教学案精编中考二次函数考点复习
二次函数中考复习专题教案
二次函数中考复习专题教学目标:(1)了解二次函数的概念,掌握二次函数的图象和性质,能正确画出二次函数的图象,并能根据图象探索函数的性质;(2)能根据具体条件求出二次函数的解析式;运用函数的观点,分析、探究实际问题中的数量关系和变化规律。
教学重点◆ 二次函数的三种解析式形式 ◆ 二次函数的图像与性质教学难点◆ 二次函数与其他函数共存问题◆ 根据二次函数图像的对称性、增减性解决相应的综合问题教学过程一、 数学知识及要求层次二次函数知识点1、二次函数的解析式三种形式一般式 y=ax 2 +bx+c(a ≠0)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式 12()()y a x x x x =-- 2、二次函数图像与性质 对称轴:2b x a=-顶点坐标:24(,)24b ac b a a-- 与y 轴交点坐标(0,c )增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 二次函数图像画法:勾画草图关键点:○1开口方向;○2对称轴;○3顶点;○4与x 轴交点;○5与y 轴交点。
图像平移步骤(1)配方 2()y a x h k =-+,确定顶点(h,k );(2)对x 轴 左加右减;对y 轴 上加下减。
二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 3.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点4.二次函数的应用如物体运动规律、销售问题、利润问题、几何图形变化问题等 【典型例题】题型 1 二次函数的概念例1.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 例2.下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
九年级数学期末复习教学案 二次函数复习
第六章 二次函数复习教学案知识结构:具体知识点:1、二次函数概念:形如c bx ax y ++=2(a ≠0,a,b,c 为常数)的函数叫x 的二次函数。
2、二次函数的图象关系:2ax y = (a ≠0) 2)(h x a y -=(a ≠0,a,h 为常数)k ax y +=2( a ≠0,a,k 为常数) 2)(h x a y -=+k (a ≠0,a,h,k 为常数)①二次函数的定义: ⑴.下列函数中,二次函数的是( )A .y=ax 2+bx+cB 、2)1()2)(2(---+=x x x yC 、xx y 12+= D 、y=x(x —1)xxxx⑵.当k= 时,函数1)1(2+-=+kkx k y 为二次函数。
②二次函数的图像与性质:二次函数y=-x 2+6x+3的图象开口方向 顶点坐标为_________对称轴为_________当x= 时函数有 值,为 。
当x 时,y 的值随x 的增大而增大。
它是由y=-x 2向 平移 个单位得到的,再向 平移 个单位得到的.③抛物线c bx ax y ++=2与x 轴的交点个数: 抛物线162++-=x x y 与x 轴的交点有 个,抛物线4322+-=x x y 与x 轴的交点有 个,抛物线y=x 2+2x+1与x 轴的交点有 个。
总结:抛物线c bx ax y ++=2与x 轴的交点个数由 决定。
④抛物线c bx ax y ++=2的图象与a 、b 、c 及b 2-4ac 的关系。
⑴如图是y=ax 2+bx+c 的图象,则a______0 b______0 c______0 b 2-4ac________0⑵.二次函数c bx ax y ++=2与一次函数c ax y +=在同一直角坐标系中图象大致是A B C D总结:抛物线c bx ax y ++=2的图象与a 、b 、c 及b 2-4ac 的关系是:a:开口方向;b :结合a 看对称轴;c :与y 轴交点坐标;b 2-4ac :与x 轴的交点个数。
二次函数中考复习专题教案
二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。
“二次函数”复习优秀教案
“二次函数”复习教学设计二次函数是函数问题中的主要内容,中考试题中年年考查,题型涵盖选择题、填空题、解答题,难度也是梯度上升到综合性难题,但其中有相当一部分的题都跟二次函数的图像与性质有关,故我们今天主要通过对二次函数性质与图像的结合,使大家掌握解决一些问题的技巧。
一、引入新课引入:同学们,今天老师将和大家一起来回顾二次函数的知识.(板书课题:二次函数的复习)二、基础交流,初步感知1.小组交流,初步感知已知二次函数y =x 2- x -2.1232(1)求抛物线开口方向,对称轴和顶点M 的坐标;(2)画出函数示意图;(3)x 为何值时,y 随x 的增大而减小,x 为何值时,y 有最大(小)值,这个最大(小)值是多少?(4)将抛物线先向左平移2个单位,再向下平移1个单位,求得到的新抛物线的函数表达式;(5)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标;(6)x 为何值时,y <0?x 为何值时,y >0?师:我们先交流一下前置任务单中的各小题,请交流各题的答案,用到的数学知识、方法及数学思想.学生活动、全班交流.师:我们在解决前置任务单中的小题时,不仅用到了二次函数的基本知识,还用到了“数形结合”的数学思想方法.(板书:数形结合)数形结合是一种非常重要的数学思想,接下来,我们将结合前置任务单中的题目谈谈它.2.师生互动,强化感知师:请一位同学说说第一题的解法. (展示答案)师:请一位同学说说你是怎么画这个图象的?(学生描述画图过程.)师:要画这个函数的图象,(点击进入函数图象)我们在平面直角坐标系中先画出这条对称轴,描出顶点.师:在对称轴的两边取两对对称点,用平滑的曲线将所描的点连起来,就得到了图象.师:从“形”上看,什么没有变?什么变了? (学生叙述形的变与不变)师:根据这些“形”的变与不变,你能得出新的抛物线的解析式吗?(生叙述,教师展示新抛物线的解析式)师:你是怎么得到的?(学生叙述得到抛物线解析式的过程.)师:(过渡语)通过数形结合,我们解决了抛物线的变换问题.当然,由变换所带来的其它问题我们也可以借助数形结合来解决,来完成(一)自学检测.如图,一次函数y =- x +2分别交y 轴、x 轴于A 、B 两点,抛物线y =-x2+bx +c 12过A 、B 两点. (1)求这个抛物线的解析式;(2)求抛物线与x 轴另一个交点的坐标;(2)交流(点击进入)师:请一位同学说说你的解题思路.学生交流解题思路和结果.(根据学生的交流,教师画图,写出结果)3.阶段小结,铺垫引入师:(小结)在前面的交流中,我们通过“形”的直觉发现了“数”的关系,再通过“数”的计算阐释了“形”的变换.这就是“数形结合”.数形结合思想,在确定二次函数视角下的平行四边形、三角形未知顶点时也有着广泛的应用.接下来的探究,将对此作出很好的诠释.(点击进入探究)三、问题深究,感悟提升1.形数互换,求取极值作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.请和你的同伴一起探究:师:从“形”上看,MN是直线x=t的一部分,我们能用含有t的式子表示MN吗?师:(对照图形和解题过程)我们从形中得出了数,这叫“以形助数”(板书),再通过数的计算得出了形的极值,这叫“以数解形”(板书).2.确定等腰三角形的第三个顶点师:AM为腰,在△ANM中,还有两条边AN和NM.这两条边中,哪条可以作为腰?学生作答师:显然,这里就涉及到初中数学中的一个重要的数学思想:分类讨论。
二次函数中考复习专题教案
二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。
2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。
3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。
4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。
5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。
三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。
五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。
二次函数复习教案
二次函数复习教案
一、教学目标:
1. 理解二次函数的定义和性质;
2. 能够将二次函数的图像进行标注和解释;
3. 掌握二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 能够通过顶点坐标或其他已知条件求解二次函数的参数;
5. 能够解二次方程和二次不等式。
二、教学内容:
1. 二次函数的定义和性质讲解;
2. 二次函数的图像标注和解释;
3. 二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 二次函数参数的求解;
5. 二次方程和二次不等式的解法。
三、教学过程:
1. 探究:通过变化a、b、c的值,观察二次函数图像的变化,并总结二次函数的性质。
2. 概念讲解:介绍二次函数的定义和性质,引入顶点、轴对称、对称轴和对称点的概念。
3. 例题演练:通过给定顶点坐标或其他已知条件,求解二次
函数的参数。
4. 解二次方程和二次不等式:介绍解二次方程和二次不等式
的方法和步骤。
5. 课堂练习:提供一些练习题,学生独立完成,然后进行批
改和讲解。
6. 拓展训练:布置课后作业,要求学生进一步加深对二次函数的理解和掌握。
四、教学评价:
1. 在课堂练习和课后作业中,观察学生解题过程和答案,评价学生对二次函数的掌握程度。
2. 对课堂练习中出现的常见错误进行讲解和纠正。
3. 针对学生困惑的问题进行答疑和解释。
五、教学资源:
1. 教材教辅资料;
2. 多媒体教学设备;
3. 课前准备好的例题、练习题和答案;
4. 批改和讲解学生练习的纸质材料。
九年级数学《二次函数》总复习教案
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
九年级数学二次函数反比例函数复习教案
教学目标:1.复习并掌握二次函数的基本概念和性质,能够准确地画出二次函数的图像;2.复习并掌握反比例函数的基本概念和性质,能够解决与反比例函数有关的问题;3.进行习题训练,巩固所学知识点。
教学重点:1.二次函数的图像;2.反比例函数的性质。
教学难点:1.二次函数的最值问题;2.反比例函数与正比例函数的比较。
一、二次函数复习1. 二次函数的基本形式:y = ax^2 + bx + ca为二次项系数,a≠0;b为一次项系数;c为常数项。
2.二次函数的图像特征a>0时,开口向上,有最小值;a<0时,开口向下,有最大值;对称轴方程:x=-b/(2a)最值:若a>0,最小值为f(-b/(2a));若a<0,最大值为f(-b/(2a))。
3.二次函数的性质平移:y = a(x - h)^2 + k的图像相当于y = ax^2的图像向右平移h个单位,向上平移k个单位。
变形:y=a(x-h)^2+k的图像相当于y=x^2的图像上下旋转、拉伸、压缩、翻转。
二、反比例函数复习1.反比例函数的基本形式:y=k/xk为常数,k≠0;x≠0。
2.反比例函数的性质定义域:x≠0;值域:y≠0;x与y成反比例关系,即xy = k为常数。
教学过程:一、二次函数复习1.复习二次函数的基本概念和性质。
通过数学游戏、小组讨论等方式,让学生回顾和复习二次函数的基本概念和性质。
2.解题训练。
配置一些习题让学生进行解答,并进行讲解和讨论。
二、反比例函数复习1.复习反比例函数的基本概念和性质。
可以通过例题,让学生回顾和复习反比例函数的基本概念和性质。
2.解题训练。
配置一些习题让学生进行解答,并进行讲解和讨论。
三、综合训练1.给学生提供一些综合性的训练题,涉及二次函数和反比例函数的内容。
提醒学生要注意题目中的条件和要求,对于解法有不同的思路和方法。
2.学生自主解题、小组合作解题,并进行讲解和讨论。
学生可以自由选择解题方式,鼓励他们多尝试、多比较。
教学案精编中考一轮复习之二次函数
专题十一 二次函数图象及其性质一、考点扫描1、理解二次函数的概念:y=ax 2+bx+c(a,b,c 是常数,a ≠0)2、会把二次函数的一般式化为顶点式,确定图象的顶点坐标)44,2(2ab ac a b --、对称轴a bx 2-=和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(x +k)2+h 的图象,了解特殊与一般相互联系和转化的思想; 4、会用待定系数法求二次函数的解析式;5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
二、考点训练1、二次函数y=ax 2+bx+c 的图像如图,则点M (b ,c a)在( )A .第一象限B .第二象限C .第三象限D .第四象限2、(2005年武汉市)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .1个B .2个C .3个D .4个3、二次函数y=x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y=x 2+3 B. y=x 2-3 C. y=(x+3)2 D. y=(x-3)24、二次函数y=-(x-1)2+3图像的顶点坐标是( ) A .(-1,3)B .(1,3) C .(-1,-3) D .(1,-3)5、(2006年南充市)二次函数y=ax 2+bx+c ,b 2=ac ,且x=0时y=-4则y 的最值是( ) A .最大值-4 B .最小值-4 C .最大值-3 D .最小值-36、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个7、(06年长春)函数y=x 2+bx-c 的图象经过点(1,2),则b-c 的值为______.8、(06年宿迁市)将一抛物线向左平移4个单位后,再向下平移2个单位得抛物线y=x 2,•则平移前抛物线的解析式是________. 9、(06年锦州市)已知二次函数的图象开口向上,且顶点在y 轴的负半轴上,请你写出一个满足条件的二次函数的表达式________. 三、例题剖析1、如图,在坐标系中,二次函数y=ax 2+c (a ≠0)的图象过 正方形ABOC •的三个顶点A ,B ,C ,则ac 的值是________. 2(1 (2)求二次函数y=ax 2+bx+c 图象的顶点坐标与对称轴.3、(06年长春市)如图,P 为抛物线y=34x 2-32x+14上对称轴右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若AP=1,求矩形PAOB 的面积.专题十二 二次函数的应用一、考点扫描二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二、例题剖析 1、(2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.2、某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:若日销售量y是销售价x(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?3、在距离地面2m高的某处把一物体以初速度V0(m/s)竖直向上抛出,•在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:S=V0t-12gt2(其中g是常数,通常取10m/s2),若V0=10m/s,则该物体在运动过程中最高点距离地面________m.4、(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销(1)在直角坐标系内,作出各组有序数对(x,y)所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?7、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.二次函数及其图像yx【课前热身】1. (08南昌)将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 2. (07四川) 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.(08贵阳)二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.14.(08沈阳)二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3) 5. 二次函数的图象如图所示,则下列结论正确的是( ) A.B. C.D.【考点链接】1. 二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.DBA4. 二次函数cbxaxy++=2中cba,,的符号的确定.【典例精析】例1 (06遂宁)已知二次函数24y x x=+,(1) 用配方法把该函数化为2()y a x h k=++(其中a、h、k都是常数且a≠0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.(2) 求函数的图象与x轴的交点坐标.例2 (08大连)如图,直线mxy+=和抛物线cbxxy++=2都经过点A(1,0),B(3,2).⑴求m的值和抛物线的解析式;⑵求不等式mxcbxx+>++2的解集.(直接写出答案)【中考演练】1. 抛物线()22-=xy的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式 .3.(07江西)已知二次函数22y x x m=-++的部分图象如右图所示,则关于x的一元二次方程220x x m-++=的解为.4. 函数2y ax=与(0,0)y ax b a b=+>>在同一坐标系中的大致图象是(5. (06资阳)已知函数y=x2-2x-2的图象如图1所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥36. (06浙江) 二次函数cbxaxy++=2(0≠a)的图象如图所示,则下列结论:①a>0;②c>0;③b2-4a c>0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个(第5题) (第6题)二次函数的应用【课前热身】1. 二次函数y =2x 2-4x +5的对称轴方程是x =___;当x = 时,y 有最小值是 . 2. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米, 现在它的示意图放在平面直角坐标系中(如右图),则此 抛物线的解析式为 .3. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )24. 把一段长1.6米的铁丝围长方形ABCD ,设宽为x ,面积为y .则当y 最大时,x 所取的值是( ) A .0.5 B .0.4 C .0.3 D .0.6 【考点链接】1. 二次函数的解析式:(1)一般式: ;(2)顶点式: ;(3)交点式: . 2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 【典例精析】例1 用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为x m ,窗户的透光面积为ym 2,y 与x 的函数图象如图2所示.⑴ 观察图象,当x 为何值时,窗户透光面积最大?⑵ 当窗户透光面积最大时,窗框的另一边长是多少?例2 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【中考演练】1.(06浙江)二次函数y =x 2+10x -5的最小值为 .2. 某飞机着陆生滑行的路程s 米与时间t 秒的关系式为:25.160t t s -=,试问飞机着陆后滑行 米才能停止.3. 矩形周长为16cm, 它的一边长为xcm ,面积为ycm 2,则y 与x 之间函数关系为 . 4. 苹果熟了,从树上落下所经过的路程s 与下落的时间t 满足221gt s =(g 是不为0的常数)则s 与t 的函数图象大致是( )5.(08恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大 ( ) A. 7 B. 6 C. 5 D. 46. 下列函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B.当距离一定时,火车行驶的时间t 与速度v 之间的关系C.等边三角形的周长C 与边长a 之间的关系D.圆心角为120°的扇形面积S 与半径R 之间的关系7.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?8. 体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线21212++-=x x y 的一部分,根据关系式回答: ⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?。
二次函数复习教案
二次函数复习教案第一篇:二次函数复习教案二次函数复习教案一、备考策略:通过研究分析近5年德州中考试题,二次函数中考命题主要有以下特点(1)二次函数的图象和性质,以选择题和填空题为主。
(2)直接考察二次函数表达式的确定的题目不是很多,大多与其他知识点相融合,以解答题居多。
(3)二次函数与方程结合考察以解答题居多,与不等式结合以选择题为主。
(4)二次函数图象的平移考察以选择题和填空题为主。
(5)二次函数的实际应用,以解答题为主。
二、.命题热点:(1)二次函数的图象和性质。
(2)二次函数表达式的确定。
(3)二次函数与方程和不等式的关系。
(4)抛物线型实际问题在二次函数中的应用。
(5)应用二次函数的性质解决最优化问题。
三、教学目标:1、掌握二次函数的定义、图象及性质。
2、会用待定系数法求二次函数解析式。
3、能运用二次函数解决实际问题。
教学重点:二次函数图象及其性质,并利用二次函数解决实际问题。
教学难点:二次函数性质的灵活运用,能把实际问题转化为二次函数的数学模型。
四、教学过程:(一)基础知识之自我建构(二)考点梳理过关考点一、二次函数的定义 1.什么是二次函数?2.二次函数的三种基本形式(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);(2)顶点式:y=a(x-h)2+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标.达标练习1.(2017·百色中考)经过A(4,0),B(-2,0), C(0,3)三点的抛物线解析式是__________.考点二、二次函数的图象和性质达标练习2、(2017·衡阳中考)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是:y1________y2(填“<”“>”或“=”).考点三、二次函数的图象与系数a,b,c的关系达标练习3、(2017·烟台中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④ 考点四二次函数图象的平移达标练习4、(2017·常德中考)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x-3)2-5B.y=2(x+3)2+5C.y=2(x-3)2+5D.y=2(x+3)2-5 考点五二次函数与方程和不等式达标练习5、1.(2017·徐州中考)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0D.b<1 【答题关键指导】二次函数与一元二次方程的关系(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,则两个交点的横坐标是一元二次方程ax2+bx+c=0(a≠0)的两个解.(2)二次函数的图象与x轴交点的个数由相应的一元二次方程的根的判别式的符号确定.2、(2017·咸宁中考)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是____________.考点六二次函数的实际应用列二次函数解应用题的两种类型1.未告知是二次函数(如求最大利润,最大面积等最优化问题)2.已告知二次函数图象(如涵洞、桥梁、投篮等抛物型问题)五、堂清检测4、六、作业必做题:1、选做题:第二篇:二次函数复习教案中学美术课水彩画技法教学摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。
中考复习二次函数教案
中考复习二次函数教案教案一:二次函数的概念和性质教学目标:1.了解二次函数的定义和性质;2.掌握寻找二次函数的顶点、对称轴以及开口方向;3.理解二次函数与图像的关系。
教学重点:1.二次函数的定义和性质;2.二次函数的图像与函数解析式的关系。
教学难点:1.理解寻找二次函数的顶点和对称轴的方法;2.分析二次函数图像与函数解析式的关系。
教学准备:1.PPT;2.笔记本和书写工具;3.教学板书。
教学过程:Step 1 引入新课1.引入:通过一个具体的问题引入。
如:小明在高空抛物运动中,发现物体的高度与时间之间的关系可以用一个函数来表示,这个函数为什么是二次函数呢?2.提问:大家知道什么是二次函数吗?3.学生回答。
4. 教师解释:二次函数是指形如y=ax²+bx+c(其中a≠0)的函数。
Step 2 二次函数的性质1.介绍二次函数的性质:(1)首先解释二次函数的各个参数的含义:a、b、c。
(2)探讨二次函数的开口方向与a的关系:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
(3)引导学生思考:二次函数的最高点或最低点在哪里?(4)解释二次函数的最值和顶点的定位。
2.案例分析:(1)通过一个具体的问题案例分析二次函数的性质。
(2)分析二次函数的解析式与图像的关系。
Step 3 寻找二次函数的顶点和对称轴1.引导学生思考:如何寻找二次函数的顶点和对称轴?2.解释顶点和对称轴的含义。
3.示范寻找顶点和对称轴的方法步骤。
4.练习:让学生通过一组二次函数的解析式寻找对应的顶点和对称轴。
Step 4 总结与拓展1.总结二次函数的概念和性质。
2.教师讲解二次函数的应用领域。
3.引导学生思考:如何利用二次函数的性质解决问题?教学反思:通过讲解二次函数的概念和性质,学生能够理解二次函数与图像的关系,并掌握寻找顶点和对称轴的方法。
但是,学生在理解二次函数与高空抛物运动等实际问题的应用过程中,可能会遇到一定的困难。
《二次函数复习》教案
《二次函数复习》教案教学目的:经过温习,使先生能熟习二次函数的几种基本表达式,会选用适宜的表达式解题;学会数形结合的数学思想;学会知识的迁移才干,会实际联络实践,处置实践效果。
六、教学进程:二次函数是初中代数的重要内容之一,也是历年中考的重点。
这局部知识命题方式比拟灵敏,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一同,出如今压轴题之中。
因此,熟练掌握二次函数的相关知识,会灵敏运用普通式、顶点式、交点式求二次函数的解析式是处置综合运用题的基础和关键。
一、二次函数常用的几种解析式确实定普通式:顶点式:交点式:平移式:二、求二次函数解析式的思想方法1、求二次函数解析式的常用方法:待定系数法、配方法、数形结合等。
2、求二次函数解析式的常用思想:转化思想 : 解方程或方程组3、二次函数解析式的最终方式:无论采用哪一种解析式求解,最后结果最好化为普通式。
三、运用举例例1、二次函数的图像如下图,求其解析式。
针对练习:1、二次函数的图像过原点,当x=1时,y有最小值为-1,求其解析式。
2、二次函数与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。
例2、将抛物线向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。
针对练习:3、将二次函数的图像向右平移1个单位,再向上平移4个单位,求其解析式。
例3、:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是12米,当水位是2米时,测得水面宽度AC是8米。
(1)求拱桥所在抛物线的解析式;(2)当水位是2.5米时,高1.4米的船能否经过拱桥?请说明理由(不思索船的宽度。
船的高度指船在水面上的高度)。
针对练习:4、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米,它能否经过隧道?5. 刘炜在距离篮下4米处跳起投篮,篮球运转的路途是抛物线,当球运转的水平距离为2.5米时,到达最高度3.5米,然后准确落入蓝筐.蓝筐中心到空中距离为3.05米.假设刘炜的身高为1.9米,在这次跳投中,球在头顶上方0.15米处出手,问求出手时,他跳离空中的高度是多少?七、课堂小结1、二次函数常用解析式2、求二次函数解析式的普通方法:图象上三点坐标,通常选择普通式。
二次函数》专题复习教学设计
二次函数》专题复习教学设计一、教材分析二次函数在初中函数的教学中具有重要地位。
它不仅是一元二次方程及不等式的引申和提高,更为高中研究一元二次不等式和圆锥曲线奠定基础。
在历届中考试题中,二次函数都是压轴题中不可缺少的内容。
二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
二、学情分析九年级学生已经掌握了二次函数的定义、图像及性质等基本知识,学生的分析、理解能力较研究新课时有明显提高,具有一定的自主探究和合作研究的能力。
三、复目标知识目标:能够构建出本专题的知识结构图;巩固二次函数的基础知识,包括二次函数的图像及基本性质、解析式的三种表示方法及解析式求法、一元二次方程与抛物线的结合与应用;能够利用二次函数解决实际问题。
技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力;体会数形结合、函数建模、转化、分类讨论等数学思想方法的运用。
情感目标:通过问题情境和探索活动的创设,激发学生的研究兴趣;让学生感受到数学与人类生活的密切联系,体会到研究数学的乐趣。
四、复重、难点二次函数图像及性质和二次函数的应用。
五、复方法1.以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合九年级学生的求知心理和已有的认知水平开展教学。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的个体差异,在教学的各个环节中进行分层教学,让每一个学生都能获得知识,能力得到提高。
2.采用图表结构,将知识点分类,让学生形成一个清晰、系统、完整的知识网络。
六、复过程构建知识结构,巩固二次函数的基础知识,培养学生解决实际问题的能力,体会数形结合、函数建模、转化、分类讨论等数学思想方法的运用。
二次函数的相关知识一、二次函数解析式的表示方法1.顶点式。
2.交点式。
3.一般式。
对称轴分别为。
二、二次函数的图像及性质1.填表:抛物线对称轴顶点坐标增减性最值开口方向y=ax²y=a(x-h)²y=ax²+bx+c当 a。
二次函数中考复习专题教案
二次函数中考复习专题教学目标:(1)了解二次函数的概念,掌握二次函数的图象和性质,能正确画出二次函数的图象,并能根据图象探索函数的性质;(2)能根据具体条件求出二次函数的解析式;运用函数的观点,分析、探究实际问题中的数量关系和变化规律。
教学重点◆二次函数的三种解析式形式◆二次函数的图像与性质教学难点◆二次函数与其他函数共存问题◆根据二次函数图像的对称性、增减性解决相应的综合问题教学过程一、数学知识及要求层次二次函数知识点1、二次函数的解析式三种形式 一般式 y=ax 2 +bx+c(a ≠0) 顶点式 2()y a x h k =-+ 交点式 12()()y a x x x x =--2、二次函数图像与性质 对称轴:2b x a=- 顶点坐标:24(,)24b ac b a a--与y 轴交点坐标(0,c )增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小二次函数图像画法:勾画草图关键点:○1开口方向;○2对称轴;○3顶点;○4与x 轴交点;○5与y 轴交点。
图像平移步骤(1)配方 2()y a x hk =-+,确定顶点(h,k ); (2)对x 轴 左加右减;对y 轴 上加下减。
二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 3.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点4.二次函数的应用如物体运动规律、销售问题、利润问题、几何图形变化问题等 【典型例题】题型 1 二次函数的概念例1.二次函数2365y x x =--+的图像的顶点坐标是( )A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 例2.下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
中考二次函数考点综合复习教案
(
)
A. 向左移动 1 个单位,向上移动 3 个单位.
B. 向右移动 1 个单位,向上移动 3
个单位.
C. 向左移动 1 个单位,向下移动 3 个单位.
D. 向右移动 1 个单位,向下移动 3
个单位.
【解析】与抛物线有关的平移变换问题,通常都要将二次函数化成“顶点式”,结合平移规律 即可分析.
【例 2】(2007 年上海市)在直角坐标平面内,二次函数图象的顶点为 A(1, 4) ,且过点 B(3,0) .
.
【例 2】根据下列条件求关于 x 的二次函
数的解析式
当 x=3 时,y 最小值=-1,且图象过(0,7).
【点评】两题考查了二次函数解析式中待定系数的确定问题,一般地有几个待定系 数时,我们需要从已知条件中获取几个点的坐标,从而借助于方程组求解待定 系数.
【例 3】(2007 年哈尔滨市)如图,用一段长为 30 米的篱笆围成一个一边靠墙(墙的长度不
【例 1】.若直线 y=ax+b (a≠0)在第二、四象限都无图像,则抛物线 y=ax2+bx+c ( )
A.开口向上,对称轴是 y 轴
B.开口向下,对称轴平行于 y 轴
C.开口向上,对称轴平行于 y 轴
D.开口向下,对称轴是 y 轴
【例 2】.一次函数 y=ax+b 与二次函数 y=ax2+bx+c 在同一坐标系中的图像可能是 ( )
限)的矩形菜园 ABCD ,设 AB 边长为 x 米,则菜园的面积 y (单位:米 2 )与
x (单位:米)的函数关系式为
(不要求写出自变量 x 的取值范围).
墙
D
C
菜园
A
B
九年级数学二次函数复习教案
一、教学目标:1.知识与能力目标:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.过程与方法目标:1.通过提问、讲解和练习等方式,引导学生复习二次函数的主要知识点;2.引导学生灵活运用所学知识解决实际问题。
3.情感态度价值观目标:1.培养学生对数学的兴趣;2.提高学生的数学思维和解决问题的能力;3.培养学生的合作意识和实际应用能力。
二、教学重点与难点:1.教学重点:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.教学难点:1.通过实际问题解决中运用二次函数;2.灵活运用二次函数的平移、伸缩变换。
三、教学过程设计:1.导入新课进行一个小组讨论,让学生回顾一下二次函数的知识点,并提出自己的问题和疑惑。
然后学生将自己的问题汇报给全班。
2.概念复习与演练1.复习二次函数的基本概念和性质,例如函数的定义域、值域、最值等。
2.复习二次函数的图像和特征,例如开口方向、对称轴、顶点坐标等。
3.利用教材上的例题和习题进行讲解和练习。
3.平移、伸缩变换的复习与演练1.复习并讲解二次函数平移和伸缩的概念和方法。
2.复习并讲解平移后的二次函数的图像和特征。
3.利用教材上的例题和习题进行讲解和练习。
4.解二次函数的复习与演练1.复习二次函数的解的方法,例如配方法、求解方程组等。
2.复习并讲解二次函数解相关问题的方法,例如求最值、求交点等。
3.利用教材上的例题和习题进行讲解和练习。
5.实际问题的解决1.提供一些与实际生活相关的问题,让学生结合所学知识解决问题。
2.分组讨论和汇报,互相学习和交流。
6.小结与反馈对本节课的重点和难点进行小结,并进行学生的反馈和问答环节。
四、教学资源准备:1.教材和课件;2.相关练习题和习题;3.与实际生活相关的问题。
中考数学复习-二次函数-教案
中考数学专题复习五二次函数【教学笔记】考点一:求二次函数的解析式1、用待定系数法求二次函数的解析式,要根据给定点的特性选择适宜的式子来求解.2、已知顶点坐标或对称轴或最大值时,可设顶点式y=a(x-h)²+k.3、已知抛物线及x轴两交点坐标或已知抛物线及x轴一交点坐标及对称轴,可通过设交点式y=a(x-x1)(x-x2)来求解;4、所给的三个条件是任意三点时,可设一般式y=ax²+bx+c,然后组成三元一次方程组来求解.考点二:根据二次函数图象及性质判断代数式的符号1、二次函数图象及系数的关系.2、注意二次函数的系数及其图象的形状、对称轴、特殊点的关系.3、二次函数及x、y轴的交点问题,根据题意得出抛物线对称轴.考点三:二次函数及实际问题1、如物体的运动规律问题、销售利润问题、几何图形的变更问题、存在性问题等.2、最值问题3、函数及方程结合考点四:二次函数的综合应用1、动点问题2、数形结合3、分类讨论4、及几何图形结合、勾股定理等【典型例题】考点一:求二次函数的解析式【例1】例1:(2016•四川攀枝花)将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( C )A.y=﹣2(x+1)2B.y=﹣2(x+1)2+2C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2+1【例2】(2016•资阳)已知抛物线及x轴交于A(6,0)、B(﹣,0)两点,及y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′及直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′及抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【分析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC及OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出E G的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC及OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MN O平移所得,∴O′M′∥OM,∴O′M′⊥A C,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HE G=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.【例3】(2013•资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),及x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN 恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.考点:二次函数综合题分析:(1)根据平行四边形的性质可求点C的坐标,由待定系数法即可求出抛物线的解析式;(2)连结BD交对称轴于G,过G作GN⊥BC于H,交x轴于N,根据待定系数法即可求出直线BD的解析式,根据抛物线对称轴公式可求对称轴,由此即可求出点N的坐标;(3)过点M作直线交x轴于点P1,分点P在对称轴的左侧,点P在对称轴的右侧,两种情况讨论即可求出直线的解析式.解答:解:(1)∵点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4),且四边形ABCD是平行四边形,∴AB=CD=5,∴点C的坐标为(5,4),∵过点A、C、D作抛物线y=ax2+bx+c(a≠0),∴,解得.故抛物线的解析式为y=﹣x2+x+4.(2)连结BD交对称轴于G,在Rt△OBD中,易求BD=5,∴CD=BD,则∠DCB=∠DBC,又∵∠DCB=∠CBE,∴∠DBC=∠CBE,过G作GN⊥BC于H,交x轴于N,易证GH=HN,∴点G及点M重合,故直线BD的解析式y=﹣x+4根据抛物线可知对称轴方程为x=,则点M的坐标为(,),即GF=,BF=,∴BM==,又∵MN被BC垂直平分,∴BM=BN=,∴点N的坐标为(,0);(3)过点M作直线交x轴于点P1,易求四边形AECD的面积为28,四边形ABCD的面积为20,由“四边形AECD 的面积分为3:4”可知直线P1M必及线段CD相交,设交点为Q1,四边形AP1Q1D的面积为S1,四边形P1ECQ1的面积为S2,点P1的坐标为(a,0),假设点P在对称轴的左侧,则P1F=﹣a,P1E=7﹣a,由△MKQ1∽△MFP1,得=,易求Q1K=5P1F=5(﹣a),∴CQ1=﹣5(﹣a)=5a﹣10,∴S2=(5a﹣10+7﹣a),根据P1(,0),M(,)可求直线P1M的解析式为y=x﹣6,若点P在对称轴的右侧,则直线P2M的解析式为y=﹣x+.点评:考查了二次函数综合题,涉及的知识点有:平行四边形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,抛物线对称轴公式,分类思想的运用,综合性较强,有一定的难度.【课后练习】1、(2016•四川成都)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( A )A.y=(x+2)2﹣3 B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣32、(2014年四川资阳)如图,已知抛物线y=ax2+bx+c及x轴的一个交点为A(3,0),及y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形及△ABC重叠部分的面积记为S,用m的代数式表示S.分析:(1)根据对称轴可知,抛物线y=ax2+bx+c及x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.解答:解:(1)由题意可知,抛物线y=ax2+bx+c及x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.3、(2015年四川资阳)已知抛物线p:y=ax2+bx+c的顶点为C,及x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴及y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____________________.解析:先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.4、(2014年四川成都)将二次函数322+-=xxy化为khxy+-=2)(的形式,结果为()(A)4)1(2++=xy(B)2)1(2++=xy(C)4)1(2+-=xy(D)2)1(2+-=xy解:2)1(21232222+-=++-=+-=xxxxxy.故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数1二次函数的定义:2.抛物线y=a(x-h)2+k 性质. ⑴当a>0时,抛物线y=a(x-h)2+k 的开口 ,对称轴是 , 顶点坐标是 ,是最 (高低)点在对称轴的左侧x < h ,y 随x 的增大而 ,在对称轴的右侧x > h,y 随x 的增大而 , 当x= 时,取得最 值,这个值等于 ;⑵当a <0时,抛物线y=a(x-h)2+k 的开口 ,对称轴是 , 顶点坐标是 ,是最 (高低)在对称轴的左侧x < h ,y 随x 的增大而 ,在对称轴的右侧x > h,y 随x 的增大而 ,当x= 时,取得最 值,这个值等于 ;3. 二次函数y=ax2+bx+c 的性质 ⑴当a ﹥0时:抛物线开口向上。
对称轴是x=- ,顶点坐标是( , ) 当a ﹥0时,在对称轴的左侧,即当x <- 时,y 随x 的增大而减小;在对称轴的右侧,即当x ﹥ 时, y 随x 的增大而增大。
简记左减右增。
抛物线有最低点,当x= 时, y 最小值= ⑵当a < 0时:抛物线开口向下。
对称轴是x=- ,顶点坐标是( , ) 在对称轴的左侧,即当x < 时,y 随x 的增大而增大;在对称轴的右侧,即当x ﹥ 时, y 随x 的增大而减小。
简记左增右减。
抛物线有最高点, 当x= 时, y 最大值= 4.二次函数平移5. 求对称轴求顶点坐标6.二次函数作图7:二次函数的图象与系数符号8:二次函数与一元二次方程与不等式 9代定系数法求二次函数的解析式: 一:.二次函数的定义:关于x 的函数是二次函数, 求m 的值.A 2或-1B -2或1 C2 D-1 二、抛物线y=a(x-h)2+k 的性质:1(2012年浙江金华五模)抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =32.(2012年金山区二模)二次函数2(1)2y x =--+图象的顶点坐标是( ) (A )(1,2)(B )(1,2)- (C )(1,2)--(D )(1,2)-3..已知二次函数y=2(x+k )2+k (a 为常数),当k 取不同的值时,其图象的顶点在一条直线上,这条直线的解析式是 A y=x By=-x C y=2x D y=-2x 4.2012苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x ﹣1)2+1的图象上,若x 1>x 2>1,则y 1 y 2(填“>”、“<”或“=”).5.(2012年中考数学科模拟)Y=-2(x-1)2+5 的图象开口向 ,顶点坐标为 ,当x >1时,y 值随着x 值的增大而 。
mm xm y -+=2)1(6(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >> 三、二次函数y=ax2+bx+c 的性质1. 下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )四:二次函数的平移1、(2012年浙江金华一模)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+-C .()213y x =--D .()213y x =-+4.将抛物线y =x 2+2x +6向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。
。
5.抛物线c bx x y ++=2的图像向右平移2个单位长度,再向下平移3个单位长度,所得图像解析式为322--=x x y ,则b= ,c= 。
五.求对称轴求顶点坐标 ㈠求对称轴:1[2012淮南市]开口向下的抛物线y m x mx =-++()22221的对称轴经过点(-1,3), 则m =2(2012年宿迁模拟)抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为 ___._ 3. 抛物线y =2x 2-bx +3的对称轴是y 轴,则b 的值为 ___._4.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax2+bx+c (a ≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A 、第8秒 B 、第10秒 C 、第12秒 D 、第15秒5.抛物线c bx ax y ++=2经过点(-1,4) 和 (5,4),求其对称轴方程。
㈡求顶点坐标 对称轴法1.(2012年浙江金华四模)抛物线)2(--=x x y 的顶点坐标是 ( ) A .(-1,-1) B .(-1,1)C .(1,1) D .(1,-1)2.(2012年浙江省椒江二中、温中实验学校第一次联考)(2012年浙江省椒江二中、温中实验学校第一次联考)二次函数y =(x -3)(x +2)的图象的对称轴是 ( ) A .x =3 B .x =-2 C .x =12-D .x =12公式法:1.(2012深圳)二次函数34212+-=x x y 的最小值是 2. 二次函数2365y x x =--+的图像的顶点坐标是 ( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4) 配方法: 1.用配方法把4412-+-=x x y化为k h x a y +-=2)(的形式为3(2012年北京市延庆)用配方法把13822-+-=x x y 化为k h x a y +-=2)(的形式为4. 二次函数52++=bx x y 配方后k x y +-=2)2(则b 、k 的值分别为( ) (A )0.5 (B )0.1 (C )—4.5 (D )—4.15(海南省2012年中考数学科模拟)下列关于二次函数的说法错误的是( ) A.抛物线y=-2x 2+3x +1的对称轴是直线x=34; B.点A(3,0)不在抛物线y=x 2-2x-3的图象上;C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)7能用几种方法(2012江西高安一模)抛物线 y=x 2+2x-3的顶点坐标为 .8.(2007•荆州)飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t -1.5t 2.飞机着陆后滑行多远才能停下来?. A600米 B 400米C 500米D 400米 八二次函数与一元二次方程 ㈠二次函数与一元二次方程1.抛物线3522+-=x x y 与x 轴的交点坐标 。
2(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。
A 10米 B 8米C 6米D2米或10米5.如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 ( )6.(2012苏州市吴中区教学质量调研)生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该企业一年中应停产的月份是( ▲ )(A)1月,2月 (B)1月,2月,3月 (C)3月,12月 (D)1月,2月,3月,12月7.如图,抛物线y=ax2+bx+c 的对称轴是直线 x=-3,由图象知,关于x 的方程ax2+bx+c=0的两个根分别是x1=1.3 ,x2=___8已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程-x 2+2x+m=0的解为( )㈡二次函数与一元二次不等式2(2012•资阳)如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5㈢抛物线与判别式1.(河南省信阳市二中). 抛物线y =2x 2+8x +m 与x 轴只有一个公共点,则m 值为 2已知抛物线y =x 2-2kx +9的顶点在x 轴上,则k =____________.3.(2011湖北襄阳)已知抛物线12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是( ) A.4<kB.4≤kC.4<k 且3≠kD.4≤k 且3≠k4(2010 福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是( ) A .47-≥k B .47-≥k 且0≠k ,C . 47->k ,D 47->k 且0≠k (四)、二次函数的图象与系数符号1..已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是( )A .a >0B .c <0C .b 2-4ac <0D .a +b +c >02.(2012荆门东宝区模拟)在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).在同一直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象可能为3(2012深圳市龙城中学质量检测)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列4个结论:①0<abc ;②c a b +>;③02=-b a ;④042<-ac b 。
其中正确的结论有)的图象如图所示,有下列4个结论:①abc <0;②b <a+c ;③4a+2b+c >0;④a+b >m (am+b )(m≠1的实数).其中正确的结论有( )个.5(2010 天津)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③2a+c <0;④930a b c ++<. 其中,正确结论的个数是 (A )1 (B )2 (C )3 (D )46、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列4个结论中:①abc>0;②b<a+c ;③4a+2b+c>0;④b 2-4ac>0;⑤b=2a.正确的是 (填序号)7.(2011山东日照,17,4分)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④4a-2b+c>0.其中正确的命题是(). A ①②B①③C②③D②④实际应用:㈠图形面积:1.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.2(2006•临汾)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点Q从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是()...A B C D6.(2010•江津区)如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A 与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()9A B C D7(2010•桂林)如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是(.A B C D 几何图形与二次函数2、(2009年鄂州)24、如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米。