中考数学复习第二轮资料《专题复习精品资料》

合集下载

精品 中考数学二轮复习 圆专题复习

精品 中考数学二轮复习 圆专题复习

中考二轮复习 圆专题 综合复习题 一1.已知⊙ 0的直径AB=40,弦CD ⊥AB 于点E ,且CD=32,则AE 的长为( ) A .12 8.8 C .12或28 D .8或322.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A 、2cmB 、错误!未找到引用源。

cm C.cm 32D 、错误!未找到引用源。

3.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E ,AE=3,ED=4,则AB 的长为( ) A.3 B.23 C.21 D.354.如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A.12 B.34 C.32D.45 5.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= °.6.如图,AB 是半圆O 的直径,以0A 为直径的半圆I 与弦AC 交于点D ,IE ∥AC ,并交OC 于点E .则下列四个结论:①点D 为AC 的中点;②AO C IOE S S ∆∆=21;③2AC AD = ;④四边形I'DEO 是菱形.其中正确的结论是 _________.(把所有正确的结论的序号都填上)7.如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8cm ,AC =6cm ,那么⊙O 的半径OA 长为 .8.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,若AB =2DE ,∠B =18°,则∠AOC 的度数为_ .9.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④AB CE CD ⋅=22.其中正确结论的序号是 .10.如图,△ABC 内接于⊙O ,若B ∠=30°,3AC =,则⊙O 的直径为 .11.如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .12.如图,已知O ⊙的半径为1,锐角△ABC 内接于圆O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( )A.OM 的长B.2OM 的长C.CD 的长D.2CD 的长13.如图,OA 是⊙B 的直径,OA=4,CD 是⊙B 的切线,D 为切点,∠DOC=30°,则点C 的坐标为 15.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D,DE ⊥AC,交AC 的延长线于点E . (1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE=8,⊙O 的半径为5,求DE 的长.16.已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切;(2)当BD=6,sinC=53时,求⊙O 的半径.AFD OEBG C17.如图,AB 为⊙O 的直径, D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .(1)求证:PQ 是⊙O 的切线;(2)若⊙O 的半径为2,3TC =,求弦AD 的长.18.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作D E A C ⊥于点E . (1)请说明DE 是⊙O 的切线;(2)若30B ∠=,AB =8,求DE 的长.19如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB=AD=AO . (1)求证:BD 是⊙O 的切线.(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos ∠BFA=32,求△ACF 的面积.20.如图,AB 是⊙O 的直径,AB=10,DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E 。

中考数学第二轮复习(全套)精讲精练 通用版中考绝密复习资料

中考数学第二轮复习(全套)精讲精练  通用版中考绝密复习资料

第二轮复习一 化归思想Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点.(1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y x y x ⎧=-⎪⎨⎪=-+⎩ 得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标. 【例2】解方程:22(1)5(1)20x x ---+= 解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 .所以x =3或x=32 故原方程的解为x =3或x=32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了. 【例3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BDBE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状. 解:因为222a b c ab ac bc ++=++, 所以222222222a b c ab ac bc ++=++, 即:222()()()0a b b c a c -+-+-=所以a=b ,a=c , b=c所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。

精品中考数学第二轮专题复习资料免费下载【资料】

精品中考数学第二轮专题复习资料免费下载【资料】

【关键字】资料、数学(精品)中考数学第二轮专题复习资料免费下载步步为赢中考数学第二轮复习资料—专题复习目录(一)、初中阶段主要的数学思想1.分类讨论思想2.数形结合的思想3.转化的思想4.函数与方程的思想5、数学建模的思想(二)、初中阶段主要考查的数学能力1.图表信息型2.探索规律型3.开放型4.实验操作型5.阅读理解型6.运动变化型7.新定义型8. 方案设计型(一)、初中阶段主要的数学思想1.分类讨论思想当数学问题不宜统一方法处理时,我们常常根据研究对象性质的差异,按照一定的分类方法或标准,将问题分为全而不重,广而不漏的若干类,然后逐类分别讨论,再把结论汇总,得出问题的答案的思想。

这就是主要考查了分类讨论的数学思想方法。

一:【要点梳理】1.数学问题比较复杂时,有时可以将其分割成若干个小问题或一系列步骤,从而通过问题的局部突破来实现整体解决,正确应用分类思想,是完整接替的基础。

而在学业考试中,分类讨论思想也贯穿其中,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都设计分类讨论。

由此可见分类思想的重要性,在数学中,我们常常需要根据研究队形性质的差异,分个中不同情况予以观察,这种分类思考的方法是一种重要的数学思想方法的解题策略,掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分级问题、解决问题的能力都是十分重要的。

2.分类讨论设计全部初中数学的知识点,步步为赢中考数学第二轮复习资料—专题复习目录(一)、初中阶段主要的数学思想1.分类讨论思想2.数形结合的思想3.转化的思想4.函数与方程的思想5、数学建模的思想(二)、初中阶段主要考查的数学能力1.图表信息型2.探索规律型3.开放型4.实验操作型5.阅读理解型6.运动变化型7.新定义型8. 方案设计型(一)、初中阶段主要的数学思想1.分类讨论思想当数学问题不宜统一方法处理时,我们常常根据研究对象性质的差异,按照一定的分类方法或标准,将问题分为全而不重,广而不漏的若干类,然后逐类分别讨论,再把结论汇总,得出问题的答案的思想。

精品 中考数学二轮复习 三角形专题

精品 中考数学二轮复习 三角形专题

第五章三角形三角形01 有关的角和边1.三角形的分类:(1)按边分类:(2)按角分类:2.三角形的边与边之间的关系:(1)三角形两边的和大于第三边;(2)三角形两边的差小于第三边;3.三角形的角与角之间的关系:(1)三角形三个内角的和等于180︒;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.4.n边形内角和=(n-2)·180 ;n边形对角线个数:2)3(-nn条5.边与角的关系①在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。

练习题一、选择题:1. 已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或大小不同的三角形的个数是()A. 5B. 7C. 8D. 102. 如图所示:AB是圆O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A. 2个B. 3个C.4个D.5个3. 如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()4. 已知△ABC中,∠B=600,∠C>∠A,且(∠C)2=(∠A)2+(∠B)2,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个等腰三角形如图所示,顶角为∠A,作∠A的三等分线AD、AE(即∠1=∠2=∠3),若BD=x,DE=y,EC=z,则有()A. x>y>zB.x=y>zC.x=z>yD.x=y=z6.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()7.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且S △ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.12cm2 D.14cm28. 如图所示,将△ABC的三边AC、BA、CB分别延长至D,E,F,且AC=CD,EA=2BA,FB=3BC.若S△ABC=1,那么S△DEF的面积为() A. 15 B. 16 C. 17 D. 189.如图,已知边长为5的等边三角形ABC纸片,点E 在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED BC⊥,则CE的长是( )A.10315- B.1053- C.535- D.20103-三角形直角三象形斜三角形锐角三角形钝角三角形10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定11.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2011个这样的三角形镶嵌而成的四边形的周长是()A. 2011B. 2012C. 2013D. 2014二、填空题:12. 如图,点A,B是圆O上两点,AB=10,点P是圆O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=13.在△ABC中,∠A=Rt∠,∠B=60 ,∠B的平分线交AC于D,点D到边BC的距离为2cm,则边AC的长是__cm14.已知△ABC的两边长a和b(a<b),则这个三角形的周长L 的取值范是____15. 如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD的周长为28cm,则DB=16.一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。

中考数学复习第二轮资料《专题复习精品资料》

中考数学复习第二轮资料《专题复习精品资料》

中考数学专题复习之一 数学思想方法篇数学的转化思想转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。

具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。

转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。

【范例讲析】:例1:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。

求:cos ∠EDF 的值。

例2:如图,∆ABC 中,BC =4,AC ACB =∠=︒2360,,P 为BC 上一点,过点P 作PD//AB ,交AC 于D 。

连结AP ,问点P 在BC 上何处时,∆APD 面积最大?【闯关夺冠】1:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。

⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ;2、在∆ABC 中,AB =5,︒=∠=607B AC ,,求BC 的长.ABCD EFPABCDEF数形结合思想在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。

解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。

【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简||)23(||2b ac b c a b -+----例2:(嘉峪关)某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的? (3)果你是推销员,应如何选择付费方案?【闯关夺冠】1.实数a 、b 上在数轴上对应位置如图3-3-6所示,则||a b - )A .aB .a -2bC .-aD .b -a2.已知抛物线c bx ax y ++=2如图所示,则下列结论:①c=1 ; ② a+b+c=0 ;③ a-b+c<0 ;④ b 2-4ac>0 ,其中正确的个数是( ) A .1 B .2 C .3 D .43.如图,点A ,D ,G ,M 在半圆O 上,四边型ABOC ,DEOF ,HMNO 均为矩形,设BC=a ,EF=b ,NH=c ,则下列各式中正确的是 ( )A. a>b>cB. a=b=cC. c>a>bD. b>c>a我们在解数学题时,如果遇到的对象不确定,就要根据已知条件和题意的要求,分不同的情况作出符合题意的解答,这就是分类讨论。

中考数学第二轮复习资料—专题复习(共50页-大量对应练习)

中考数学第二轮复习资料—专题复习(共50页-大量对应练习)

中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。

涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。

一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5 个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1 月至 3 月每月生产总量逐月增加,4、5 两月生产总量逐月减少B.1 月至3 月每月生产总量逐月增加,4、5 两月生产总量与3 月持平C.1 月至3 月每月生产总量逐月增加,4、5 两月均停止生产D.1 月至3 月每月生产总量不变,4、5 两月均停止生产(2)某人从 A 地向 B 地打长途电话 6 分钟,按通话时间收费,3 分钟以内收费 2.4 元每加 1 分钟加收 1 元,则表示电话费 y(元)与通话时间(分)之间的关系的图象如图所示,正确的是()(3)丽水到杭州的班车首法时间为早上6 时,末班车为傍晚18 时,每隔2 小时有一班车发出, 且丽水到杭州需要4 个小时.已知同一时刻有班车分别从杭州、丽水战发出.则班车在图中相遇的次数最多为( )A.4 次B.5 次C.6 次.D.7 次2.填空:(1)已知关于X 的不等式2x-a>-3 的解集如图所示,则a 的值等于(2)如果不等式组x 8 4x-1的解集为x>3,则m 的取值范围是3.考虑yx m2 的图象,当x=-2 时,y= ;当x<-2 时,y 的取值范围是。

中考二轮复习专题---网格问题

中考二轮复习专题---网格问题
2019/6/26 移2个单位,据此即可得到点A′的坐标.
二、在网格中运用勾股定理进行计算线段的长度、三角 函数值、图形面积等.
1、(线段的长度)如图是由边长为1m的正方形地砖铺设的地面 示意图,小明沿图中所示的折线从A→B→C所走的路程为 __2__5___m.(结果保留根号A )
1m
B C
2019/6/26
2019/6/26
53.、(2013 烟台)如图,将四边形 ABCD 先向左平移 3 个单位,再向上
平移 2 个单位,那么点 A 的对应点 A′的坐标是( B )
A.(6,1) B.(0,1) C.(0,-3) D.(6,-3)
思路点拨:由于将四边形ABCD先向左平移3个单位,再向上平 移2个单位,则点A也先向左平移3个单位,再向上平
格点图形问题常见的题型有:
一、考查坐标平面内的点与有序实数对是一一对应的. 二、在网格中运用勾股定理进行计算.
三、分类讨论思想在格点问题中的运用.
四、网格中图形变换的画图与描述.
2019/6/26
一、考查坐标平面内的点与有序实数对是一一对应 的.
1、如图,在平面直角坐标系中,点E的坐标( A ).
2、(三角函数值)三角形在正方形网格纸中的位置如图所示,则
sinα的值是( C ).
A、 3 4
B. 4 ; C. 3
3
5
4 ;D. 5

α
2019/6/26
3、(三角形的面积)如图1,直角坐标系中,△ABC的顶点都 在网格点上,其中A点坐标为(2,-1),则△ABC的面积为_7_
__平方单位.
y
y
B C
D
B
CO Ax来自OxEA
F

中考数学第二轮复习资料

中考数学第二轮复习资料

中考数学第二轮复习资料目录专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考考点精讲1.(莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.2.(自贡)如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.3.(鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A.B.C.D.4.(巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是A.B.C.D.5.(宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是A.B.C.D.6.(菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.(邵阳)下列四个图形中,不是轴对称图形的是A.B.C.D.8.(南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形9.(长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是A.B.C.D.10.(达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③11.(陕西)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A .B .C .D .12.(黑龙江)如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是A .B .C .D .13.(盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A .4种B .5种C .6种D .7种14.(咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为A .1732B .12C .1736D .173815.(雅安)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为A .12B .32C .22D .3316.(衢州)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .17.(柳州)如图,点P (a ,a )是反比例函数y =16x在第一象限内的图象上的一个点,以点P 为顶点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A .3B .4C .123− D .33824− 18.(莱芜)下列说法错误的是A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .22C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半19.(无锡)已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为A .6、7B .7、8C .6、7、8D .6、8、920.(钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙21.(邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示;(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示;(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示;(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=4π以上结论正确的有A.1个B.2个C.3个D.4个专题二 新定义型问题一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考考点精讲1.(湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=12,cos 30°sin 230°+cos 230°= ; ①sin 45°,cos 45°,则sin 245°+cos 245°= ;②sin 60°=2,cos 60°=12,则sin 260°+cos 260°= ; ③ …… 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cosA >0)且sinA =35,求cosA . 2.(河北)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.3.(十堰)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是 .(2)如果[12x+]=3,求满足条件的所有正整数x.4.(钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.55.(宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.6.(舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E =E⊕F=F⊕D,则C,D,E,F四点A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点7.(常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A.B.C.D.8.(上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .9.(宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .10.(淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.11.(乐山)对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2013x )=m +(2013x );⑤(x +y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号).12.(莆田)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点;(2)求出线段AD 的长.13.(大庆)对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α)(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1:1:4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.14.(安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证: AB BE DC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)15.(北京)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下的定义:若⊙C 上存在两个点A 、B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F 0).(1)当⊙O 的半径为1时,①在点D 、E 、F 中,⊙O 的关联点是 ;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.三、中考考点精讲1.(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系,使得另一边EF过原矩形的(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积(2)写出如图中的三对相似三角形,并选择其中一对进行证明.6.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.7.(徐州)请写出一个是中心对称图形的几何图形的名称:.8.(钦州)请写出一个图形经过一、三象限的正比例函数的解析式.9.(连云港)若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以10使△ABC≌△DEF.第11题第12题第13题12.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是____________(填一个即可)15.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.第14题第15题第16题第17题16.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可) 17.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)18.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已19.(盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法,当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法,即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲1.(襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.2.(新疆)如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.3.(牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD CD=,CB=.4.(河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E =30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.8.(陕西)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.9.(西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n=.10.(湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…是.11.(绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.12.(茂名)如图,在□ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.13.(白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.14.(无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)15.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.16.(凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:112b c c −−+=⎧⎨=⎩,解得:02b c =⎧⎨=⎩.所以平移后的抛物线的解析式为:y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.17.(湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P ′时,满足题中条件的点D 也随之在直线BC 上运动到点D ′,请直接写出CD ′与AP ′的数量关系.(不必写解答过程)18.(淄博)分别以□ABCD (∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.19.(张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.(衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.21.(宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?22.(南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.23.(德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.24.(泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;25.(梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠P AB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.返回专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.三、中考考点精讲1.(吉林)若a-2b=3,则2a-4b-5=.2.(福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.3.(东营)如图,圆柱形容器中,高为 1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).4.(宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为.5.(山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?。

中考数学二轮复习压轴专题:四边形

中考数学二轮复习压轴专题:四边形

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学二轮复习压轴专题《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE =CE +OC =2+3=5,在Rt △BOE 中,由勾股定理得:DG =BE ==;综上所述,若A 、C 、E 三点共线,DG 的长为或.4.如图,在△ABC 中,∠B =90°,AB =6cm ,BC =8cm ,动点D 从点C 出发,沿CA 方向匀速运动,速度为2cm /s ;同时,动点E 从点A 出发,沿AB 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.设点D ,E 运动的时间是t (s )(0<t <5).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)t 为何值时,DE ⊥AC ?(2)设四边形AEFC 的面积为S ,试求出S 与t 之间的关系式;(3)是否存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24,若存在,求出t 的值;若不存在,请说明理由;(4)当t 为何值时,∠ADE =45°?解:(1)∵∠B =90o ,AB =6 cm ,BC =8 cm , ∴AC ===10(cm ),若DE ⊥AC ,∴∠EDA =90°, ∴∠EDA =∠B , ∵∠A =∠A , ∴△ADE ∽△ABC , ∴=,即:=,∴t =,∴当t =s 时,DE ⊥AC ;(2)∵DF ⊥BC , ∴∠DFC =90°, ∴∠DFC =∠B , ∵∠C =∠C , ∴△CDF ∽△CAB , ∴=,即=,∴CF =, ∴BF =8﹣,BE =AB ﹣AE =6﹣t ,∴S =S △ABC ﹣S △BEF =×AB •BC ﹣×BF •BE =×6×8﹣×(8﹣t )×(6﹣t )=﹣t 2+t ;(3)若存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24, 根据题意得:﹣t 2+t =××6×8,解得:t 1=,t 2=(不合题意舍去),∴当t =s 时,S 四边形AEFC :S △ABC =17:24; (4)过点E 作EM ⊥AC 与点M ,如图所示: 则∠EMA =∠B =90°, ∵∠A =∠A , ∴△AEM ∽△ACB ,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH , ∴四边形EFGH 的形状为正方形. ∴∠HEF =90°∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°, ∴∠2=∠4. 在△AEH 与△BFE 中,,∴△AEH ≌△BFE (ASA ) ∴AE =BF .故答案为正方形,AE =BF .(4)利用①中结论,易证△AEH 、△BFE 、△CGF 、△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4﹣x .∴y =S 正方形ABCD ﹣4S △AEH =4×4﹣4×x (4﹣x )=2x 2﹣8x +16. ∴y =2x 2﹣8x +16(0<x <4) ∵y =2x 2﹣8x +16=2(x ﹣2)2+8,∴当x =2时,y 取得最小值8;当x =0时,y =16, ∴y 的取值范围为:8≤y <16.8.已知:如图1,在平面直角坐标系中,长方形OABC 的顶点B 的坐标是(6,4).(1)直接写出A 点坐标( 6 , 0 ),C 点坐标( 0 , 4 );(2)如图2,D 为OC 中点.连接BD ,AD ,如果在第二象限内有一点P (m ,1),且四边形OADP 的面积是△ABC 面积的2倍,求满足条件的点P 的坐标;(3)如图3,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的速度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒(t >0),在M ,N 运动过程中.当MN =5时,直接写出时间t 的值. 解:(1)∵四边形OABC 是长方形, ∴AB ∥OC ,BC ∥OA , ∵B (6,4),∴A (6,0),C (0,4), 故答案为:6,0,0,4;(2)如图2,由(1)知,A (6,0),C (0,4), ∴OA =6,OC =4, ∵四边形OABC 是长方形, ∴S 长方形OABC =OA •OC =6×4=24, 连接AC ,∵AC 是长方形OABC 的对角线, ∴S △OAC =S △ABC =S 长方形OABC =12, ∵点D 是OC 的中点, ∴S △OAD =S △OAC =6,∵四边形OADP 的面积是△ABC 面积的2倍, ∴S 四边形OADP =2S △ABC =24,∵S 四边形OADP =S △OAD +S △ODP =6+S △ODP =24, ∴S △ODP =18,∵点D 是OC 的中点,且OC =4, ∴OD =OC =2, ∵P (m ,1),∴S=OD•|m|=×2|m|=18,△ODP∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,=•OA•OC=××2=.∴S△AOC故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF =S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。

中考数学二轮专题复习资料

中考数学二轮专题复习资料

中考二轮复习资料数学专题一填空压轴题探究1.(2017天水中考)如图是抛物线y 1=ax 2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①abc>0;②方程ax 2+bx+c=3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x<4时,有y 2>y 1;⑤x(ax+b)≤a+b,其中正确的结论是__②⑤__.(只填写序号)2.(2017安徽中考)在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD(如图①),剪去△CDE 后得到双层△BDE(如图②),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__40或8033__cm .,(第2题图)),(第3题图))3.(2017宁波中考)如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG,点F,G 分别在边AB,AD 上,则cos ∠EFG 的值为__217__.4.(2017温州中考)如图,矩形OABC 的边O A,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A,B′和B 分别对应).若AB=1,反比例函数y=k x (k≠0)的图象恰好经过点A′,B,则k 的值为__433__.5.(2017温州中考)小明家的洗手盆上装有一种抬启式水龙头(如图①),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图②所示,现用高10.2cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__(24-82)__cm .图①图②6.(2017绍兴中考)如图,∠AOB=45°,点M,N 在边OA 上,OM=x,ON=x+4,点P 是边OB 上的点,若使点P,M,N 构成等腰三角形的点P 恰好有三个,则x 的值是__x=0或x=42-4或4<x<42__.7.(2017金华中考)在一空旷场地上设计一落地为矩形ABCD 的小屋,AB+BC=10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m 2).(1)如图①,若BC=4m ,则S=__88π__m 2;(2)如图②,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为__52__m .8.(2017舟山中考)一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC=EF =12cm (如图①),点G 为边BC(EF)的中点,边FD 与AB 相交于点H,此时线段BH 的长是__(123-12)__cm .现将三角板DEF 绕点G 按顺时针方向旋转(如图②),在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长共为__(123-18)__cm .(结果保留根号)图①图②9.(2017上海中考)我们规定:一个正n 边形(n 为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=__32__.10.(2017河南中考)如图,在Rt △ABC 中,∠A=90°,AB=AC,BC=2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为__1或2+12__.11.(2017江西中考)已知点A(0,4),B(7,0),C(7,4),连结AC,BC 得到矩形AOBC,点D 在边AC 上,将边OA 沿OD 折叠,点A 的对应点为A′.若点A′到矩形较长两对边的距离之比为1∶3,则点A′的坐标为__(7,3)或(15,1)或(23,-2)__.12.(2017重庆中考)A,B 两地之间的路程为2380m ,甲,乙两人分别从A,B 两地出发,相向而行,已知甲先出发5min 后,乙才出发,他们两人在A,B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(m )与甲出发的时间x(min )之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是__180__m .,(第12题图)),(第13题图))13.(2017长春中考)如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB 交x 轴于点P.若△ABC 与△A′B′C′关于点P 成中心对称,则点A′的坐标为__(-2,-3)__.14.(2017大连中考)在平面直角坐标系xOy 中,点A,B 的坐标分别为(3,m),(3,m+2),直线y=2x+b 与线段AB 有公共点,则b 的取值范围为__m-6≤b≤m-4__.(用含m 的代数式表示)15.(2017东营中考)如图,在平面直角坐标系中,直线l:y=33x-33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,则点A 2017的横坐标是__22017-12__.16.在一条笔直的公路上有A,B,C 三地,C 地位于A,B 两地之间,甲、乙两车分别从A,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y(km )与甲车行驶时间t(h )之间的函数关系如图所示,当甲车出发__32__h 时,两车相距350km .,(第16题图)),(第17题图))17.(2017南京中考)函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y=y 1+y 2的结论:①函数的图象关于原点中心对称;②当x<2时,y 随x 的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是__①③__.专题二应用性问题探究1.(2017宜宾中考模拟)某大型企业为了保护环境,准备购买A,B两种型号的污水处理设备共8台,用于同时治理不同成分的污水.已知购买A型设备2台、B型设备3台需54万元;购买A型设备4台、B型设备2台需68万元.(1)求出A型,B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220t,一台B型设备一个月可处理污水190t.如果该企业每月的污水处理量不低于1565t,请你为该企业设计一种最省钱的购买方案.解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元.根据题意,得答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器.根据题意,得220a+190(8-a)≥1565,解得a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.2.(2016宜宾中考模拟)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14t(含14t),则每吨按政府补贴优惠价m元收费;若每月用水量超过14t,则超过部分每吨按市场价n 元收费.小明家3月份用水20t,交水费49元;4月份用水18t,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x t,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26t,则他家应交水费多少元?解:(1)已知每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意,答:每吨水的政府补贴优惠价为2元,市场调节价为3.5元;(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x-14)×3.5=3.5x-21.2x(0≤x≤14),;(3)∵26>14,∴3.5×26-21=70(元).答:小明家5月份应交水费70元.3.(2017宜宾中考模拟)宜宾黄桷庄游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x 次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.解:(1)由题意,得银卡消费y=10x+150,普通消费y=20x;(2)由题意,得当10x+150=20x,解得x=15,则y=300,∴B(15,300),当y=10x+150,x=0时,y=150,∴A(0,150),当y=10x+150=600,解得x=45,∴C(45,600);(3)由A,B,C 的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.4.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如表:价格x(元/个)…30405060…销售量y(万个)…5432…同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数表达式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数表达式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?解:(1)根据表格中数据可知y 与x 是一次函数关系,设表达式为k=-110,∴函数表达式为y=-110x+8;(2)根据题意,得z=(x-20)y-40=(x-20)(-110x+8)-40=-110x 2+10x-200=-110(x-50)2+50,∴销售价格定为50元/个时净得利润最大,最大值是50万元;(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得x 1=40,x 2=60.如图,通过观察二次函数z=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y 与x 的函数关系式为:y=-110x+8,y 随x 的增大而减少;因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.5.(2017襄阳中考)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 11x(0≤x<600),2x+b(600≤x≤1000).其图象如图所示;栽花所需费用y 2(元)与x(m 2)的函数关系式y 2=-0.01x 2-20x+30000(0≤x≤1000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1000m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.解:(1)k 1=30,k 2=20,b=6000;(2)当0≤x<600时,W=30x+(-0.01x 2-20x+30000)=-0.01x 2+10x+30000.∵-0.01<0,W=-0.01(x-500)2+32500,∴当x=500时,W 取最大值为32500元.当600≤x≤1000时,W=20x+6000+(-0.01x 2-20x+30000)=-0.01x 2+36000.∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小,∴当x=600时,W 取最大值为32400元.∵32400<32500,∴W 的最大值为32500元;(3)由题意,得1000-x≥100,解得x≤900.又x≥700,∴700≤x≤900.∵当700≤x≤900时,W 随x 的增大而减小,∴当x=900时,W 取最小值为27900元.专题三三角形、四边形综合问题探究1.(2017宜宾中考模拟)如图,在△ABC 中,∠ACB=90°,M,N 分别是AB,AC 的中点,延长BC 至点D,使CD=13BD,连结DM,DN,MN.若AB=6,则DN=__3__.2.(2016宜宾中考改编)如图,BD 是△ABC 的角平分线,它的垂直平分线EG 分别交AB,BD,BC 于点E,F,G,连结ED,DG.(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=210,点H 是BD 上的一个动点,求HG+HC 的最小值.解:(1)四边形EBGD 是菱形.理由:∵EG 垂直平分BD,∴EB=ED,GB=GD,DF=BF,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF.在△EFD 和△GFB 中,∠EDF=∠GBF,DF=BF,∠EFD=∠GFB,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD 是菱形;(2)作EM⊥BC 于M,DN⊥BC 于N,连结EC 交BD 于点H,此时HG+HC 最小.在Rt △EBM 中,∵∠EMB=90°,∠E BM=30°,EB=ED=210,∴E M=12BE=10.∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=10,MN=DE=210.在Rt △DNC 中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=10,∴MC=310,在Rt △EMC 中,∵∠EMC=90°,EM=10,MC=310,∴EC=EM 2+MC 2=(10)2+(310)2=10.∵HG+HC=EH+HC=EC,∴HG+HC 的最小值为10.3.如图,点O 是△ABC 内一点,连结OB,OC,并将AB,OB,OC,AC 的中点D,E,F,G 依次连结,得到四边形DEFG.(1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,O M=3,∠OBC 和∠OCB 互余,求DG 的长度.解:(1)∵D,G 分别是AB,AC 的中点,∴DG∥BC,DG=12BC.∵E,F 分别是OB,OC 的中点,∴EF∥BC,EF=12BC ,∴DG=EF,DG∥EF,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°.∵M 为EF 的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG 是平行四边形,∴DG=EF=6.4.(2016宜宾中考模拟)(1)如图①,在Rt △ABC 中,∠ABC=90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C,连结C 1B 1,则C 1B 1与BC 的位置关系为________;(2)如图②,当△ABC 是锐角三角形,∠ABC=α(α≠60°)时,将△ABC 按照(1)中的方式旋转α,连结C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明;(3)如图③,在图②的基础上,连结B 1B,若C 1B 1=23BC,△C 1BB 1的面积为4,则△B 1BC 的面积为________.解:(1)平行;(2)C 1B 1∥BC.理由如下:过点C 1,作C 1E∥B 1C 交BC 于点E,则∠C 1EB=∠B 1CB.由旋转性质可知,BC 1=BC=B 1C,∠C 1BC=∠B 1CB,∴∠C 1B C=∠C 1EB,∴C 1B=C 1E.∵BC 1=BC=B 1C,∴C 1E=B 1C.又∵C 1E∥B 1C,∴四边形C 1ECB 是平行四边形,∴C 1B 1∥BC.5.(2017沈阳中考)四边形ABCD 是边长为4的正方形,点E 在边AD 所在的直线上,连结CE,以CE 为边,作正方形CEFG(点D,点F 在直线CE 的同侧),连结BF.(1)如图①,当点E 与点A 重合时,请直接写出BF 的长;(2)如图②,当点E 在线段AD 上时,AE=1,①求点F 到AD 的距离;②求BF 的长;(3)若BF=310,请直接写出此时AE 的长.解:(1)BF=45;(2)①过点F 作FH⊥AD 交AD 的延长线于点H.∵四边形CEFG 是正方形,∴EC=EF,∠FEC=90°,∴∠DEC+∠FEH=90°.又∵四边形ABCD是正方形,∴∠ADC=90°,∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH.又∵∠EDC=∠EHF=90°,∴△ECD≌△FEH,∴FH=ED.∵AD=4,AE=1,∴ED=AD-AE=4-1=3,∴FH=3,即点F到AD的距离为3;②延长FH交BC的延长线于点K,∴∠DHK=∠HDC=∠DCK=90°,∴四边形CDHK为矩形,∴HK=CD=4,∴FK=FH+HK=3+4=7.∵△ECD≌△FEH,∴EH=CD=AD=4,∴AE=DH=CK=1,∴BK=BC+CK=4+1=5.在Rt△BFK中,BF=FK2+BK2=72+52=74;(3)AE=2+41或AE=1.6.(2017福建中考)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC,BC上的点,且四边形PEFD为矩形.(1)若△PCD是等腰三角形,求AP的长;(2)若AP=2,求CF的长.解:(1)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,AC=AD2+DC2=10.要使△PCD 是等腰三角形,有如下三种情况:①当CP=CD 时,CP=6,∴AP=AC-CP=4,②当PD=PC 时,∠PDC=∠PCD.∵∠PC D+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC2=5;③当DP=DC 时,过D 作DQ⊥AC 于Q,则PQ=CQ.∵S △ADC =12AD·DC=12AC·DQ,∴DQ=AD·DC AC =245,∴CQ=DC 2-DQ 2=185,∴PC=2CQ=365,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(2)连结PF,DE,记PF 与DE 的交点为O,连结OC.∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF.∵∠BC D=90°,OE=OD,∴OC=12ED.在矩形PEFD 中,PF=DE,∴OC=12PF.∵OP=OF=12PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC.又∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°.在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴CF AP =CD AD =34.∵AP=2,∴CF=324.专题四圆的综合1.已知:如图,⊙O 是△ABC 的外接圆,AB ︵=AC ︵,点D 在边BC 上,AE∥BC,AE=B D .(1)求证:AD=CE;(2)如果点G 在线段DC 上(不与点D 重合),且AG=AD,求证:四边形AGCE 是平行四边形.证明:(1)在⊙O 中,∵AB ︵=AC ︵,∴AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC.在△ABD 和△CAE 中,,∴△ABD≌△CAE(S .A .S .),∴AD=CE;(2)连结AO 并延长,交边BC 于点H.∵AB ︵=AC ︵,OA 为半径,∴AH⊥BC,∴BH=CH.∵AD=AG,∴DH=HG,∴BH-DH=CH-GH,即BD=CG.∵BD=AE,∴CG=AE.∵CG∥AE.∴四边形AGCE 是平行四边形.2.已知:如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=43,以AC 为直径的⊙O 交AB 于点D,点E 是BC 的中点,连结OD,OB,DE 相交于点F.(1)求证:DE 是⊙O 的切线;(2)求EF∶FD 的值.解:(1)连结CD.∵∠ACB=90°,AC=4,BC=43,∴AB=AC 2+BC 2=42+(43)2=8,∴∠ABC=30°,∠BAC=60°,∴∠ODA=60°.又∵AC 为直径,∴∠CDA=90°,即△CDB 为直角三角形,而E 点为斜边BC 的中点,∴DE=BE=EC,∴∠BDE=∠DBE=30°,∴∠ODE=180°-∠BDE-∠ADO=90°,∴DE 是O 的切线;(2)连结OE.∵△OAD 为等边三角形,∴AD=OA=2,∴BD=AB-AD=8-2=6.在Rt △OEC 中,OE=EC 2+OC 2=4,又∵OE 为△CBA 的中位线,∴OE∥AB,∴EF∶FD=OE∶BD=4∶6=2∶3.3.如图,AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD⊥AB 于点F,交BP 于点G,E 在DC 的延长线上,EP =EG.(1)求证:直线EP 为⊙O 的切线;(2)点P 在劣弧AC 上运动,其他条件不变,若BG 2=BF·BO,试证明:BG=PG;(3)在满足(2)的条件下,已知⊙O 的半径为3,sin B=33,求弦CD 的长.解:(1)连结OP.∵EP=EG,∴∠EPG=∠EGP.又∵∠EGP=∠BGF,∴∠EPG=∠BGF.∵OP=OB,∴∠OPB=∠OBP.∵CD⊥AB,∴∠B FG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,即OP⊥EP,∴直线EP 为⊙O 的切线;(2)连结OG.∵BG 2=BF·BO,∴BG BO =BFBG,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,∴BG=PG;(3)连结AC,BC.∵sin ∠GBO=33,∴OG OB =33.∵OB=r=3,∴OG=3,由(2)得∠GBO+∠BGF=∠OGF+∠B GF=90°,∴∠GBO=∠OGF ,∴sin ∠OGF=33=OF OG,∴OF=1,∴BF=BO-OF=3-1=2,FA=OF+OA=1+3=4.∵AB 为⊙O 的直径,∴∠ACB=∠ACF+∠BCF=90°.∵∠ACF+∠A=90°,∴∠BCF=∠A,∴△BCF∽△CAF,∴CF AF =BF CF ,∴CF 2=BF·FA,∴CF=BF·FA=2×4=22,∴CD=2CF=4 2.4.如图,AB 为半圆的直径,O 为圆心,AB=6,延长BA 到F,使FA=AB.若P 为线段AF 上一个动点(P 点与A 点不重合),过P 点作半圆的切线,切点为C,作CD⊥AB,垂足为D.过B 点作BE⊥PC,交PC 的延长线于点E,连结AC,DE.(1)判断线段AC,DE 所在直线是否平行,并证明你的结论;(2)设AC 为x,AC+B E 为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.解:(1)线段AC,DE 所在的直线平行.证明:∵CD⊥AB,BE⊥PE,∠CPD=∠BPE,∴Rt △PCD∽Rt △PBE,∴PC PB =PD PE.∵PC 与⊙O 相切于C 点,PAB 为⊙O 的割线,∴PC 2=PA×PB,∴PC PB =PA PC,∴PA PC =PDPE.∵∠CPA=∠EPD,∴△CPA∽△EPD,∴∠PCA=∠PED,∴AC∥DE;(2)连结BC.∵AB 是半圆的直径,∴∠ACB=90°,∴AC 2+BC 2=AB 2.∵AC=x,AB=6,∴BC 2=62-x 2=36-x 2.∵PC 与半圆相切于点C,∴∠BAC=∠BCE.∵∠ACB=∠BEC=90°,∴Rt △ABC∽Rt △CBE,∴AB BC =CB BE,∴BE=BC 2AB =36-x 26.∵y=AC+BE,∴y=x+36-x 26,y=-16x 2+x+6.∵P 点与A 点不重合,∴AC>0.当点P 与点F 重合时,AC 的值最大,此时PC=PA·PB=6 2.又∵∠P=∠P,∠PBC=∠PCA,∴△PCA∽△PBC,∴AC CB =PC PB ,∴BC=AC·PB PC =2AC.又∵AC 2+B C 2=AB 2,∴AC 2+(2AC)2=36,∴AC=23,∴y=-16x 2+x+6(0<x≤23).5.如图,在△AOB 中,∠AOB 为直角,OA=6,OB=8,半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位/s 的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位/s 的速度匀速运动,设运动时间为t s (0<t≤5),以P 为圆心、PA 长为半径的⊙P 与AB,OA 的另一个交点分别为C,D,连结CD,QC.(1)当t 为何值时,点Q 与点D 重合?(2)当⊙Q 经过点A 时,求⊙P 被OB 截得的弦长;(3)若⊙P 与线段QC 只有一个公共点,求t 的取值范围.解:(1)∵OA=6,OB=8,∴由勾股定理得AB=10.由题意知OQ=AP=t,∴AC=2t.∵AC 是⊙P 的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC AB =ADOA ,∴AD=1.2t.当Q 与D 重合时,AD+OQ=OA,∴1.2t +t=6,解得t=3011∴t 为3011s 时,点Q 与点D 重合;(2)当⊙Q 经过A 点时,如图①,图①OQ=OA-QA=4,∴t=41=4s ,∴PA=4,∴BP=AB-PA=6.过点P 作PE⊥OB 于点E,⊙P 与OB 相交于点F,G,连结PF,∴PE∥OA,∴△PEB∽△AO B,∴PE OA =BPAB,∴PE=3.6,∴由勾股定理得EF=2195,由垂径定理知FG=2EF=4195;图②(3)当QC 与⊙P 相切时,如图②,此时∠QCA=90°.∵OQ=AP=t,∴AQ=6-t,AC=2t.∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴AQ AB =ACOA,∴6-t 10=2t 6,∴t=1813,∴当0<t≤1813时,⊙P 与QC 只有一个交点,当QC⊥OA 时,此时Q 与D 重合,由(1)可知t=3011,∴当3011<t≤5时,⊙P 与QC 只有一个交点.综上所述,当⊙P 与线段QC 只有一个公共点,t 的取值范围为:0<t≤1811或3011<t≤5.专题五压轴题探究1.(2017常德中考)如图,已知抛物线的对称轴是y P 是抛物线上不与顶点N 重合的一动点,过P 作PA⊥x 轴于A,PC⊥y 轴于C,延长PC 交抛物线于E,设M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点.(1)求抛物线的表达式及顶点N 的坐标;(2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE∽△PAM,并求出当它们的相似比为3时的点P 的坐标.解:(1)∵抛物线的对称轴是y 轴,∴可设抛物线表达式为y=ax 2+c.在抛物线上,a+c=54,a=14,∴抛物线表达式为y=14x 2+1,∴N 点坐标为(0,1);(2)设t,14t 2,则0,14t 2PA=14t 2+1.∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N(0,1),∴M(0,2).∵OC=14t 2+1,ON=1,∴CN=14t 2+1-1=14t 2,∴OD=14t 2-1,0,-14t 2-14t 2=14t 2+1=PA.又∵PA∥DM,∴四边形PMDA 为平行四边形;(3)同(2)设t,14t 2则0,14t 2,PA=14t 2+1,PC=|t|.∵M(0,2),∴CM=14t 2+1-2=14t 2-1.在Rt △PMC 中,由勾股定理可得PM=PC 2+CM 2=14t 2+1=PA.且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM=∠ADM=2∠PDM.∵PE⊥y 轴,抛物线对称轴为y 轴,∴DP=DE,且∠PDE=2∠PDM,∴∠PDE=∠APM,又∵PD PA =DEPM,∴△DPE∽△PAM.∵OA=|t|,OM =2,∴AM=t 2+4,又∵PE=2PC=2|t|,当相似比为3时,则PEAM=3,即2|t|t 2+4=3,解得t=23或t=-23,∴P 点坐标为(23,4)或(-23,4).2.(2017永州中考)如图,已知抛物线y=ax 2+bx+1经过A(-1,0),B(1,1)两点.(1)求该抛物线的表达式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y=k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1·k 2=-1.解决问题:①若直线y=3x-1与直线y=mx+2互相垂直,求m 的值;②抛物线上是否存在点P,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A,B 重合),求点M 到直线AB 的距离的最大值.解:(1)根据题意,得解得a=-12,b=12.∴y=-12x 2+12x+1;(2)①由题意,得3m=-1,∴m=-13;②设PA 的表达式为y=kx+c,过A(-1,0),B(1,1)两点的直线表达式为y=12x+12.∵过点P 的直角边与AB 垂直,∴k=-2,∴y=-2x+c.若∠PAB=90°,把A(-1,0)代入得0=-2×(-1)+c,解得c=-2,∴y=-2x-2,点P 是直线PA y=-12x 2+12x+1,解得11=0,2=6,2=-14.∴P(6,-14);若∠PBA=90°,把B(1,1)代入y=-2x+c ,得1=-2×1+c,解得c=3,∴y=-2x+3,点P 是直线PB 与抛物线的交点,联立方程组y=-12x 2+12x+1,解得112=4,2=-5.∴P(4,-5).综上所述,存在点P(6,-14)或(4,-5),使得△PAB 是以AB 为直角边的直角三角形;(3)设n,-12n 2+12n+1M 作MQ∥y 轴,交AB 于点Q,则n,12n+∴S △ABM -12n 2+12n+112n 2+12.当n=0时,最大面积为12,AB=22+12=5,设点M 到直线AB 距离最大为h,则12×5×h=12,∴h=55.即点M 到直线AB 的距离的最大值是55.3.(六盘水中考)如图,抛物线y=ax 2+bx+c 的图象与x 轴交于A(-1,0),B(3,0)两点,与y 轴交于点C(0,-3),顶点为D.(1)求此抛物线的表达式;(2)求此抛物线顶点D的坐标和对称轴;(3)探究对称轴上是否存在一点P,使得以点P,D,A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),2+b×(-1)+c=0,2+3b+c=0∴抛物线的表达式为y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴抛物线顶点D的坐标为(1,-4),对称轴为直线x=1;(3)存在一点P,使得以点P,D,A为顶点的三角形是等腰三角形,设点P的坐标为(1,y).当PA=PD时,(-1-1)2+(0-y)2=(1-1)2+(-4-y)2,解得y=-32,即点P当DA=DP时,(-1-1)2+[0-(-4)]2=(1-1)2+(-4-y)2,解得y=-4±25,即点P的坐标为(1,-4-25)或(1,-4+25);当AD=AP时,(-1-1)2+[0-(-4)2]=(-1-1)2+(0-y)2,解得y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,综上所述,以点P,D,A为顶点的三角形是等腰三角形时,点P的坐标为错误!或(1,-4-25)或(1,-4+25)或(1,4).。

初中数学最新-2021届中考数学第二轮知识点总复习学案31 精品

初中数学最新-2021届中考数学第二轮知识点总复习学案31 精品

初中数学最新-2021届中考数学第二轮知识点总复习学案31 精品第二章方程(组)与不等式(组)第6课时一次方程(组)及其应用江苏2021~2021中考真题精选命题点1 解一元一次方程(近3年39套卷,2021年考查2次,2021年考查1次)1. (2021无锡4题3分)方程2x-1=3x+2的解为()A. x=1B. x=-1C. x=3D. x=-32. (2021镇江16题3分)已知关于x的方程2x+4=m-x的解为负数,则m的取值范围是()44 B. m> C. m<4 D. m>4 3313. (2021常州14题2分)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是2A. m<_____.命题点2 二元一次方程组及其解法(近3年39套卷,2021年考查4次,2021年考查2次,2021年考查2次) 1. (2021宿迁4题3分)已知??x?2?ax?by?5方程组?的解,则a-b的值是() x?1bx?ay?1???2x?y?5.?x?y?4A. -1 B. 2 C. 3 D. 4 2. (2021淮安20题6分)解方程组:??2x?y?5?3. (2021无锡20(2)题4分)解方程组:?. 1x?1?(2y?1)??2命题点3 一次方程(组)的应用(近3年39套卷,2021年考查4次,2021年考查5次,2021年考查3次)1. (2021无锡5题3分)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6・1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=872. (2021苏州16题3分)某地准备对一段长120 m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为_________.3. (2021无锡18题2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠,促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款______元.4. (2021南通22题8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.5. (2021苏州22题6分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问甲、乙两个旅游团各有多少人?6. (2021泰州21题10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?7. (2021连云港23题10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:购买商品A的数量购买商品B的数量购买总费用(元)(个)(个) 6 5 1140 第一次购物 3 7 1110 第二次购物 9 8 1182 第三次购物(1)小林以折扣价购买商品A、B 是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【答案】命题点1 解一元一次方程1. D【解析】移项得,2x-3x=2+1,合并同类项得,-x=3,系数化为1,得x=-3.2. C【解析】由2x+4=m-x得,x=4.3.m?4m?4,∵方程的解为负数,∴<0,解得m<33414【解析】把x=2代入原方程,得3a=a+2,解得a=. 525命题点2 二元一次方程组及其解法 1. D 【解析】∵?得a-b=4. 2. 解:??x?2?ax?by?5?2a?b?5是方程组?的解,∴?,两个方程相减,?y?1?bx?ay?1?2b?a?1?2x?y?5①,?x?y?4②①+②得:3x=9,即x=3,……………………………………………………………………(3分)将x=3代入②得:y=-1,?x?3则原方程组的解为?.………………………………………………………………(6y??1?分)?2x?y?5①?3. 解:?,1x?1??2y?1?②??2给方程②两边同乘以2得:2x-2y=1③,①-③得:y=4,………………………………………………………………………………(2分)把y=4代入①得:x=分)9,……………………………………………………………………(329??x?所以方程组的解为?2.………………………………………………………………(4??y?4分)命题点3 一次方程(组)的应用1. B【解析】设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60-x)=87.2. 20【解析】设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,由题意得??4x?9y?120?x?12,解得?,∴x+y=20.?8x?3y?120?y?83. 838、910【解析】小红付款480元,但到底有没有享受优惠还不清楚,因此我们需要分类讨论,第一种情况:小红没有享受优惠,直接购买商品的价格为480元;第二种情况:小红享受超过500元优惠,但不超过800元,则按购物总额给予8折优惠,则此时小红的商品价格为480÷80%=600;妈妈付款520元,则说明妈妈至少使用了第②种优惠,但又由于800×80%=640所以可以判断妈妈只可能享受第②种优惠,因此妈妈购买商品的价格为520÷80%=650元,综上所述小红和妈妈购买商品的价格可能会出现两种情况:①小红没有享受优惠,直接购买商品的价格为480元,妈妈购买商品的价格为650元,480+650=1130>800,因此此时享受第③种优惠需要支付800×80%+(1130-800)×60%=838元;②小红享受第②种优惠,直接购买商品的价格为600元,妈妈购买商品的价格为650元,600+650=1250>800,因此此时享受第③种优惠需要支付800×80%+(1250-800)×60%=910元. 4. 解:本题答案不唯一,下列解法供参考.解法一问题:1辆大车一次运货多少吨,1辆小车一次运货多少吨?…………………(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨. 根据题意,得??x?4?3x?4y?22,解得?,…………………………………………(7?y?2.5?2x?6y?23分)答:1辆大车一次运货4吨,1辆小车一次运货2.5吨.…………………………………(8分)解法二问题:1辆大车一次运货多少吨?…………………………………………………(3分)解:设1辆大车一次运货x吨,则1辆小车一次运货根据题意,得2x+6×22?3x吨. 422?3x=23,解得x=4.……………………………………………(74分)答:1辆大车一次运货4吨.………………………………………………………………(8分)解法三问题:5辆大车与10辆小车一次运货多少吨?…………………………………(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨.?3x?4y?22根据题意,得?,解得5x+10y=45.…………………………………………(72x?6y?23?分)答:5辆大车与10辆小车一次运货45吨.………………………………………………(8 分)5. 【思路分析】设甲、乙两个旅游团各有x人、y人,根据题意可得等量关系:甲团人数+乙团人数=55人;甲团人数=乙团人数×2-5,根据等量关系列出方程组,再解即可. 解:设甲、乙两个旅游团各有x人、y人,由题意得:?x?y?55,………………………………………………………………………………(3??x?2y?5分)解得??x?35,………………………………………………………………………………(5?y?20分)答:甲、乙两个旅游团各有35人、20人.………………………………………………(6分)6. 【思路分析】设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.解:设每件衬衫降价x元,………………………………………………………………(2分)则400×120+100(120-x)=500×80×(1+45%),…………………………………………(6分)解得x=20,………………………………………………………………………………(9分)答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.………(10分) 7. (1)【思路分析】设A、B两种商品的标价分别为x元,y元.由表格可以看出,第三次购买A、B两种商品的数量明显多于前两次,但费用却比前两次少,所以以折扣价购买A、B两种商品应该是第三次.解:三;……………………………………………………………………………………(2分)(2)【信息梳理】设A、B两种商品的标价分别为x元,y元. 原题信息整理后的信息第一次购物:A:6个,B:5个,总一 6x+5y=1140 费用1140元第二次购物:A:3个,B:7个,总二 3x+7y=1110 费用1110元根据所得信息得到方程组 5y=1140?6x+ ?1110?3x?7y=解:设A、B两种商品的标价分别为x元,y 元,………………………………………(3分)根据题意,得3x+7y=1110,………………………………………………………………(4分)解得x=90y=120.………………………………………………………………………………………(5分)答:A、B两种商品的标价分别为90元、120元.…………………………………………(6分)(3)【信息梳理】原题信息整理后的信息一商品A、B折扣相同设A、B 两种商品均打a折出售二 A、B两种商品标价分别为90元、第三次购买A、B两种商品的总费用分别感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习第二轮资料《专题复习部分》中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例 2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x+=.则221x x+的值为__________.2.若a 、b 、c 是三角形的三边长,则代数式a 2 –2ab+b 2 –c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程:211()65()11x x +=--77中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

【闯关夺冠】1.已知:反比例函数和一次函数图象的一个交点为(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定这两个函数的解析式。

2、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A 、B 两点,与y 轴交于C 点,点A 、C 的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.中考数学专题复习之三:数学的转化思想转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。

具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。

转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。

【范例讲析】:例1:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。

求:cos ∠EDF 的值。

例2:如图,∆ABC 中,BC =4,AC AC B =∠=︒2360,,P 为BC 上一点,过点P 作PD//AB ,交AC 于D 。

连结AP ,问点P 在BC 上何处时,∆APD 面积最大?【闯关夺冠】1:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。

⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ;A BC DEFPABCDEF2、在∆ABC 中,AB =5,︒=∠=607B AC ,,求BC 的长.中考数学专题复习之四:数学的方程思想在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。

【范例讲析】:例1:已知:如图,正方形ABCD 的边长为a ,△PQA 是其内接等边三角形。

求:PB 的长。

例2: 如图,在△ABC 中,∠B=30°,∠ACB=120°,D 是BC 上一点,且∠ADC=45°,若CD=8,求BD 的长。

【闯关夺冠】1: 如图,EB 是直径,O 是圆心,CB 、CD 切半圆于B 、D 、CD 交BE 延长线于A 点,若BC=6,AD=2AE ,求半圆的面积。

2.如图,某农场要用总长24 m 的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),ABCD ABCDPQB且中间隔有一道木栏,设鸡场的宽AB 为xm ,面积为S m2; (1)求S 关于x 的函数关系式;(2)若鸡场的面积为45 m2,试求出鸡场的宽AB 的长;(3)鸡场的面积能否达到50 m2?若能,请给出设计方案;若不能,请说明理由.中考数学专题复习之五:数形结合思想在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。

解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。

【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简||)23(||2b a c b c a b -+----例2:(嘉峪关)某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的? (3)果你是推销员,应如何选择付费方案?【闯关夺冠】1.实数a 、b 上在数轴上对应位置如图3-3-6所示,则||a b -( )A .aB .a -2bC .-aD .b -a2.已知抛物线c+=2如图所示,则下列结论:①c=1 ;axbxy+②a+b+c=0 ;③a-b+c<0 ;④b2-4ac>0 ,其中正确的个数是()A.1 B.2 C.3 D.43.如图,点A,D,G,M在半圆O上,四边型ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )A. a>b>cB. a=b=cC. c>a>bD. b>c>a中考数学专题复习之六:数学的分类讨论思想我们在解数学题时,如果遇到的对象不确定,就要根据已知条件和题意的要求,分不同的情况作出符合题意的解答,这就是分类讨论。

比如:①对字母的取值情况进行筛选,根据题意作出取舍;②在不同的数的范围内,对代数式表达为不同的形式;③对符合题意的图形,作出不同的形状、不同的位置关系等。

【范例讲析】:例1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 33例2.在半径为1的圆O中,弦AB、AC的长分别是3、2,则∠BAC的度数是。

例3、已知直角三角形两边x、y的长满足240x-+=,则第三边长∆中,AB=9,AC=6,,点M在AB上且AM=3,点N在为.. 例4.在ABCAC上,联结MN,若△AMN与原三角形相似,求AN的长。

【闯关夺冠】1.已知AB是圆的直径,AC是弦,AB=2,AC=2,弦AD=1,则∠CAD=.2. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.3.⊙O 的半径为5㎝,弦AB ∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是( ) (A )7㎝ (B )8㎝ (C )7㎝或1㎝ (D )1㎝4.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .1或45.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为AB ,连接PB ,求PB 的长。

中考数学专题复习之七:方案决策型题方案决策型题的特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点。

【范例讲析】:例1: 现由甲、乙两个氮肥厂向A 、B 两地运化肥。

已知甲厂可调出50吨化肥,乙厂可调出40吨化肥,A 地需30吨化肥,B 地需60吨化肥,两厂到A 、B 两地路程和运费如下表(表中运费栏“元/吨·千米”表示每吨化肥运送1千米所需人民币): (1) 设甲厂运往A 地化肥x 吨,求总运费y (元)关于x (吨)的函数关系;(2) 当甲、乙两厂各运往A 、B 两地多少化肥时,总运费最省?最省的总运费是多少?【闯关夺冠】1. (福建德化)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案. 2.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.中考数学专题复习之八:信息型题所谓信息型题就是根据文字、图象、图表等给出数据信息,进而依据这些给出的信息通过整理、分析、加工、处理等手段解决的一类实际问题【范例讲析】:例1:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加。

(人均住房面积=该区住房总面积/该区人口总数,单位:m2/人),该开发区2003~2005年,每年年底人口总数和人均住房面积的统计结果分别如下图:请根据两图所所提供的信息,解答下面的问题:⑴该区2004年和2005年两年中,哪一年比上一年增加的住房面积多?增加多少万m2?⑵由于经济发展需要,预计到2007年底,该区人口总数比2005年底增加2万,为使到2007年底该区人均住房面积达到11m2/人,试求2006年和2007年这两年该区住房总面积的年平均增加率应达到百分之几?2003 2004 2005年某开发区每年年底人口总数统计图2003 2004 2005年某开发区每年年底人均住房面积统计图【闯关夺冠】如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图像回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到到达乙地较早?早到多少时间?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.中考数学专题复习之九:图形折叠型题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。

相关文档
最新文档