x x =-,则211()0,(1)(ln )x f x x x x -+'=<≥-,所以1ln n n ⎧⎫⎨⎬-⎩⎭单调减少. 由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列⎧⎫不单调.而1(1)1n nn ==--, 显然,级数211n n ∞=-∑发散;又级数2(1)nn ∞=-∑是交错级数,显然满足lim 01n n →∞=-,令2(),(1x f x x x =≥-,则2221()0(1)x f x x --'=<-,所以⎪⎪⎩⎭单调减少,由莱布尼兹判别法可得,级数2(1)nn ∞=-∑收敛. 故由级数敛散的性质可得,原级数发散. (3)不难得到{}n u 不单调,但有1111111(1)()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列20sin 462n nn ⎧⎫⎨⎬⎩⎭的单调性很麻烦. 但 20sin 4622n nn n n ≤,而由比值判别法易得到级数12n n n ∞=∑收敛,所以级数201sin 462n n n n ∞=∑收敛.从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性对任意项级数1nn u∞=∑,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看当n →∞时,级数的通项n u 是否趋向于零,若不趋于零,则级数发散;若趋于零,则②按正项级数敛散性的判别法,判定1nn u∞=∑是否收敛,若收敛,则级数1nn u∞=∑绝对收敛;若发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定1nn u∞=∑是否收敛(若收敛则为条件收敛).[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)21sin ,,n n n n αβπαβ∞=++∑为常数; (2)(1)1sin n n n x dx x ππ∞+=∑⎰; (3)111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++.解:(1)2sinsin[()](1)sin()n n n n u n n n nαβββππαπαπ++==++=-+,由于当n 充分大时,sin()nβαπ+保持定号,所以级数从某项起以后为一交错级数.当α不是整数时,不论β取何值,总有lim lim sin()sin 0n n n u nβαπαπ→∞→∞=+=≠,故级数发散;当α是整数时,有(1)sin nn u n αβπ+=-,因而sin n u nβπ=,由于lim 1nn u nβπ→∞=所以利用比较判别法的极限形式可得,当0β≠时级数1nn u∞=∑发散,又因为sinn u nβπ=总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数1nn u∞=∑收敛,且为条件收敛;当0β=时,级数显然收敛,且绝对收敛.(2)由于(1)00sin (1)sin sin (1)n x n t n nnx t t dx dt dt x n tn t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰的敛散性由于当0x π<<时,sin sin sin t t t n n t n ππππ≤≤++,所以 02sin 2t dt n n t n πππππ≤≤++⎰由于级数12n n ππ∞=+∑发散,所以级数(1)011sin sin n n n n x t dx dt x n t ππππ∞∞+===+∑∑⎰⎰发散.因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛.(3)这是任意项级数.考虑每三项加一括号所成的级数1111()333231n a n a n a n ∞=+-+-+-+-∑22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是n 的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质. [例7.1.12] 证明:如果级数1nn a∞=∑与1nn b∞=∑收敛,且(1,2,)n n n a c b n ≤≤=,则级数1nn c ∞=∑也收敛.证明:由n n n a c b ≤≤可得,0n n n n c a b a ≤-≤-; 由级数收敛的基本性质可得1()nn n ba ∞=-∑收敛,故由正项级数的比较判别法可得1()n n n c a ∞=-∑收敛.又由于11[()]n nn n n n c ca a ∞∞===-+∑∑,所以级数1n n c ∞=∑收敛.[例7.1.13] 设11112,()2n n na a a a +==+(1,2,)n =,证明 (Ⅰ)lim n n a →∞存在 ;(Ⅱ)级数11(1)nn n a a ∞=+-∑收敛. 证明:(Ⅰ)由于111()2n n na a a +=+,所以根据均值不等式可得111()12n n n a a a +=+≥故数列{}n a 有下界.又因为21111()()22n n n n n n na a a a a a a +=+≤+=,所以{}n a 单调不增,从而由单调有界准则可知,lim n n a →∞存在.(Ⅱ)由(Ⅰ)可知,101n n a a +≤-,所以级数11(1)n n n aa ∞=+-∑是正项级数.又因为11111n n n n n n n a a aa a a a ++++--=≤-, 而正项级数11()nn n aa ∞+=-∑的前n 项和11111()lim nn kk n n n k S aa a a a a ++→∞==-=-→-∑所以正项级数11()nn n aa ∞+=-∑是收敛的,由比较判别法知,原级数收敛.[例7.1.14] 设()f x 在点0x =的某一邻域内有连续二阶导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 分析:已知条件中出现高阶导数,可考虑使用泰勒公式完成. 证明:由于()f x 在点0x =连续,且0()lim0x f x x→=,所以可得(0)0,(0)0f f '==. 将()f x 在点0x =展开成一阶泰勒公式,有 2211()(0)(0)()()2!2f x f f x f x f x ξξ'''''=++=. 由于()f x ''在点0x =的某一邻域内连续,故存在0M >,使得在0x =的某小邻域内()f x M ''≤,从而211()2M f n n≤⋅(当n 充分大时) 由比较判别法可知,级数11()n f n∞=∑绝对收敛. [例7.1.15] 若()f x 满足:⑴在区间[0,)+∞上单增;⑵lim ()x f x A →+∞=;⑶()f x ''存在,且()0f x ''≤.证明(Ⅰ)1[(1)()]n f n f n ∞=+-∑收敛 ;(Ⅱ)1()n f n ∞='∑收敛.证明:(Ⅰ)由于1[(1)()](1)(1)nn k S f k f k f n f ==+-=+-∑,所以lim lim (1)11n n n S f n A →∞→∞=+-=-,从而级数1[(1)()]n f n f n ∞=+-∑收敛.(Ⅱ)由于()f x ''存在,且()0f x ''≤,所以函数()f x '单调不增.又因为()f x 在区间[0,)+∞上单增,所以必有()0f x '≥,即级数1()n f n ∞='∑是正项级数.根据拉格朗日中值定理可得(1)()(),1n n f n f n f n n ξξ'+-=<<+,所以 (1)()()n f n f f n ξ'''+≤≤. 由(Ⅰ)可知1()nn f ξ∞='∑收敛,所以根据正项级数的比较判别法知,级数1(1)n f n ∞='+∑收敛,再根据级数收敛的性质可得级数1()n f n ∞='∑收敛.六、其它[例7.1.16] 设正项数列{}n a 单调减少,且1(1)nnn a ∞=-∑发散,判定级数11()1nn na ∞=+∑的敛散性. 解:正项数列{}n a 单调减少,由单调有界准则可得,lim n n a →∞存在,记为a (0a ≥). 因为级数1(1)nn n a ∞=-∑是交错级数,若lim 0n n a →∞=,由莱布尼兹判别法可知,该级数收敛.但题设该级数发散,所以必定有0a >,于是11lim 111n n n a a →∞==<++.由根值判别法知,级数11()1nn na ∞=+∑收敛.[例7.1.17] 讨论级数11111123421(2)xx xn n -+-++-+-在哪些x 处收敛?在哪些x处发散?解:⑴ 当1x =时,原级数为11111123456-+-+-+,这是交错级数,且满足“莱布尼兹判别法”的条件,故收敛;⑵ 当1x >时,2111111(1)(1)321223n x x x xS n n =+++-++++- 当n →∞时,111321n +++→+∞-, 当n →∞时,1111(1)223x x x x n++++趋向定常数,故2lim n n S →∞发散,从而原级数发散;⑶ 当1x <时,211111111()()()2345(2)21n x x x S n n +=-------+ 由于1x <,所以上式中第一项以后的各项都为负的. 考察级数111[](2)21x n n n ∞=-+∑,由于 111lim[]/1(2)21(2)x xn n n n →∞-=+, 所以根据正项级数的“比较判别法”的极限形式知,级数111[](2)21x n n n ∞=-+∑发散. 从而21lim n n S +→∞=-∞,即原级数发散.综上所述,当1x =时,级数收敛;当1x ≠时,级数发散. [例7.1.18] 已知111,cos n n a a a +==,判定级数1n n a ∞=∑的敛散性.分析:该级数的通项以递推公式给出,这给级数类型的判定以及通项n a 是否收敛于零带来困难.不妨先假设级数通项0()n a n →→∞,再看由递推公式两端取极限时能否导出矛盾.一旦产生矛盾,便可确定级数发散.解:若lim 0n n a →∞=,则1lim lim cos 1n n n n a a +→∞→∞==.这与假设矛盾.因此lim 0n n a →∞≠,原级数发散.[例7.1.19] 设a 为常数,1a ≠-,讨论级数111nn a∞=+∑的敛散性.解:由于存在na ,因此想到分1,1,1a a a <=>讨论.当1a <时,由于lim 0nn a →∞=,所以1lim101n n a →∞=≠+,级数发散;当1a =时,11n a +=12,所以11lim 012n n a →∞=≠+,级数发散; 当1a >时,由于111111111lim lim lim 11111n n n n n n n n na a a a a a aa ---++--→∞→∞→∞+++===<+++,所以级数111n n a ∞=+∑收敛,故级数111nn a ∞=+∑收敛且绝对收敛. [例7.1.20] 已知11a =,对于1,2,n =,设曲线21y x =上点21(,)n na a 处的切线与x 轴交点的横坐标是1n a + (Ⅰ)求,2,3,n a n =;(Ⅱ)设n S 是以(,0)n a ,21(,)n n a a 和1(,0)n a +为顶点的三角形的面积,求级数1n n S ∞=∑的和解:(Ⅰ)曲线21y x =上点21(,)n na a 处的切线方程为 2312()n n nY X a a a -=-- 从而13(1,2,)2n n a a n +==,从而11133()()22n n n a a --== (Ⅱ)由题意11221111112()()222443n n n n n n n n a S a a a a a -+=⨯⨯-=⨯⨯== 所以11112113()2434413n n n n S ∞∞-====⨯=-∑∑.§7.2 幂级数本节重点是求幂级数的收敛域、求幂级数的和函数、将函数展开成幂级数.● 常考知识点精讲一、函数项级数的概念1.函数项级数的定义 定义:设函数()(1,2,3)n u x n =都在D 上有定义,则称表达式121()()()nn u x u x u x ∞==++∑为定义在D 上的一个函数项级数,()n u x 称为通项,1()()n k k S x u x ∞==∑称为部分和函数.2.收敛域 定义:设1()n n u x ∞=∑是定义在D 上的一个函数项级数,0xD ∈,若数项级数01()n n u x ∞=∑收敛,则称0x 是1()nn u x ∞=∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域.3.和函数 定义:设函数项级数1()n n u x ∞=∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得1()()n n S x u x ∞==∑成立.定义域为I 的函数()S x 称为级数1()n n u x ∞=∑的和函数.1.幂级数的定义 定义:设{}(0,1,2,)n a n =是一实数列,则称形如00()n n n a x x ∞=-∑的函数项级数为0x 处的幂级数.00x =时的幂级数为0n n n a x ∞=∑.2.阿贝尔定理 定理:对幂级数00()nn n a x x ∞=-∑有如下的结论: ⑴ 如果该幂级数在点1x 收敛,则对满足010x x x x -<-的一切的x 对应的级数()nnn a x x ∞=-∑都绝对收敛;⑵ 如果该幂级数在点2x 发散,则对满足020x x x x ->-的一切的x 对应的级数()nnn a x x ∞=-∑都发散.[例2.1] 若幂级数(2)nn n a x ∞=-∑在1x =-处收敛,问此级数在4x =处是否收敛,若收敛,是绝对收敛还是条件收敛? 解:由阿贝尔定理知,幂级数(2)nn n a x ∞=-∑在1x =-处收敛,则对一切适合不等式2123x -<--=(即15x -<<)的x 该级数都绝对收敛.故所给级数在4x =处收敛且绝对收敛.三、幂级数收敛半径、收敛区间如果幂级数()nnn a x x ∞=-∑不是仅在0x x =处收敛,也不是在整个数轴上收敛,则必定存在一个正数R ,它具有下述性质: ⑴ 当0x x R -<时,0()nnn a x x ∞=-∑绝对收敛;⑵ 当0x x R ->时,()nnn a x x ∞=-∑发散.如果幂级数()n n n a x x ∞=-∑仅在0x x =处收敛,定义0R =;如果幂级数()nnn a x x ∞=-∑在(,)-∞+∞内收敛,则定义R =+∞.则称上述R 为幂级数()nnn a x x ∞=-∑的收敛半径.称开区间00(,)x R x R -+为幂级数()nnn a x x ∞=-∑的收敛区间.四、幂级数收敛半径的求法求幂级数()nnn a x x ∞=-∑的收敛半径R法一:⑴ 求极限11000()()lim ()n n nn n a x x x x a x x ρ++→∞--=-⑵ 令00()1x x x x m ρ-<⇒-<则收敛半径为R m =;法二:若n a 满足0n a ≠,则1limnn n a R a →∞+=; 法三;⑴求极限0()n x x ρ-=⑵ 令00()1x x x x m ρ-<⇒-< 则收敛半径为R m =.[例2.2] 求下列幂级数的收敛域⑴12!n n n x n ∞=∑⑵1nn ∞= ⑶221212n nn n x ∞-=-∑ 解:⑴ 收敛半径1112(1)!lim lim 2!1n n n n n n a n R a n +→∞→∞++==⨯=+∞,所以收敛域为(,)-∞+∞;⑵收敛半径1lim1n n n n a R a →∞+=== 当51x -=-时,对应级数为1nn ∞=这是收敛的交错级数,当51x -=时,对应级数为1n ∞=P -级数, 于是该幂级数收敛域为[4,6);⑶ 由于22122212()lim 2(21)2nn n n n x n x x n x ρ+-→∞+=⨯=- 令()1x ρ<,可得x <R =当x =1212n n ∞=-∑,此级数发散,于是原幂级数的收敛域为(.五、幂级数的性质设幂级数()nnn a x x ∞=-∑收敛半径为1R ;()nnn b x x ∞=-∑收敛半径为2R ,则1.000()()()()nnnnnn n n n n a x x b x x ab x x ∞∞∞===-±-=±-∑∑∑,收敛半径12min(,)R R R ≥; 2.0001[()][()]()()nnnn nni n in n n i a x x b x x a bx x ∞∞∞-====-⋅-=-∑∑∑∑,收敛半径12min(,)R R R ≥; 3.幂级数00()nn n a x x ∞=-∑的和函数()S x 在其收敛域I 上连续; 4.幂级数在其收敛区间内可以逐项求导,且求导后所得到的幂级数的收敛半径仍为R .即有11()[()][()]()nnn nnnn n n S x a x x a x x na x x ∞∞∞-==='''=-=-=-∑∑∑.5.幂级数在其收敛区间内可以逐项积分,且积分后所得到的幂级数的收敛半径仍为R .即有100001()[()][()]()1xxxnnn n n nx x x n n n S x d x a x x d x a x x d x a x xn ∞∞∞+====-=-=-+∑∑∑⎰⎰⎰[例2.3] 用逐项求导或逐项积分求下列幂级数在收敛区间内的和函数 ⑴11(11)n n nxx ∞-=-<<∑ ⑵411(11)41n n x x n +∞=-<<+∑解:⑴ 令11()(11)n n S x nxx ∞-==-<<∑,则111()()1xxn n n n x S x dx nxdx x x∞∞-=====-∑∑⎰⎰ 所以2211(),(11)(1)(1)x x S x x x x -+==-<<--;⑵ 令411()(11)41n n x S x x n +∞==-<<+∑,则4144411()()411n nn n x x S x x n x +∞∞==''===+-∑∑ 所以4422001111()(1)12121xx x S x dx dx x x x==-+⋅+⋅-+-⎰⎰ 111ln arctan 412x x x x +=+--,(11)x -<<. 六、函数展开成幂级数1.函数展开成幂级数的定义定义:设函数()f x 在区间I 上有定义,0x I ∈,若存在幂级数()nnn a x x ∞=-∑,使得()(),nnn f x a x x x I ∞==-∀∈∑则称()f x 在区间I 上能展开成0x 处的幂级数. 2.展开形式的唯一性定理:若函数()f x 在区间I 上能展开成0x 处的幂级数 0()(),nnn f x a x x x I ∞==-∀∈∑则其展开式是唯一的,且()0()(0,1,2,)!n n f x a n n ==.七、泰勒级数与麦克劳林级数1.泰勒级数与麦克劳林级数的定义定义:如果()f x 在0x 的某一邻域内具有任意阶导数,则称幂级数()()00000000()()()()()()()!1!!n n n n n f x f x f x x x f x x x x x n n ∞='-=+-++-+∑为函数()f x 在0x 点的泰勒级数.当00x =时,称幂级数()()0(0)(0)(0)(0)!1!!n n n nn f f f x f x x n n ∞='=++++∑为函数()f x 的麦克劳林级数. 2.函数展开成泰勒级数的充要条件定理:函数()f x 在0x I ∈处的泰勒级数在I 上收敛到()f x 的充分必要条件是:()f x 在0x 处的泰勒公式()000()()()()!k nk n k f x f x x x R x k ==-+∑的余项()n R x 在I 上收敛到零,即对任意的x I ∈,都有lim ()0n n R x →∞=.八、函数展开成幂级数的方法1.直接法利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法. 2.间接法通过一定的运算将函数转化为其它函数,进而利用新函数的幂级数展开将原来的函数展开成幂级数的方法.所用的运算主要是四则运算、(逐项)积分、(逐项)求导、变量代换.利用的幂级数展开式是下列一些常用函数的麦克劳林展开公式.幂级数常用的七个展开式0,(,)!nxn x e x n ∞==∈-∞+∞∑210sin (1),(,)(21)!n nn x x x n +∞==-∈-∞+∞+∑20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑1ln(1)(1),111n nn x x x n +∞=+=--<≤+∑2(1)(1)(2)(1)(1)1,(1,1)2!!n n x x x x x n αααααααα----++=+++++∈-1,(1,1)1n n x x x ∞==∈--∑1(1),(1,1)1n n n x x x ∞==-∈-+∑.●● 常考题型及其解法与技巧一、阿贝尔定理的应用[例7.2.1] 设幂级数nn n a x∞=∑的收敛半径为2,则幂级数1(3)nn n a x ∞=-∑在下列点处必收敛(A ){}2,3,4,e (B )12,1,0,e ⎧⎫--⎨⎬⎩⎭(C ){}1,5 (D ){}1,2,3,4,5,e解:由于nn n a x∞=∑与1(3)nn n a x ∞=-∑有相同的收敛半径,所以当32x -<的时候对应的级数1(3)nn n a x ∞=-∑都绝对收敛,显然集合{}2,3,4,e 中的点都满足不等式32x -<,故选(A )[例7.2.2] 如级数nn n a x∞=∑在2x =处收敛,问级数1()2nn n a x ∞=-∑在2x =-处敛散性怎样?解:由阿贝尔定理,对一切2x <的x 值,级数0nn n a x ∞=∑绝对收敛,从而级数01()2nnn a x ∞=-∑满足:对一切122x -<的x 值,级数01()2n n n a x ∞=-∑绝对收敛.现2x =-显然不满足122x -<,故级数01()2n n n a x ∞=-∑在2x =-处敛散性不确定.[例7.2.3] 设1(1)2nnn n a ∞=-∑收敛,则1n n a ∞=∑(A )条件收敛 (B )绝对收敛 (C )发散 (D )不定 解:考查幂级数1nn n a x∞=∑,由于1(1)2nnn n a ∞=-∑收敛,所以幂级数1n n n a x ∞=∑在2x =-点收敛,根据阿贝尔定理当2x <-时,对应的幂级数都绝对收敛,所以当1x =时,对应的幂级数绝对收敛,而此时对应级数为1nn a∞=∑.所以应选(B )[例7.2.4] 设幂级数1(1)nn n a x ∞=+∑在3x =处条件收敛,则该幂级数的收敛半径为_______.解:由于1(1)nn n a x ∞=+∑在3x =处条件收敛,由阿贝尔定理得,当14x +<时级数1(1)nn n a x ∞=+∑绝对收敛.所以收敛半径4R ≥;假设4R >.由收敛半径的定义知1x R +<时,对应的级数都绝对收敛,所以级数在3x =处应绝对收敛,矛盾.所以4R ≤. 因此收敛半径4R =.二、收敛半径、收敛区间、收敛域求幂级数收敛半径的方法我们在常考知识点中介绍过,如果幂级数中的幂次是按自然数顺序依次递增的,这时幂级数()nnn a x x ∞=-∑的收敛半径的计算公式1limnn n a R a →∞+=如果幂级数中的幂次不是按自然数顺序依次递增的(如缺少奇数次幂或缺偶次幂等),这时不能用上面的公式计算收敛半径,而必须使用正项级数的比值判别法或根值判别法(即常考知识点中介绍的法一与法三)求出幂级数的收敛半径. 设幂级数()nnn a x x ∞=-∑的收敛半径为R .为了求幂级数的收敛域还需判别在x =0x R -与0x x R =+处级数00()n n n a x x ∞=-∑的敛散性.[例7.2.5] 求下列幂级数的收敛半径和收敛域(1)1!()n n x e n n ∞=-∑ (2)2311n n n x n ∞=+∑ (3)2111(1)3(21)n n nn x n +∞-=-+∑ (4)21(21)n n x n n ∞=-∑ (5)14(1)1(1)[4(1)]!n n n xn -∞-=--∑ 解:(1)此级数x e -的幂次是按自然数顺序依次递增的,其收敛半径可直接按公式计算:11!(1)1lim lim lim(1)(1)!n n n n n n n n a n n R e a n n n +→∞→∞→∞++==⨯=+=+在2x e e e =+=处,级数成为1!()nn en n ∞=∑,由[例7.1.8]中的(1)可知该级数发散;在0x e e =-=处,级数成为1!()nn e n n∞=-∑,可判定发散. 故原级数的收敛域为(0,2)e .(2)此级数的收敛半径也可按公式计算:23321(1)1lim lim 11(1)n n n n a n n R a n n →∞→∞+++==⋅=++ 在1x =-处,级数成为231(1)1n n n n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在1x =处,级数成为2311n n n ∞=+∑,由于23lim 111n n n n →∞⨯=+,而级数11n n ∞=∑发散,故级数2311n n n ∞=+∑发散.因此所给级数的收敛域为[1,1)-.(3)此级数缺少x 的偶次幂.故需利用比值判别法求收敛半径.2321121(1)3(21)1()lim 3(23)(1)3n n n n n n n x n x x n x ρ++-+→∞-+=⨯=+-令()1x ρ<可得,x <,故收敛半径为R =.在x =级数成为1(1)nn ∞=-∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在x =级数成为11(1)21n n n ∞-=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛.因此所给级数的收敛域为[.(4)此级数缺少x 的奇次幂.故需利用比值判别法求收敛半径.2222(21)()lim (1)(21)n n n x n n x x n n xρ+→∞-=⋅=++ 令()1x ρ<可得,1x <,故收敛半径为1R =.在1x =-处,级数成为11(21)n n n ∞=-∑,该级数显然收敛; 在1x =处,级数成为11(21)n n n ∞=-∑,该级数收敛. 因此所给级数的收敛域为[1,1]-.(5)此级数中的x 的幂次不是按自然顺依次递增的.故需用比值判别法求收敛半径.4414(1)(1)[4(1)]!()lim 0(4)!(1)n n n n n x n x x n xρ--→∞--=⋅=⋅- 令()1x ρ<可得,(,)x ∈-∞+∞,故收敛半径为R =+∞. 于是幂级数的收敛域为(,)-∞+∞.[例7.2.6] 求幂级数21()(,0)n n nn a b x a b nn ∞=+>∑的收敛域.解:设幂级数1n n n a x n ∞=∑,21n nn b x n∞=∑的收敛半径分别为12,R R ,则11R a =,21R b =.因此幂级数的收敛半径为1211min(,)min(,)R R R a b==. (1) 若a b ≥,则1R a =.在1x a =-,级数为21111(1)(1)()n n n n n b n n a ∞∞==-+-∑∑收敛; 在1x a =,级数为21111()nn n b n na ∞∞==+∑∑发散,从而收敛域为11[,)a a -.(2)若a b <,则1R b=. 在1x b =-,级数为21111(1)()(1)n nn n n a n b n ∞∞==-+-∑∑收敛;在1x b =,级数为21111()n n n a n b n∞∞==+∑∑收敛;,从而收敛域为11[,]b b -.[例7.2.7] 已知幂级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,求其收敛域.解:由于幂级数级数(3)nnn a x ∞=-∑在0x =处收敛,由阿贝尔定理可得,当3033x -<-=时,对应的幂级数绝对收敛,所以收敛半径3R ≥;假设收敛半径3R >,由收敛半径的定义可知,3x R -<时,对应的级数都绝对收敛,而633R -=<,所以级数(3)nn n a x ∞=-∑在6x =处绝对收敛,与已知矛盾.故3R ≤.综上可得,收敛半径3R =. 又因为级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,故收敛域为[0,6).三、函数项级数求收敛域函数项级数1()n n u x ∞=∑求收敛域的基本方法:⑴ 用正项级数比值判别法(或根值判别法)求1()()lim()n n n u x x u x ρ+→∞=(或()n x ρ=;⑵解不等式()1x ρ<,求出1()n n u x ∞=∑的收敛区间(,)αβ;⑶ 判定级数1()nn u α∞=∑与1()nn u β∞=∑的敛散性.[例7.2.8] 求下列函数项级数的收敛域(1)221(1)nn x x ∞=+∑ (2)21(21)!!2()(2)!!1n n n x n x ∞=-+∑ 解:(1)222122(1)1()lim ,(0)(1)1n n n x x x x x x x ρ+→∞+=⨯=≠++令()1x ρ<,可得(,0)(0,)x ∈-∞+∞.而当0x =时,(0)0,1,2,,n u n ==,所以该级数也收敛.所以原级数的收敛域为(,)-∞+∞.(2)21222(21)!!2(2)!!1()lim ()(),(0)(22)!!1(21)!!21n nn x n x n x x x n x n x xρ+→∞++=⨯=≠++-+ 令()1x ρ<,可得221,(0)1xx x <≠+,即(,1)(1,0)(0,1)(1,)x ∈-∞--+∞. 当0x =时,(0)0,1,2,,n u n ==,所以该级数也收敛;当1x =-时,对应的级数为1(21)!!(1)(2)!!nn n n ∞=--∑,它是交错级数,由莱布尼兹判别法知,该级数收敛;当1x =时,对应的级数为1(21)!!(2)!!n n n ∞=-∑,它是正项级数,由比较判别法知,该级数发散. 故原级数的收敛域为(,1)(1,)-∞+∞.[例7.2.9] 求级数13(2)1()1n n nn x n x ∞=+--+∑的收敛域.解:令11x t x -=+,考察级数13(2)n n nn t n ∞=+-∑的收敛域由于1113(2)1()lim 33(2)n n n n n n n t n t t t nρ+++→∞+-+==+-,所以幂级数13(2)n n n n t n ∞=+-∑的收敛半径为13R = 当13t =时,对应幂级数为13(2)1()3n n nn n ∞=+-∑,由于3(2)11()()3n n n n n n+-→∞,所以级。
第七章 无穷级数2010
叫做级数的一般项 一般项, 称上式为无穷级数, 称上式为无穷级数, 无穷级数 其中第 n 项 un 叫做级数的一般项 级数的前 n 项和
机动
目录
上页
下页
返回
结束
称为级数的部分和 称为级数的部分和. 部分和 为级数的和 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
则称无穷级数发散 则称无穷级数发散 .
机动
目录
上页
下页
返回
结束
判别下列级数的敛散性: 例1. 判别下列级数的敛散性
解: (1)
2 4 n +1 3 Sn = ln + ln + ln +L+ ln 1 3 n 2
= (ln 2 − ln1) + (ln3 − ln 2) +L+ (ln(n +1) − ln n)
= ln(n +1) → ∞ ( n → ∞)
机动 目录 上页 下页 返回 结束
两个重要级数:
1、等比级数
q <1 q ≥1
收敛, p > 1
2、p 级数
发散 , p ≤ 1 发散。
特殊地,p=1时,调和级数
机动
目录
上页
下页
返回
结束
调和级数与 p 级数是两个常用的比较级数. 若存在 N ∈Z + , 对一切 n ≥ N ,
机动
目录
上页
下页
返回
∞ n−1 1
例如 :∑(−1)
n=1
n
为条件收敛 .
为绝对收敛.
机动
目录
上页
下页
返回
结束
定理5. 定理 绝对收敛的级数一定收敛 . 证: (不要求) 设 收敛 ,
无穷级数课件(同济第五版)
0 < A < +∞ 时
∞
n =1
A=0
如 ∑ Vn
n =1 ∞
收敛,则 ∑ u n 收敛
n =1 ∞
A=+∞ 如 ∑ u n
n =1
收敛,则 ∑ Vn 收敛
n =1
判别下列级数敛散性
∞
例、 ∑ ln
n =1
n +1 n ln n +1 ∞ 1 n =1 又 ∑ 发散,∴原级数发散 1 n =1n n
1 1 n = lim 2n 2 = 1 1 n →∞ 1 2 2 2 n n
收敛 ∴原级数收敛
∵ ∑
∞
1
2
n =1 n
(3)∵
lnn 1 > n n lnn n =1 n
∞
(n ≥ 3)
∵ ∑
1 n =1 n
∞
发散,
∴∑
发散
例、P271
例 7.7
7.8
2、比判别法
设正项级数 ∑ u n 的一般项满足
收敛,又由比较判别法知原级数收敛
n n n =13
∞
n cos 2
(6) u n = ∴ 原级数收敛
nπ ∞ n 3 < n ,由此值法知 ∑ n 收敛 n n =1 4 4 4
3°交错级数的敛散性的判别法 如 u n > 0 ,则称 ∑ (− 1)
n =1 ∞ n −1
u n = u 1 − u 2 + u 3 − u 4 + … 为交错级数。
第七章 无穷级数
10 常数项级数概念及性质 1、定义 P264 ∑ a n = a1 + a 2 + L + a n + L
数学强化班(武忠祥)-高数第七章 无穷级数
第七章 无 穷 级 数第一节 常数项级数1.概念与性质(1)定义:∑∞=∞→=1lim n n n n S u(2)性质1)若∑∞=1n n u 和∑∞=1n n v 分别收敛于σ,s ,则)(1n n n v u ±∑∞=收敛于σ±s .2)改变级数前有限项不影响级数的敛散性. 3)收敛级数加括号仍收敛且和不变.4) ∑∞=1n n u 收敛0lim =∞→n n u2.判敛准则(1)正项级数(∑∞=1n n u ,0≥n u )基本定理:∑∞=1n n u 收敛⇔n S 上有界。
1)比较判别法:设n n v u ≤,则 ∑∞=1n n v 收敛⇒∑∞=1n n u 收敛.∑∞=1n n u 发散⇒∑∞=1n n v 发散.2)比较法极限形式:设∞→n lim)0(+∞≤≤=l l v u nn①若+∞<<l 0,则∑∞=1n n u 与∑∞=1n n v 同敛散.②若0=l ,则∑∞=1n n v 收敛⇒∑∞=1n n u 收敛,∑∞=1n n u 发散⇒∑∞=1n n v 发散.③若+∞=l ,则∑∞=1n n v 发散⇒∑∞=1n n u 发散,∑∞=1n n u 收敛⇒∑∞=1n n v 收敛.3)比值法:设ρ=+∞→nn n u u 1lim,则∑∞=1n n u ⎪⎩⎪⎨⎧=><,1,,1,,1,ρρρ不一定发散收敛 4)根值法: 设ρ=∞→n n n u lim ,则∑∞=1n n u ⎪⎩⎪⎨⎧=><,1,,1,,1,ρρρ不一定发散收敛 (2)交错级数(∑∞=->-110,)1(n n n n u u )莱不尼兹准则: 若:(1)n u 单调减; (2) 0lim =∞→n n u ,则∑∞=--11)1(n n n u 收敛.(3)任意项级数(∑∞=1n n u ,n u 为任意实数)1)绝对收敛与条件收敛概念 2)绝对收敛和条件收敛的基本结论①绝对收敛的级数一定收敛,即||1∑∞=n n u 收敛∑∞=⇒1n n u 收敛.②条件收敛收敛的级数的所有正项(或负项)构成的级数一定发散.即: ∑∞=1n n u 条件收敛∑∞=+⇒12||n n n u u 和∑∞=-12||n n n u u 发散.题型一 正项级数敛散性的判定例7.1判定下列级数的敛散性.1) );0(11>⎪⎭⎫⎝⎛+∑∞=a n na nn 2) )0(!1>∑∞=a nn a n n n3) ;)cos1(1∑∞=-n n π4) ;)11ln()1(1∑∞=+-+n p n n n解 1)a n nau n n n n =+=∞→∞→1limlim ,则(1)当10<<a 时,原级数收敛; (2)当1>a 时,原级数发散; (3)当1=a 时,01)1(lim lim ≠=+=∞→∞→en n u n n n n ,原级数发散。
第七章 无穷级数
故所给级数也收敛 且其和小于 2
1 1 2 n n n
22
(二)正项级数的比较判别法
例4 判定级数
n 1
1 3n 2 n 1
的敛散性
解: 因
1 3n 2 n
1 ( n 1,2,), 3 n 2 n 2 2n
1 级数 发散, n 1 2n
故级数
这表明级数 aun 收敛 且和为 aS
n1
n n
n n
11
第二节
无穷级数的基本性质
1 2 例1. 判定级数 ( n n ) 的敛散性. 5 n 1 3
1 2 解: 因级数 n 和级数 n 都收敛, n 1 3 n 1 5 1 2 故级数 ( n n ) 收敛. 5 n 1 3
无穷级数的概念
1 1 1 1 1 例2. 判定级数 1 2 2 3 3 4 n( n 1) n 1 n( n 1)
的敛散性.若级数收敛,求此级数的和.
解:
所以这级数收敛 它的和是1
7
第一节
无穷级数的概念
n1 2 3 4 n1 ln ln ln 例3. 判定级数 ln n 1 2 3 n n 1
无穷级数的基本性质
Sn、Wn、Tn 则
n
lim Tn lim [(u1 v1) (u2 v2) (un vn )]
lim[(u1 u2 un ) (v1 v2 vn )]
n
n
lim (Sn Wn ) S W
3
的敛散性
1 3n 2 n 1 1 3 n
第七章:无穷级数
第七章:无穷级数本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设是一个数列,则称表达式{}n u 121n n n u u u u ∞==++++∑ 为一个数项级数,简称级数,其中第项称为级数的通项或一般项,称为级n n u 1n n k k S u ==∑数的前项部分和.n 2.级数收敛的定义定义:若数项级数的部分和数列有极限,则称级数收敛,极限值1n n u ∞=∑{}n S 1n n u ∞=∑称为此级数的和.当不存在时,则称级数发散.lim n n S →∞lim n n S →∞1n n u ∞=∑ 利用级数收敛的定义,易知当时,几何级数收敛,和为;当,1q <1n n q ∞=∑11q-1q ≥几何级数发散.[例1.1] 判断下列级数的敛散性⑴ ⑵11(1)n n n ∞=+∑1n ∞=∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+ 111111(1)()()122311n n n =-+-++-=-++ 所以 ,故级数收敛.1lim lim(111n n n S n →∞→∞=-=+11(1)nn n ∞=+∑ ⑵由于1n S =+++=-所以,故级数发散.lim n n S →∞=+∞1n ∞=∑二、级数的基本性质及收敛的必要条件1.设都收敛,和分别为,则必收敛,且;11,n n n n u v ∞∞==∑∑,a b 1()n n n u v ∞=±∑1()n n n u v a b ∞=±=±∑2.设为非零常数,则级数与有相同的敛散性;k 1n n u ∞=∑1n n ku ∞=∑3.改变级数的前有限项,不影响级数的敛散性;4.级数收敛的必要条件:如果收敛,则;1n n u ∞=∑lim 0n n u →∞=[例1.2] 判断下列级数的敛散性⑴ ⑵ 111111*********n n +++++++ 1(21)(1)(2)n n n n n ∞=+++∑解:⑴由于收敛,发散,所以 发散,112n n ∞=∑1110n n ∞=∑111()210n n n ∞=+∑由性质5的“注”可知级数发散;111111*********n n +++++++ ⑵ 由于,不满足级数收敛的必要条件,所以级数(21)lim 20(1)(2)n n n n n →∞+=≠++发散.1(21)(1)(2)n n n n n ∞=+++∑三、正项级数及其敛散性判别法各项为非负()的级数称为正项级数.0n u ≥1n n u ∞=∑1.正项级数收敛的基本定理定理:设是正项级数的部分和数列,则正项级数收敛的充要条件是数列{}n S 1n n u ∞=∑1n n u ∞=∑有界.{}n S 当时,级数收敛;当时,级数发散.(时的级数也叫1p >p 11p n n ∞=∑1p ≤p 1p =p 调和级数)2.正项级数的比较判别法定理:(正项级数比较判别法的非极限形式)设都是正项级数,并设,则11,n n n n u v ∞∞==∑∑0,()n n u v n N ≤≥⑴ 若收敛,则收敛;1n n v ∞=∑1n n u ∞=∑⑵ 若发散,则发散.1n n u ∞=∑1n n v ∞=∑定理:(正项级数比较判别法的极限形式)设都是正项级数,并设或为,则11,n n n n u v ∞∞==∑∑lim n n n u v ρ→∞=+∞⑴ 当为非零常数时,级数有相同的敛散性;ρ11,n n n n u v ∞∞==∑∑⑵ 当时,若收敛,则必有收敛;0ρ=1n n v ∞=∑1n n u ∞=∑⑶ 当时,若发散,则必有发散.ρ=+∞1n n v ∞=∑1n n u ∞=∑定理:设是正项级数,若或为,则级数有1n n u ∞=∑1lim n n n u u ρ+→∞=+∞1n n u ∞=∑⑴ 当时,收敛;1ρ<⑵ 当或时,发散;1ρ>∞⑶ 当时,敛散性不确定.1ρ=4.正项级数的根值判别法将比值判别法中的,其它文字叙述、结论均不改动,即为根值判别法.1n n u u +5.利用通项关于无穷小的阶判定正项级数的敛散性1n 定理:设是正项级数,为的阶无穷小,则当时,正项级数1n n u ∞=∑n u 1()n n →∞k 1k >收敛;当时,正项级数发散.1n n u ∞=∑1k ≤1n n u ∞=∑[例1.3] 判断下列级数的敛散性 ⑴ ⑵ ⑶ ⑷1111n n n ∞+=∑213n n n ∞=∑11(ln(1))n n n ∞=+∑1n ∞=解:⑴ 由于,而级数发散,故原级数发散;111lim 11nn n n n +→∞==11nn ∞=∑⑵ 由于,所以由比值判别法可得,原级数收敛;2112(1)31lim lim 133n n n n n n u n u n ++→∞→∞+=⨯=<⑶ 由于,所以由根值判别法可知,原级数收1lim 01ln(1)n n n →∞==<+敛;⑷ 为的阶无穷小,所以原级数收敛.1()n n →∞32四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑ 的级数,称为交错级数.2.交错级数的莱布尼兹判别法定理:若交错级数满足条件11(1),(0)n n n n u u ∞-=->∑⑴ ; 1(1,2,)n n u u n +≥= ⑵ ,lim 0n n u →∞=则交错级数收敛,其和其余项满足.11(1),(0)n n n n u u ∞-=->∑1S u ≤n S S -1n n S S u +-≤五、任意项级数及其绝对收敛若级数的各项为任意实数,则称它为任意项级数.1nn u ∞=∑1.条件收敛、绝对收敛 若收敛,则称绝对收敛;若发散但收敛,则称条件收1nn u ∞=∑1n n u ∞=∑1n n u ∞=∑1n n u ∞=∑1n n u ∞=∑定理:若级数收敛,则级数收敛.即绝对收敛的级数一定收敛.1n n u ∞=∑1n n u ∞=∑[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴ ⑵111(1)3n n n n ∞--=-∑111(1)ln(1)n n n ∞-=-+∑解:⑴ 记11(1)3n n n n u --=-因为 11131lim lim 133n n n n n n u n u n -+→∞→∞+=⨯=<所以级数收敛,故原级数收敛且为绝对收敛;1n n u ∞=∑ ⑵ 记11(1)ln(1)n n u n -=-+术管架等多项方式,为解决高中语文电及系统启动方案;对整套启动过程中来避免不必要高中资料试卷突然停机由于,而发散,所以级数发散1n u n >11n n ∞=∑1n n u ∞=∑ 又是一交错级数,,且,由莱布尼兹定1n n u ∞=∑10()ln(1)n u n n =→→∞+1n n u u +>理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知,,则级数的和等于__________.11(1)2n n n a ∞-=-=∑2115n n a ∞-==∑1n n a ∞=∑解:由于,所以根据级数的性质可得 11(1)2n n n a ∞-=-=∑21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n a a a a ∞∞--===-=--=∑∑因此.21211()538n n n n n a a a ∞∞-===+=+=∑∑[例7.1.2] 设,则下列级数中肯定收敛的是10n u n ≤≤(A ); (B ); (C); (D ) 1n n u ∞=∑1(1)n n n u ∞=-∑1n ∞=21(1)n n n u ∞=-∑解:取,则,此时(A )与(C )都发散;11n u n =+10n u n ≤≤1n n u ∞=∑1n ∞=若取,则,此时(B )发散;1(1)2n n u n +-=10n u n ≤≤111(1)2n n n n u n ∞∞==-=∑∑由排除法可得应选(D ).事实上,若,则,根据“比较判别法”得收敛.从而10n u n ≤≤2210n u n ≤≤21n n u ∞=∑收敛,故应选(D ).21(1)n n n u ∞=-∑[例7.1.3] 已知级数发散,则2121()n n n u u ∞-=+∑(A )一定收敛, (B )一定发散1n n u ∞=∑1n n u ∞=∑(C )不一定收敛 (D )1n n u ∞=∑lim 0n n u →∞≠解:假设收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数1n n u ∞=∑仍然收敛,即也收敛.这与已知矛盾,故一定发散.应选(B ).2121()n n n u u ∞-=+∑1n n u ∞=∑[例7.1.4] 设正项级数的部分和为,又,已知级数收敛,则级数1n n u ∞=∑n S 1n n v S =1n n v ∞=∑必1n n u∞=∑(A )收敛(B )发散 (C )敛散性不定 (D )可能收敛也可能发散解:由于级数收敛,所以根据收敛的必要条件可得,又,所以1n n v ∞=∑lim 0n n v →∞=1n nv S =,故级数发散,故应选(B ).lim n n S →∞=∞1n n u ∞=∑[例7.1.5] 设有命题(1) 若收敛,则收敛;1n n a ∞=∑21n n a ∞=∑(2)若为正项级数,且,则收敛;1n n a ∞=∑11(1,2,)n n a n a +<= 1n n a ∞=∑(3)若存在极限,且收敛,则收敛;lim 0n n n u l v →∞=≠1n n v ∞=∑1n n u ∞=∑(4)若,又与都收敛,则收敛.(1,2,3,)n n n w u v n <<= 1n n v ∞=∑1n n w ∞=∑1n n u ∞=∑则上述命题中正确的个数为(A ) (B ) (C ) (D )1234解:关于命题(1),令,则收敛,但发散,所以不正确;(1)nn a n -=1n n a ∞=∑21112n n n a n ∞∞===∑∑关于命题(2),令,则为正项级数,且,但发1n a n =1n n a ∞=∑11(1,2,)n n a n a +<= 1n n a ∞=∑散,所以不正确; 关于命题(3),令,且1n n u v n ==lim 0n n nu l v →∞=≠收敛,但发散,所以不正确;1n n v∞=∑1n n u ∞=∑关于命题(4),因为,所以,因为(1,2,3,)n n n w u v n <<= 0n n n n u w v w <-<-与都收敛,所以由“比较判别法”知收敛,故收敛.故应1n n v ∞=∑1n n w ∞=∑1()n n n u w ∞=-∑1n n u ∞=∑选(A ).二、正项级数敛散性的判定正项级数判别敛散的思路:①首先考察(若不为零,则级数发散;若等1n n u ∞=∑lim n n u →∞(1) (2) (3)21sin 2n n n π∞=∑1!2n n n n n ∞=∑221(1)2n n n n n n ∞=+∑ (4) (5) (6)312ln n n n ∞=∑1n ∞=1n ∞=解:(1)用比值法. ,221122(1)sin (1)122lim lim 12sin 22n n n n n n n n n n ππππ++→∞→∞++⋅==<⋅所以原级数收敛.(2)用比值法.决吊顶层配置不规范高中资,对电气设备进行空载与带指机组在进行继电保护高中,11(1)!22(1)lim 2lim 1!2(1)n n n n n n n n n n n n n e n ++→∞→∞++==<+所以原级数收敛.(3)用根值法.,1(1)lim 122n n n n n e n →∞+==>所以原级数发散.(4)用比较法.取,因为,而收敛,541n v n =14ln lim lim 0n n n n u n v n →∞→∞==5141n n ∞=∑所以原级数收敛.(5)用比较法. 取,因为,而发散,1n v n =lim 1n n nn u v →∞==11n n ∞=∑所以原级数发散.(6)由于,故由级数收敛的必要条件知原级数发散.10n=≠(1) (2)1(sin )n n n ππ∞=-∑111(ln(1n nn ∞=-+∑分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小的阶判定正项级数的敛散性.1n 解:(1)考查 sin lim 1()n kn n n ππ→∞-换成连续变量,再用罗必达法则,x 料试卷布置情况与有关高2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kx πππππππ+++--→→→--==取,上述极限值为.3k =316π所以原级数与同敛散,故原级数收敛.311n n ∞=∑(2)考查 11ln(1)lim 1()n k n n n →∞-+换成连续变量,再用罗必达法则,x 1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+取,上述极限值为.2k =12所以原级数与同敛散,故原级数收敛.211n n ∞=∑[例7.1.8] 研究下列级数的敛散性(1)(是常数); (2),这里为任意实数,为非负实1!n n n a n n ∞=∑0a >1n n n αβ∞=∑αβ数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记,由比值判别法可得!n n n a n u n = 111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a a u n a n e n +++→∞→∞→∞+=⋅==++显然,当时,级数收敛;当时,级数发散;a e <a e >当时,由于,所以,故级数发散.a e =111(1)!11(1)!(1)n n n n n n n u e n n e u n e n n ++++=⋅=>++lim 0n n u →∞≠(2)记,由比值判别法可得n n u n αβ=缆敷设完毕,要进行检查和检测处试验报告与相关技术资料,并且了卷切除从而采用高中资料试卷主要11(1)1lim lim lim(n n n n n n n u n n u n n αααββββ++→∞→∞→∞++==⋅=显然,当,为任意实数时,级数收敛;当时,为任意实数时,级数发01β≤<α1β>α散;当时,比值判别法失效.这时,由级数的敛散性知,当时,1β=n u n α=p 1α<-级数收敛;当时,级数发散.1α≥-[例7.1.9] 判别下列级数的敛散性(1) (2)1n ∞=∑11n n n e ∞+=∑⎰分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项.解:(1)因为10x n <<<< 3210(n <<由于级数收敛,所以原级数收敛.3211(n n ∞=∑(2)因为函数在区间上单减,所以e[,1]n n + 110n n n n ee e ++<<=⎰⎰由于,又因为级数收敛,所以原级数收敛.0n n ==211n n ∞=∑三、交错级数判定敛散判别交错级数敛散性的方法:1(1),(0)n nn n u u ∞=->∑法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.[例7.1.10] 判定下列级数的敛散性(1) (2)111(1)ln n n n n ∞-=--∑2n ∞=(3) (4)11111112223334-+-+-+⨯⨯⨯ 2011sin 46(1)2n n nn n ∞-=-∑解:(1)该级数是交错级数,显然.1lim 0ln n n n →∞=-令,则,所以单调减少.1()ln f x x x =-211()0,(1)(ln )x f x x x x -+'=<≥-1ln n n ⎧⎫⎨⎬-⎩⎭由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列不单调.而,1(1)1n n ==-+-显然,级数发散;211n n ∞=-∑又级数是交错级数,显然满足,2(1)n n ∞=-∑0n =令,则,所以单调减少,由莱布尼2(),(1x f x x x =≥-2221()0(1)x f x x --'=<-兹判别法可得,级数收敛.2(1)n n ∞=-∑ 故由级数敛散的性质可得,原级数发散.(3)不难得到不单调,但有{}n u 1111111(1()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑ 即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列的单调性很麻烦.20sin 462n n n ⎧⎫⎨⎬⎩⎭ 但 ,而由比值判别法易得到级数收敛,所以级数20sin 4622n n n n n ≤12n n n ∞=∑,而且可保障各类管路习资料试卷调控试验;对设备体配置时,需要在最大限度收敛.201sin 462n n n n ∞=∑ 从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性 对任意项级数,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看1n n u ∞=∑当时,级数的通项是否趋向于零,若不趋于零,则级数发散;若趋于零,则②n →∞n u 按正项级数敛散性的判别法,判定是否收敛,若收敛,则级数绝对收敛;若1n n u ∞=∑1n n u ∞=∑发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定是否收敛(若收敛则为条件收敛).1nn u ∞=∑[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)为常数; (2);21sin ,,n n n n αβπαβ∞=++∑(1)1sin n n n x dx x ππ∞+=∑⎰(3).111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++ 解:(1),由于当2sin sin[()](1)sin()n n n n u n n n n αβββππαπαπ++==++=-+充分大时,保持定号,所以级数从某项起以后为一交错级数.n sin(n βαπ+当不是整数时,不论取何值,总有,αβlim lim sin()sin 0n n n u n βαπαπ→∞→∞=+=≠故级数发散;当是整数时,有,因而,由于α(1)sin n n u n αβπ+=-sinn u n βπ=lim 1n n u n βπ→∞=所以利用比较判别法的极限形式可得,当时级数发散,又因为0β≠1n n u ∞=∑总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数收sin n u n βπ=1n n u ∞=∑敛,且为条件收敛;当时,级数显然收敛,且绝对收敛.0β=弯曲半径标高等,要求技中资料试卷调试方案,编尤其要避免错误高中资料试(2)由于(1)00sin (1)sin sin (1)n x n t n n n x t t dx dt dt x n t n t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数的敛散性(1)011sin sin n n n n x t dx dt x n t ππππ∞∞+===+∑∑⎰⎰由于当时,,所以 0x π<<sin sin sin t t t n n t n ππππ≤≤++02sin 2t dt n n t n πππππ≤≤++⎰由于级数发散,所以级数发散.12n n ππ∞=+∑(1)011sin sin n n n n x t dx dt x n t ππππ∞∞+===+∑∑⎰⎰ 因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛. (3)这是任意项级数.考虑每三项加一括号所成的级数 1111(333231n a n a n a n ∞=+-+-+-+-∑ 22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是n 发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题 证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质.[例7.1.12] 证明:如果级数与收敛,且,则级数1n n a ∞=∑1n n b ∞=∑(1,2,)n n n a c b n ≤≤= 也收敛.1n n c ∞=∑证明:由可得,;n n n a c b ≤≤0n n n n c a b a ≤-≤-由级数收敛的基本性质可得收敛,故由正项级数的比较判别法可得1()n n n b a ∞=-∑收敛.1()nn n c a ∞=-∑又由于,所以级数收敛.11[()]n nn n n n c c a a ∞∞===-+∑∑1n n c ∞=∑[例7.1.13] 设,证明11112,()2n n n a a a a +==+(1,2,)n = 线缆敷设原则:在分线盒处料试卷技术指导。
《数学分析》第七章 无穷级数
D 上点点收敛于函数 f ( x) ,记为
lim f n ( x) = f ( x), x ∈ D.
n →∞
或
f n ( x) → f ( x)
(n → ∞), x ∈ D.
n →∞
② 函数列极限的 ε − N 定义: lim f n ( x) = f ( x), x ∈ D ⇔ 对每一固定的 x ∈ D ,
∑b
n
收敛,则
∑a b
n n
也收敛.
(4)(狄利克雷判别法) 若数列 {a n } 单调递减,且 lim a n = 0 ,又级数
n →∞
∑b
n
的部分和
数列有界,则
∑a b
n n
收敛.
(二)函数列与函数项级数
1.函数列及其一致收敛性 (1)函数列的收敛域及极限函数 ① 设有一定义于同一数集 E 上的函数列 { f n ( x )} ,若对 x0 ∈ E ,数列 { f n ( x0 )} 收 敛 , 则称 x0 为函数列 { f n ( x )} 的收敛点,若数列 { f n ( x0 )} 发散,则称 x0 为函数列 { f n ( x )} 的发散 点, 函数列 { f n ( x )} 的所有收敛点的集合称为它的收敛域. 若 ∀x ∈ D ⊂ E ,数列 { f n ( x )} 收 敛,设 lim f n ( x) = f ( x) ,则称 f ( x) 为函数列 { f n ( x )} 的极限函数或称函数列 { f n ( x )} 在
(2)函数项级数一致收敛的定义 设 {S n ( x )}是函数项级数
∑u
n
( x) 的部分和数列,若 {S n ( x )}在 D 上一致收敛于函数
无穷级数习题课(2)
常数项级数
1
一、定义及性质
1.常数项级数 2.敛散性定义
an
n1
n
设Sn
k 1
an,如果
lim
n
Sn
s
存在,
3.性质
则级数收敛,否则级数发散。
必要性:
级数
an 收敛
n1
lim
n
an
0.
线性运算性质: 设级数 un s, vn , , 为常数
n1
n1
n1
No
Yes
| an 收| 敛
n1
lim an1 a n
n
lim
n
n
an
No
1
No
找正项收敛
级数 bn n1
找正项发散
级数 cn n1
an (1)n un No
Yes
an为交错级数
n1
用其它方 法证明
1
Yes 1
an发散
n1
an收敛
n1
an bn
an收敛
n1
an cn
解:
由于
an
2n 1 3n
3n 3n
n1 3n
n 3n1
n1 3n
,由定义
Sn
(1
2) 3
(2 3
3 32
)
3 ( 32
4 33
)
(
n 3n1
n1 3n )
1
n1 3n
S
lim
n
Sn
lim(1
n
n1 3n )
1
所以原级数收敛,且和为1。
6
【例2】判别级数
无穷级数
n =1 ∞
证 设
∑ u 的部分和是S
n =1 n
n →∞
∞
n →∞
n
= u1 + u2 + + un 且 收敛于S
n →∞
lim Sn 1 = s 且 lim Sn = s
由 un = S n S n 1 有 lim un = lim( S n S n 1 ) = 0
n →∞ n →∞
∞ a 1 例: 级数 ∑ n 与∑ n 都是收敛的. n =1 2 n =1 2 ∞
定理3 定理3 在级数中增加或去掉有限项,级数的敛散性不变. 证 因在级数中增加或去掉有限项, 总可通过在该级数 前增加或去掉有限项来实现, 故只须证在级数前增加或 去掉有限项而其敛散性不变. 设在级数 u1 + u2 + + um + um +1 + + um + n + 中去掉前m项, 则得级数 um +1 + um + 2 + + um + n +
(1)
(2)
10
令级数(1)的部分和为 Sm = u1 + u2 + + um 级数(2)的部分和为 于是
Tn = S m + n S m
n →∞ n →∞
Tn = um +1 + um + 2 + + um + n
若(1)收敛于S, 则 lim Tn = lim( Sm + n Sm ) = S Sm 故(2)也收敛. 若(1)发散, 则 limTn 不存在, 故(2)也发散. lim T
第七章无穷级数教案
如果 没有极限则称无穷级数 发散
例1讨论等比级数(几何级数)
的敛散性其中a0q叫做级数的公比
解如果q1则部分和
当|q|1时因为 所以此时级数 收敛其和为
当|q|>1时因为 所以此时级数 发散
如果|q|1则当q1时snna因此级数 发散
当q1时 , 不存在,从而这时级数 发散
综上所述如果|q|1则级数 收敛其和为 如果|q|1则级数 发散
定理7.3在一个级数前面去掉(或加上)有限项不会改变级数的收敛性
比如级数 是收敛的
级数 也是收敛的
级数 也是收敛的
定理7.4收敛级数 加括号后所得级数仍收敛于原级数和.
应注意的问题如果加括号后所成的级数收敛则去括号后所得级数不一定收敛例如级数
(11)+(11) +收敛于零但级数1111却是发散的
推论如果加括号后所成的级数发散则原来级数也发散
2)会用根值判别法
教学重点、难点
重点:正项级数收敛性的比较判别法、比值判别法
难点:比较判别法的极限形式
授课类型:理论课
教学方式:讲授
教学资源:多媒体
教学过程
备注
§73正项级数
定义(正项级数)各项都是正数或零的级数,即 (其中 )称为正项级数
定理7.6正项级数 收敛的充分必要条件它的部分和数列{sn}有界
1调和级数: 发散;
2几何级数: ;
3P-级数( ): .
例1讨论p级数
的收敛性其中常数p0
解设p1这时 而调和级数 发散由比较判别法知当p1时级数 发散;
设p1此时有
(n2, 3,)
对于级数 其部分和
因为
所以级数 收敛从而根据比较审敛法的推论1可知级数 当p1时收敛
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南大学三亚学院《高等数学》(经管类)课程单元自测题 第七章 无穷级数
第 1 页 共 2 页
分院 专业 班级 姓名 学号
封 装 线
一:填空题 (共 分 每题 分)
1、级数∑
∞
=+1
)1(1
n n n 的和是___________。
2、级数∑∞
=⎪⎭
⎫
⎝⎛141n n
收敛于__________。
3、2
(1)1
n
n n ∞
=--∑
敛散性为 。
4、1
!100
n
n n ∞
=∑
的敛散性为 。
5、1
1134n
n n ∞
=⎛⎫
-
⎪⎝⎭
∑收敛于__________。
6、级数1
113
4n
n n ∞
=⎛⎫
+
⎪⎝⎭
∑的和是 。
7、若∑
∞
=1
2n n
α
收敛,则α满足的条件是 。
8、幂级数1
3
n
n
n x n
∞
=∑
的收敛半径为 __________。
9、级数∑∞
=1
n n u 发散的充分条件是 。
二:判断题(共 分 每题 分)在你认为正确的命题后面的括号内打(√),错误打(×)
1、级数∑
∞
=1
10
!n n
n 是收敛级数。
( )
2、级数
+⋅-⋅+⋅-⋅4322
1
31213121312131绝对收敛。
( )
3、级数 +-
+
-
4
13
12
11是条件收敛的。
( )
4、正项级数1
n n a ∞
=∑和1
n n b ∞
=∑满足n n a b ≤,则 若1
n n a ∞=∑收敛,则1
n n b ∞
=∑收敛。
( )
5、正项级数1111 (2)
3
n
+
+
++
+是收敛的。
( )
三:计算题(共 分 每题 分)
1、写出级数()
1
14
n
n ∞
=-∑
的前五项并求5s 。
2、判别无穷级数
()111
13
5
21(21)
n n +++
+⋅⋅-⋅+ 3敛散性。
3、求幂级数∑∞
=-1
1
n n nx
的收敛域。
4、用比值判别法研究级数
135(21)
3n
n n ⋅⋅⋅⋅-⋅ !
的敛散性。
5、设有幂级数41
041
n n x
n +∞
=+∑
,试求收敛区间。
6、求幂级数11
n n nx ∞
+=∑的收敛域。
7、 求幂级数n
x
n
n n 1
1
)
1(-∞
=∑- 的收敛域。
8、求幂级数∑
∞
=15n n
n n x 的收敛半径和收敛。
9、求幂级数∑
∞
=+1
1
n n
n x
的收敛半径和收敛域。
五:证明题(共 分)
证明:级数1
n ∞
=∑
第 2 页 共2 页
封 装 线
所涉及到的相关知识点及公式定理
无穷级数的定义 、性质
比较审敛准则:第一比较准则 、第二比较准则 比值审敛法(达朗贝尔D’Alembert 判别法) 交错级数及其敛散性的判别:莱布尼茨定理 任意项级数、绝对收敛与条件收敛 幂级数的定义、收敛半径与收敛域
参考答案: 一:填空题
1、1;
2、3
1;3、收敛;4、发散;5、16
;6、56
;7、1α>;8、13
;9、部分和数列
发散。
二:判断题
1、× ;
2、√ ;
3、√ ;
4、× ;
5、× 。
三:计算题
1、 1111144444
-
+-+-;514
s =-
; 2、(由定义判断级数收敛);3、()1,1- ;4、 收敛 ;5、
()
1,1- ;6、 ()1,1-;7、解:收敛半径R=11
11
lim
lim
1
=+=
∞
→+∞
→n n n n n
n a
a
,当x=1时,级数成为
交错级数1-
(5)
14
13
12
1-+
-
+
收敛;当
x=-1时级数成为∑
∞
=-1
1n n
,它是发散的。
∴此级数的收
敛域为(-1,1]; 8、 解:()
5
151lim
lim
1
=
+==∞
→+∞
→n
n c c R n n n n 而当
()
时
,当收敛时级数
5
1115
11
=--=∑∞
=x n
x n
n ,级数∑
∞
=1
1n n
发散
,则幂级数的收敛域为⎪⎭
⎫⎢⎣
⎡
-
51,
5
1。
9、解:()∑
∞
=∞
→+∞
→=+--==++=
==1
1
11
11,11
2lim lim
n n
n n n n x n x n n c c R 时当,收敛时幂级数
当
[)∑∞
=-+1
1111
n n ,故该级数的收敛域为
,发散
幂级数。