最新北师大版2018-2019学年数学七年级上册《整式的加减》同步练习题及答案-精品试题
2018-2019学年北师版七年级数学上册专题复习试题:第三章 整式及其加减含答案
2018-2019学年北师版七年级 数学上册专题复习班级 姓名整式及其加减一、选择题1.下列说法正确的是( D ) A .a 是代数式,1不是代数式B .表示a ,b ,213的积的代数式为213abC .代数式a -4b的意义是a 与4的差除b 的商D.x -32是二项式,它的一次项系数是122.今年,我校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a 人,女同学比男同学的56少24人,则参加“经典诵读”比赛的学生一共有( D )A.⎝ ⎛⎭⎪⎫56a -24人 B.65(a -24)人 C.65(a +24)人 D.⎝ ⎛⎭⎪⎫116a -24人3.对于式子:x +2y 2,a 2b ,12,3x 2+5x -2,ab c ,0,x +y2x ,M ,下列说法正确的是( C )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式4.多项式x 2-2xy 3-12y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 5.化简-2(M -N )的结果为( D ) A .-2M -N B .-2M +N C .2M -2N D .-2M +2N 6.下列计算正确的有( C ) ①(-2)2=4;②-2(a +2b )=-2a +4b ;③-⎝ ⎛⎭⎪⎫-152=125;④-(-12 016)=1; ⑤-[-(-a )]=-a . A .1个 B .2个C .3个D .4个7.下列计算正确的是( D )A .3a +2b =5abB .5a 2-2a 2=3C .7a +a =7a 2D .2a 2b -4a 2b =-2a 2b8.已知单项式2a 3b N +1与-3a M -2b 2的和仍是单项式,则2M +3N 的值为( D ) A .10 B .11 C .12 D .139.若代数式3x 2-4x +6的值为9,则x 2-43x +8的值为( D ) A .17 B .15 C .11 D .910.若|x +y +2|+(xy -1)2=0,则(3x -xy +1)-(xy -3y -2)的值为( C ) A .3 B .-3 C .-5 D .1111.已知实数x ,y ,z 满足⎩⎨⎧x +y +z =5,4x +y -2z =2,则代数式3x -3z +1的值是( A )A .-2B .2C .-6D .812.已知下列一组数:1,34,59,716,925,….用代数式表示第N 个数,则第N 个数是( B )A.2n -13n -2B.2n -1n 2C.2n +13n -2D.2n +1n 2二、填空题13.某单位购进A ,B ,C 三种型号的笔记本60本,它们的单价分别是25元、20元和15元,共计花费1 250元.若其中有A 种型号的笔记本N 本,则B 种型号的有__70-2N __本.(结果用含N 的代数式表示)14.已知多项式(M -1)x 4-x N +2x -5是三次三项式,则(M +1)N =__8__.15.如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为(2a +b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米.小明家楼梯的竖直高度(即B C 的长度)为__(a -2b )__米.16.若多项式A 满足A +(2a 2-b 2)=3a 2-2b 2,则A =__a 2-b 2__. 17.已知a 2+2a =1,则3(a 2+2a )+2的值为__5__.18.观察下面的一列单项式:2x ,-4x 2,8x 3,-16x 4,…根据你发现的规律,第N 个单项式为__(-1)N +1·2N ·x N __.19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b |-|c +b |+|b -a |=__a -b +c __.20.如果有2 018名学生排成一列,按1,2,3,4,5,4,3,2,1,2,3,4,5,4,3,2,1,…的规律报数,那么第2 018名学生所报的数是__2__.21.若a是不为1的实数,我们把11-a称为a的差倒数,设a1=-13,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2 017的值是__-13__.三、解答题22.某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算?解:(1)采用记时制应付的费用为3x+1.2x=4.2x(元),采用包月制应付的费用为(50+1.2x)元.(2)计时制应付的费用为4.2×25=105(元),包月制应付的费用为50+1.2×25=80(元).∵105>80,∴选择包月制合算.23.新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题:(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示);(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.解:(1)(88-86.5)÷3=1.5÷3=0.5(厘米),则一本数学课本的高度是0.5厘米.(2)86.5-3×0.5=86.5-1.5=85(厘米),即讲台的高度是85厘米.(3)整齐叠放在桌面上的x本数学课本距离地面的高度是(85+0.5x)厘米.(4)余下的数学课本距离地面的高度:85+(56-18)×0.5=104(厘米),即余下的数学课本距离地面的高度是104厘米.24.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)小红和小明买这些笔记本和圆珠笔一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?解:(1)由题意,得3x+6y+6x+3y=9x+9y,则小红和小明买这些笔记本和圆珠笔一共花费了(9x+9y)元.(2)由题意,得(6x+3y)-(3x+6y)=3x-3y.因为每本笔记本比每支圆珠笔贵2元,即x-y=2,所以3x-3y=3(x-y)=6(元),则小明比小红多花费了6元钱.25.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米.回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?解:(1)30x+20x-x2=50x-x2.则修建十字路的面积是(50x-x2)平方米.(2)20×30-50x+x2=600-50×2+2×2=504,则草坪(阴影部分)的面积为504平方米.26.在罗山某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含M,N的代数式表示该广场的面积S;(2)若M,N满足(M-6)2+|N-8|=0,求出该广场的面积.解:(1)S=2M×2N-M(2N-N-0.5N)=4MN-0.5MN=3.5MN.(2)由题意,得M-6=0,N-8=0,∴M=6,N=8,代入,可得S=3.5×6×8=168.27.先化简,再求值:(2x2-1+3x)+4(1-3x-2x2),其中x=-1.解:原式=2x2-1+3x+4-12x-8x2=-6x2-9x+3.把x=-1代入,可得原式=-6+9+3=6.28.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.解:原式=-a2b+3ab2-a2b-4ab2+2a2b=-ab2.当a=-1,b=-2时,原式=-(-1)×(-2)2=4.29.已知多项式A=2x2-xy,B=x2+xy-6.求:(1)4A-B;(2)当x=1,y=-2时,求4A-B的值.解:(1)∵多项式A=2x2-xy,B=x2+xy-6,∴4A-B=4(2x2-xy)-(x2+xy-6)=8x2-4xy-x2-xy+6=7x2-5xy+6.(2)∵由(1)知,4A-B=7x2-5xy+6,∴当x=1,y=-2时,原式=7×12-5×1×(-2)+6=7+10+6=23.30.化简求值:7a 2b +(-4a 2b +5ab 2)-(2a 2b -3ab 2).其中a =-1,b =2. 解:原式=7a 2b -4a 2b +5ab 2-2a 2b +3ab 2 =(7-4-2)a 2b +(5+3)ab 2 =a 2b +8ab 2.当a =-1,b =2时,原式=(-1)2×2+8×(-1)×22 =2-32 =-30.31.先化简,再求值:3M 2N -⎣⎢⎡⎦⎥⎤mn 2-12(4mn 2-6m 2n )+m 2n +4MN 2,其中M =-2,N =3.解:原式=3M 2N -(MN 2-2MN 2+3M 2N +M 2N )+4MN 2 =3M 2N -MN 2+2MN 2-3M 2N -M 2N +4MN 2 =-M 2N +5MN 2.当M =-2,N =3时,原式=-(-2)2×3+5×(-2)×32 =-102.32.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a 1,第二个数记为a 2,…,第N 个数记为a N .(1)请写出29后面的第一个数;(2)通过计算a 2-a 1,a 3-a 2,a 4-a 3,…由此推算a 100-a 99的值; (3)根据你发现的规律求a 100的值. 解:(1)29后面的第一个数是37.(2)由题意,得a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,由此推算a 100-a 99=100. (3)a 100=2+2+3+4+…+100=1+1+1002×100=5 051. 33.观察下列等式: 3-34=3×34; ⎝ ⎛⎭⎪⎫-65-6=⎝ ⎛⎭⎪⎫-65×6; (-0.5)-(-1)=(-0.5)×(-1).根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可以描述如下:存在两个有理数,使得这两个有理数的差等于__它们的积__;(2)若满足上述规律的两个有理数中有一个数是23,求另一个有理数;(3)若这两个有理数用字母a ,b 表示,则上面等式反映的规律用字母表示为__a -b =ab __;(4)在(3)中的关系式中,字母a ,b 是否需要满足一定的条件?若需要,直接写出字母a ,b 应满足的条件;若不需要,请说明理由.解:(2)∵2-23=2×23,23-25=23×25,∴另一个有理数为2或25.(4)a-b=ab,a-bab=1,1b-1a=1,故字母a,b应满足的条件是倒数的差是1.。
北师大版七年级上册 第三章 整式及加减 同步练习(含答案)
2019-2020整式及其加减拔高题集(含答案)一、单选题1.若单项式a m ﹣1b 2与212na b 的和仍是单项式,则n m 的值是( ) A.3B.6C.8D.92.化简|a ﹣1|+a ﹣1=( )A .2a ﹣2B .0C .2a ﹣2或0D .2﹣2a 3.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9B .12C .18D .244.多项式8x 2﹣3x +5与3x 3﹣4mx 2﹣5x +7多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .﹣2D .﹣45.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为A .180B .182C .184D .1866.如图所示,a 、b 是有理数,则式子a b a b b a ++++-化简的结果为( )A.3a +bB.3a -bC.3b +aD.3b -a7.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( ) A .1个 B .2个 C .3个 D .4个8.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为()A.盈利16元B.亏损24元C.亏损8元D.不盈不亏9.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是()A.a2﹣7a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣3a+410.一个多项式加上-2+x-x2得到x2-1,则这个多项式是()A.2x2-x+1 B.2x2-x-3 C.-x+1 D.-2x2-x+1二、解答题11.已知多项式32x+m y-8与多项式-n2x+2y+7的差中,不含有x2、y的项,求m n+m n的值.12.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.13.你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(1)由上面的规律我们可以大胆猜想,得到=________利用上面的结论,求(2) 的值; (3)求 的值.14.如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试求代数式3232122(3)4a b a b ---的值.15.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“W ”印刷不清楚.(1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几?16.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于x 的多项式3213(1)()32x a x b x +++--不含2x 项和x 项。
北师大版七年级数学上册《3.2整式的加减》同步测试题带答案
北师大版七年级数学上册《3.2整式的加减》同步测试题带答案【基础达标练】课时训练夯实基础知识点1同类项的概念1.(2024·毕节织金县期中)下列各组单项式中,属于同类项的是( )A.a3与a2B.a2与aC.2xy与2xD.x2y与2x2y2.(2024·遵义绥阳县期中)单项式-5a6b3与2b3是同类项,则常数n的值是( )A.2B.3C.4D.53.已知代数式-x a y b-1与5xy2是同类项,则a+b的值为( )A.4B.3C.2D.14.(2023·六盘水期末)如果单项式5a m+1b n+5与是同类项,则m=,n=.5.若a m+2b3与(n+2)a4b3是同类项,且它们的和为0,则n m=.6.已知单项式3x m y2与-x4y n-1是同类项,|a+2|与(b-1)2互为相反数,求的值.知识点2合并同类项7.(2024·贵州中考)计算2a+3a的结果正确的是( )A.5aB.6aC.5a2D.6a28.若3x3+2x2+6x-mx2-1是关于x的不含二次项的多项式,则有理数m的值是( )A.2B.-2C.0D.2或09.在下列式子中错误的是.(填序号)①5a+2b=7ab;②7ab-7ba=0;③4x2y-5xy2=-x2y;④3x2+5x3=8x5.10.已知关于a,b的单项式na x-1b4与6a2b y+3的和为0,请求出n+x+y的值.11.求代数式的值:6x+2x2-3x+x2+1,其中x=-5.12.化简:3a2+a3-5a-4+5a+a2-a3.【综合能力练】巩固提升迁移运用13.(2024·贵阳南明区期中)若单项式-4a5与3b n+3是同类项,则m,n的值分别是 ( )A.1,-1B.1,2C.1,-2D.1,114.下列各组是同类项的是( )①2x2y3与x3y2;②-x2yz与-x2y;③10mn与0.6nm;④(-a)3与(-3)3;⑤-3x2y与2yx2;⑥-125与2.A.①③⑤B.①③④⑥C.③⑤⑥D.④⑥15.(易错警示题)下列各组式子中的两个单项式是同类项的是 ( )A.2x3与3x2B.x4与a4C.5ax与6ayD.23与-316.若关于x,y的单项式x n y5和x4y m+2是同类项,则m-n的值为 ( )A.1B.-1C.-2D.217.若单项式x2y a与-2x b y3的和仍为单项式,则其和为.18.若式子3mx3-3x+9-(4x3-nx)的值与x无关,则mn的值是.19.(2024·毕节金沙县期中)若a m b3与a6b n+1能合并同类项,则n-m的值为.20.先合并同类项,再求-xyz-4yz-6xz+3xyz+5xz+4yz的值,其中x=-2,y=-10,z=-5.21.如果代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.22.(素养提升题)阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是;(2)已知x2-2y=4,求3x2-6y-21的值为.参考答案第1课时合并同类项【基础达标练】课时训练夯实基础知识点1同类项的概念1.(2024·毕节织金县期中)下列各组单项式中,属于同类项的是(D)A.a3与a2B.a2与aC.2xy与2xD.x2y与2x2y2.(2024·遵义绥阳县期中)单项式-5a6b3与2a2n b3是同类项,则常数n的值是(B)A.2B.3C.4D.5x a y b-1与5xy2是同类项,则a+b的值为(A)3.已知代数式-13A.4B.3C.2D.14.(2023·六盘水期末)如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=0,n=2.5.若a m+2b3与(n+2)a4b3是同类项,且它们的和为0,则n m=9.6.已知单项式3x m y2与-23x4y n-1是同类项,|a+2|与(b-1)2互为相反数,求m-n(a+b)2022的值.【解析】因为单项式3x m y2与-23x4y n-1是同类项,所以m=4,n-1=2所以m=4,n=3因为|a+2|与(b-1)2均为非负数,且互为相反数,所以|a+2|=0,(b-1)2=0 所以a=-2,b=1所以m-n(a+b)2022=4−3(-2+1)2022=1(-1)2022=1.知识点2合并同类项7.(2024·贵州中考)计算2a+3a的结果正确的是(A)A.5aB.6aC.5a2D.6a28.若3x3+2x2+6x-mx2-1是关于x的不含二次项的多项式,则有理数m的值是(A)A.2B.-2C.0D.2或09.在下列式子中错误的是①③④.(填序号)①5a+2b=7ab;②7ab-7ba=0;③4x2y-5xy2=-x2y;④3x2+5x3=8x5.10.已知关于a,b的单项式na x-1b4与6a2b y+3的和为0,请求出n+x+y的值.【解析】因为关于a,b的单项式na x-1b4与6a2b y+3的和为0所以n=-6,x-1=2,y+3=4所以x=3,y=1所以n+x+y=-6+3+1=-2.11.求代数式的值:6x+2x2-3x+x2+1,其中x=-5.【解析】当x=-5时原式=(6x-3x)+(2x2+x2)+1=3x+3x2+1=-15+75+1=61.12.化简:3a2+a3-5a-4+5a+a2-a3.【解析】原式=(1-1)a3+(3+1)a2+(-5+5)a-4=4a2-4.【综合能力练】巩固提升迁移运用13.(2024·贵阳南明区期中)若单项式-4a5b2m与3a2m+3b n+3是同类项,则m,n的值分别是(A)A.1,-1B.1,2C.1,-2D.1,114.下列各组是同类项的是(C)①2x2y3与x3y2;②-x2yz与-x2y;③10mn与0.6nm;④(-a)3与(-3)3;⑤-3x2y与2yx2;⑥-125与2.A.①③⑤B.①③④⑥C.③⑤⑥D.④⑥15.(易错警示题)下列各组式子中的两个单项式是同类项的是 (D)A.2x3与3x2B.x4与a4C.5ax与6ayD.23与-316.若关于x,y的单项式13x n y5和x4y m+2是同类项,则m-n的值为 (B)A.1B.-1C.-2D.217.若单项式12x2y a与-2x b y3的和仍为单项式,则其和为-32x2y3.18.若式子3mx3-3x+9-(4x3-nx)的值与x无关,则mn的值是4.19.(2024·毕节金沙县期中)若a m b3与a6b n+1能合并同类项,则n-m的值为-4.20.先合并同类项,再求-xyz-4yz-6xz+3xyz+5xz+4yz的值,其中x=-2,y=-10,z=-5.【解析】原式=(-1+3)xyz+(4-4)yz+(5-6)xz=2xyz-xz当x=-2,y=-10,z=-5时原式=2×(-2)×(-10)×(-5)-(-2)×(-5)=-200-10=-210.21.如果代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.【解析】x4+ax3+3x2+5x3-7x2-bx2+6x-2=x4+(a+5)x3+(3-7-b)x2+6x-2由x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3和x2项,得a+5=0,3-7-b=0.解得a=-5,b=-4.所以2a+3b=2×(-5)+3×(-4)=-22.22.(素养提升题)阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是-(a-b)2;(2)已知x2-2y=4,求3x2-6y-21的值为-9.【解析】(1)把(a-b)2看成一个整体,则3(a-b)2-6(a-b)2+2(a-b)2=(3-6+2)(a-b)2=-(a-b)2;答案:-(a-b)2(2)因为x2-2y=4所以原式=3(x2-2y)-21=12-21=-9.答案:-9。
最新2019-2020年度北师大版七年级数学上册《整式的加减》同步练习题及答案-精品试题
3.4 整式的加减(1)一、填空题1.3x与-5x的和是__________,3x与-5x的差是__________.2.a-b,b-c,c-a三个多项式的和是.3.x+y-z+z-y+x-x+y+z=________.二、选择题1.计算-2a2+a2的结果为( )A.3aB.-aC.-3a2D.-a22. 若长方形长是2a+3b,宽为a+b,则其周长是( )A.6a+8bB.12a+16bC.3a+8bD.6a+4b3.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,则m等于( )A.2B.-2C.-4D.-8三、解答题1.小明计划三天看完一本书,于是预计第一天看x页,第二天看的页数比第一天看的页数多50页,第三天看的页数比第二天看的页数的还少5页.求这本书的页数.2.已知小明的年龄是m岁,小红的年龄比小明年龄的2倍少4岁,小华的年龄比小红年龄多1岁,这三个人的年龄之和是多少?3.4 整式的加减(2)一、填空题1. a-(b+c)=_________,c-(b-a)=_________.2.化简:2(a+1)-a= .3.把3+[3a-2(a-1)]化简得.二、选择题1.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b2.如图,从边长为(a +1)cm的正方形纸片中剪去一个边长为(a -1)cm的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积为( )A.2cm2B.2acm2C.4acm2D.(a2-1)cm23.当a=5时,(a2-a)-(a2-2a+1)的值是( )A.4B.-4C.-14D.1三、解答题1.化简(1)(2x2-x-3)+(3-4x+x2). (2)(3y3-5y2-6)-(y-2+3y2).2.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求多项式C.3.4 整式的加减(3)一、填空题1.化简:2x-(2-5x)=__________.3x2y+(2x-5x2y)=__________.2.计算:a-(2a-3b)+(3a-4b)=__________.3.若x2y=x m y n,则m=______,n=______.4.化简x+{3y-[2y-(2x-3y)]}=__________.5.m+n-p的相反数为__________.二、选择题1.当a=5,b=3时,a-[b-2a-(a-b)]等于()A.10B.14C.-10D.42.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是()A.4B.20C.8D.-63.-[-(-a2)+b2]-[a2-(+b2)]等于()A.2a2B.2b2C.-2a2D.2(b2-a2)三、解答题1,计算2a-3b-[3abc-(2b-a)]+2abc的值.1.已知a=1,b=2,c=22.已知2x m y2与-3xy n是同类项,计算m-(m2n+3m-4n)+(2nm2-3n)的值.3.把(a+b)当作一个整体化简,5(a+b)2-(a+b)+2(a+b)2+2(a+b).3.4 整式的加减(1)一、1.-2x 8x 2. 0 3. x+y+z二、1.D 2. A 3. C三、1.(2.2x+55)页 2.(4m-5)岁3.4 整式的加减(2)一、1.a-b-c 2.a+2 3. a+5二、1.C 2. C 3. A三、1.(1) 3x2-5x (2) 3y3-8y2-y-4 2.3a2-3b2-2c23.4 整式的加减(3)一、1. 7x-2 ,-2x2y+2x 2. 2a-b 3. 2 , 1 4.3x-2y 5.p-m-n二、1.A 2. C 3. C三、1.-2 2. 2 3.7(a+b)2+(a+b)。
(最新整理)北师大版七年级上册数学第三章整式及其加减同步测试题
北师大版七年级上册数学第三章整式及其加减同步测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版七年级上册数学第三章整式及其加减同步测试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版七年级上册数学第三章整式及其加减同步测试题的全部内容。
单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列各式中不是单项式的是( ) A .-Error! B .- C .0 D .-Error!2.单项式-3xy 2z 3的系数是( ) A .-1 B .5 C .6 D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )A .30%aB .(1-30%)a C. D.a 30%4.下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与Error!yxD .6x 3y 4与-6x 3z 45.当a =-1,b =2时,代数式a 2b 的值是( ) A .-2 B .1 C .2D .-16.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n8.化简2x -(x -y )-y 的结果是( ) A .3x B .x C .x -2y D .2x -2y9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=110.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 211.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,都是代数式D .多项式与多项式的和一定是多项式12.十位数字是x,个位数字是y的两位数是( )A.xy B.x+10y C.x+y D.10x+y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x元的衣服以(Error!x-10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A.原价减去10元后再打8折 B.原价打8折后再减去10元C.原价减去10元后再打2折 D.原价打2折后再减去10元14.(湘西中考)已知x-2y=3,则代数式6-2x+4y的值为()A.0 B.-1 C.-3 D.315.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A.32 016 B.32 015 C.32 016-1 D.32 015-1二、填空题(本大题共5小题,每小题5分,共25分)16.去括号:-(3x-2)=________。
北师大版数学七年级上3.4《整式的加减》测试(含答案)
北师大版数学七年级上3.4《整式的加减》测试(含答案)整式的加减测试时间:60分钟总分:100分题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为( )A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的计算结果是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的结果是( )A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+ 2bD. 10a+6bA. 少24B. 多24C. 少4D. 多45.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)6.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .7.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.8.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.10.计算2(4a−5b)−(3a−2b)的结果为______.11.化简:a−(a−3b)=______.12.已知a,b,c为有理数,且满足−a>b> |c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(结果用含a,b的代数式表示)13.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.14.计算:2(x−y)+3y=________.15.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、计算题(本大题共4小题,共24.0分)16.已知x+y=1,求代数式3x−2y+1+ 3y−2x−5的值.17.已知a2−1=b,求3(a2−b)+a2−b)的值.2(a2−1218.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当x=−1时A−2B的值.19.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,其中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)20.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,并且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b< 0,求(1)中多项式C的值.21.第一车间有x人,第二车间比第一车间人少20人,如果从第二车间调出10人数的34到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11. b−a12. −1013. 2114. 6a+8b15. 5a−8b16. 3b17. −3a−b18. a+2b19. 2x+y20. −10121. 解:∵x+y=1,∴原式=x+y−4=1−4=−3.22. 解:原式=3a2−3b+a2−2a2+b=2a2−2b,∵a2−1=b,∴a2−b=1,则原式=2(a2−b)=2.23. 解:(1)∵A=2x2−3x+1,B=−3x2+ 5x−7,∴A−2B=2x2−3x+1−2(−3x2+5x−7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当x =−1时,原式=8−7−13=−12.24.解:∵(2b −1)2+|a +2|=0,∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25.解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b+4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a=−2,b=−3时,C=−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:调动后,第一车间的人数比第二车间多(14x+40)人.【解析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b =(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+ b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长等于(长+宽)×2可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:12⋅6m −(m +n)=3m −m −n =2m −n ,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:|a +b +c|−|a −b −c|−|a −b +c|−|a +b −c|=(a +b +c)−(b +c −a)−(a −b +c)−(a +b −c)=a +b +c −b −c +a −a +b −c −a −b +c=0故选:A .首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:a<b<0< c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式=2a+2b−4+4b+8a+2= 10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式进行计算即可.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发现系数间的关系,把两个等式相加,便可求出a+b+c的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+ 2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+ y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23. (1)把A与B代入A−2B中,去括号合并即可得到结果;(2)把x=−1代入结果中计算即可得到结果.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入计算即可.本题考查了整式的加减−化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+2a2b+4代入计算即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值.解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。
北师大版2018-2019学年七年级数学上册第三章整式及其加减单元测试卷及答案
时间: 45 分钟 分值: 100 分
一、选择题 (每题 4 分,共 32 分)
1.苹果的单价为 a 元 / 千克,香蕉的单价为 b 元 / 千克,买 2 千克苹果和 3
千克香蕉共需 ( )
A.(a+ b)元
B. (3a+ 2b)元
C.(2a+3b)元
D. 5(a+b)元
2.多项式 1+2xy-3xy2 的次数及最高次项的系数分别是 ( )
A.3,- 3 C.5,- 3 3.下列说法正确的是 ( ) A.整式就是多项式 B.π是单项式 C.x4+ 2x3 是七次二项式
3x- 1 D. 5 是单项式
B. 2,- 3 D. 2,3
4.计算- 2x2+3x2 的结果为 ( ) A.- 5x2 C.- x2
A.7 C.5
B. 6 D. 4
8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 1 颗棋子,第②个图形一共有 6 颗棋子,第③个图形一共有 16 颗棋子,…,则 第⑥个图形中棋子的颗数为 ( )
A.51 C.76
B. 7分,共 24 分)
9.若 2x2ym 与- 3xny3 是同类项,则 m+n=
B. 5x2 D. x2
5.下列计算正确的是 ( ) A.2a+b= 2ab C.7mn-7nm= 0
B. 3x2- x2= 2 D. a+ a= a2
6.如图是一个运算程序的示意图,若开始输入 x 的值为 81,则第 2 016 次
输出的结果为 ( )
A.3
B. 27
C.9
D. 1
7.如图,两个正方形的面积分别为 16,9,两阴影部分的面积分别为 a,b(a > b),则 a- b 等于 ( )
北师大版七年级数学上册《3.2整式的加减》同步测试题及答案
北师大版七年级数学上册《3.2整式的加减》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.与12x2y是同类项的是()A.12x2z B.12xyC.-yx2D.xy22.下列各组式子中,两个单项式是同类项的是()A.2a与a2B.5a2b与a2bC.xy与x2yD.0.3mn2与0.3xy23.下列计算正确的是()A.2a+b=2abB.3x2-x2=2C.7mn-7nm=0D.a+a=a24.在代数式4x2+4xy-8y2-3x+1-5x2+6-7x2中,4x2的同类项是,6的同类项是.5.计算:2a2-3a2-5a2.6.合并同类项:(1)3x2-1-2x-5+3x-x2;(2)-0.8a2b-6ab-1.2a2b+5ab+a2b;(3)23a2-12ab+34a2+ab-b2;(4)6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y.7.先合并同类项再求值:3c2-8c-13c2+2c+3,其中c=-4.【能力巩固】8.小华同学在一次数学课外作业中完成的四道计算题如下:①x 2+x 2=x 4;②2ab-ab=2;③3xy 2-2y 2x=xy 2;④a 2-2a=-a.其中正确的有( )A.1个B.2个C.3个D.4个9.若-3x m -1y 4与13x 2y n +2是同类项,则m= ,n= .10.如果关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 的取值无关,求2m-3n 的值.11.若多项式mx 3-2x 2+3x-2x 3+5x 2-nx+1不含三次项及一次项,请你确定m ,n 的值,并求出mn+(m-n )2025的值.【素养拓展】12.我们知道,4x-2x+x=(4-2+1)x=3x.类似地,我们把(a+b )看成一个整体,则4(a+b )-2(a+b )+(a+b )=(4-2+1)(a+b )=3(a+b ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把(a-2b )2看成一个整体,合并5(a-2b )2-8(a-2b )2+6(a-2b )2.(2)已知x-2y+1=4,求3-4y+2x 的值.13.已知a ,b 为常数,且三个单项式4xy 2,axy 3-b ,3xy 相加得到的和仍然是单项式,那么a+b 的值可能是多少?请你说明理由.参考答案【基础达标】1.C2.B3.C4.-5x 2,-7x 2 15.解:2a 2-3a 2-5a 2=(2-3-5)a 2=-6a 2.6.解:(1)2x 2+x-6.(2)-a 2b-ab.(3)1712a 2+12ab-b 2.(4)-7x2y2-3xy-7x.7.解:原式=(3-13)c2+(-8+2)c+3=-10c2-6c+3.当c=-4时,原式=-10×(-4)2-6×(-4)+3=-133.【能力巩固】8.A9.3 210.解:-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3因为这个多项式的值与x的取值无关所以-3+n=0,m-1=0,即n=3,m=1所以2m-3n=2×1-3×3=-7.11.解:mx3-2x2+3x-2x3+5x2-nx+1=(m-2)x3+3x2+(3-n)x+1,因为不含三次项及一次项,所以有m-2=0,3-n=0,解得m=2,n=3,代入mn+(m-n)2025,原式=2×3+(-1)2025=5.【素养拓展】12.解:(1)5(a-2b)2-8(a-2b)2+6(a-2b)2=(5-8+6)(a-2b)2=3(a-2b)2.(2)因为x-2y+1=4所以x-2y=3所以3-4y+2x=3+2x-4y=3+2(x-2y)=3+2×3=9.13.解:因为4xy2,axy3-b,3xy的和仍是一个单项式,分以下2种情况:①a=-4,3-b=2,解得b=1,则a+b=-4+1=-3;②a=-3,3-b=1,解得b=2,则a+b=-3+2=-1.综上所述,a+b的值可能是-3或-1.。
2018-2019学年北师版七年级数学上册《第三章整式及其加减》单元测试题及答案
2018-2019学年北师版七年级数学上册单元测试卷班级姓名第三章整式及其加减A卷(共100分)一、选择题(每小题3分,共30分)1.计算-a2+3a2的结果为()A.2a2B.-2a2C.4a2D.-4a22.代数式2(y-2)的正确含义是()A.2乘y减2B.2与y的积减去2C.y与2的差的2倍D.y的2倍减去23.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的是()A.①B.② C.③ D.④4.下列各式中,去括号正确的是()A.x2-(2y-x+z)=x2-2y-x+zB.3a-[6a-(4a-1)]=3a-6a-4a+1C.2a+(-6x+4y-2)=2a-6x+4y-2D.-(2x2-y)+(z-1)=-2x2-y-z-15.若-x3y m与x n y是同类项,则m+n的值为() A.1 B.2 C.3 D.46.对于单项式103x2y7,下列说法正确的是()A.它是六次单项式B.它的系数是1 7C.它是三次单项式D.它的系数是10 77.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab+5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是()A.+2abB.+3abC.+4ab D.-ab8.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是() A.-2 B.10 C.7 D.69.一家商店以每包a元的价格买进了30包甲种茶叶,又以每包b元的价格买进60包乙种茶叶.如果以每包a+b2元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚10.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c-a|-|b-c|=()A.-3a B.2c-aC.2a-2bD.b二、填空题(每小题4分,共16分)11.与3x-y的和是8的代数式是________.12.若-a2b3与75a xb y是同类项,则x+y=________.13.根据如图所示的程序,当输入x=3时,输出的结果y=________.14.一列单项式:-x2,3x3,-5x4,7x5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题共6小题,共54分)15.(8分)化简:(1)2a-(5a-3b)+3(2a-b);(2)2a-[a+2(a-b)]+b.16.(8分)先化简,再求值:(6a2-6ab-12b2)-3(2a2-4b2),其中a=-12,b=-8.。
最新北师大版七年级数学上册《整式的加减》同步精品练习题
3.4 整式的加减第3课时 整式的加减1、把下式化简求值,得( )(a 3—3a 2+5b)+(5a 2—6ab)—(a 3—5ab+7b),其中a=—1,b=—2A 、4B 、48C 、0D 、202、一个多项式A 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则A 等于( )A 、x 2-4xy -2y 2B 、-x 2+4xy +2y 2C 、3x 2-2xy -2y 2D 、3x 2-2xy 3、若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( )A 、三次多项式B 、四次多项式C 、七次多项式D 、四次七项式4、多项式3a n +3-9a n +2+5a n +1-2a n 与-a n +10a n +3-5a n +1-7a n +2的差是 。
5、已知222,32x xy a y xy b +=+=,求22489x xy y ++的值。
(用,a b 的代数式表示)6、一位同学做一道题:“已知两个多项式A 、B ,计算2A+B ”。
他误将“2A+B ”看成“A+2B ”,求得的结果为9x 2-2x+7。
已知B =x 2+3 x -2,求正确答案。
7、已知33222334A x y x y xy xy =-++-+,33224333B y x x y xy xy =----+,322266C y x y xy xy =+++-,试说明对于x 、y 、z 为何值A B C ++是常数。
●体验中考1、(2009年山西太原中考题)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A 、51x --B 、51x +C 、131x --D 、131x +2、(2009年湘西自治州中考题改编)如果2231,27A m m B m m =-+=--,且0A B C -+=,求C 。
3、(2009年湖南长沙中考题改编)化简求值(1)2223(421)2(31)a a a a a +----+,其中12a =-(2)2222222(2)(223)xy y xy yx xy x +---+,其中3x =-,2y =励志名言:1、学习从来无捷径,循序渐进登高峰。
数学北师大版七年级上册整式的加减练习题
数学北师大版七年级上册整式的加减练习题整式的加减练题(含答案)一、选择题(每小题3分,共24分)1、下列各组中,不是同类项的是()A。
5ab与3abB、2xy与2xyC、5与D、2x与3x2、若七个连续整数中间的一个数为n,则这七个数的和为()A、B、7nC、-7nD、无法确定3、若3a与2a5互为相反数,则a等于()A、5B、-1C、1D、-54、下列去括号错误的共有()①a(b c)ab c;②a(b c d)a b c d;③a2(b c)a2b c;④a[(a b)]a a b a a bA、1个B、2个C、3个D、4个5、计算:m[n2m(m n)]等于()A、2nB、2mC、4m2nD、2n2m6、式子3a2b2与a2b2的差是()A、2a2B、2a22b2C、4a2D、4a22b27、a b c的相反数是()A、a b cB、a b cC、a b cD、a b c8、减去3m等于5m23m5的式子是()A、5(m1)B、5m26m5C、5(m1)D、(5m6m5)2二、填空题(每小题3分,共24分)1、若3ab与4ab是同类项,则m=7,n=2.2、在7x24x1x226x中,7x2与x2同类项,6x与4x是同类项,-2与1是同类项。
3、单项式3ab,2ab,3ab,4ab,3ab的和为1ab。
4、把多项式5xy3xy5xy按字母x的指数从大到小排列是:5xy xy3xy 5.5、若(a3a1)A a a4,则A=6a 3.6、化简:7x5x2x,a22/3=3a/3-22/3=3a-22/3,7a=36,a=36/7,7a2b7ba27ab(a b)。
7、去括号:x2(y2)x2y4,2a3(b c d)2a3b3c3d。
8、已知:a c2,b c3,则a b2c a c b c 5.三、解答题(52分)1、去括号并合并同类项①a(2a2)=a-2a+2=-a+2②(5x y)3(2x3y)=-5x-y-6x+9y=-11x+8y③2a(a b)2(a b)=2a+a+b-2a-2b=a-b④1(3xy x)[2(2x3yz)]=1-3xy+x+2(2x+3yz)=5x-3xy+6yz2、计算①3xy2xy3xy2xy=02(a+2a)+3(2a-3b)-4(3a-2b) = 2a+4a+6a-9b-12a+8b = -2a-b3a-(5a-ab+b)-(7ab-7b-3a) = 3a-5a+ab-b-7ab+7b+3a = -4a-6ab+6b4x-x+5)+(5x-x-4) = 8xxy-3223y)-(x-xy+1) = xy-3223y-x+xy-1 = -x-3223y-1阴影面积可以分成一个正方形和两个直角梯形,正方形面积为x^2,两个直角梯形面积分别为2x和x,所以阴影部分的面积为3x^2.A+B+C=2a+3b+2c,所以C=-(A+B)+2a+3b+2c=-a-b+c。
2018-2019学年度七年级数学上册 3.4 整式的加减同步练习 (新版)北师大版
3.4 整式的加减一.选择题(共12小题)1.下面各组式子中,是同类项的是()A.2a和a2B.4b和4a C.100和D.6x2y和6y2x2.下列各单项式中与﹣3x2y3是同类项的是()A.﹣2xy B.3x2C.5y3D.﹣7x2y33.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣14.若3x m+5y2与x3y n的和是单项式,则m n的值为()A.﹣4 B.4 C.﹣ D.5.计算x2y﹣3x2y的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c7.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)8.下列去括号与添括号变形中,正确的是()A.2a﹣(3a﹣c)=2a﹣3b﹣c B.3a+2(2b﹣1)=3a+4b﹣1C.a+2b﹣3c=a+(2b﹣3c)D.m﹣n+a﹣b=m﹣(n+a﹣b)9.已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1 B.﹣1 C.7 D.﹣710.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y211.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b12.当a=﹣,b=4时,多项式2a2b﹣3a﹣3a2b+2a的值为()22A .2B .﹣2 C. D.﹣二.填空题(共8小题)13.若单项式2x 2y m ﹣1与y 3是同类项,则m+n 的值是 . 14.任写一个与﹣a 2b 是同类项的单项式 .15.计算:3a 2b ﹣a 2b= .16.已知单项式2a m b 2与﹣a 4b n ﹣1的差是单项式,那么m 2﹣n= .17.与代数式8a 2﹣6ab ﹣4b 2的和是4a 2﹣5ab+2b 2的代数式是 .18.在计算:A ﹣(5x 2﹣3x ﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x 2+3x ﹣4,则多项式A 是 .19.如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a ﹣b )米.问小明家楼梯的竖直高度(即:BC 的长度)为 米.20.有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|= .三.解答题(共5小题)21.去括号:(1)﹣(3x ﹣2)(2)﹣(x ﹣y+z )(3)3(x ﹣2y )(4)﹣3(﹣3a ﹣2b+c )22.若单项式5x a+3b y5与﹣3x7y2a+3b是同类项,求a、b的值.23.合并下列多项式中的同类项:(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;(2)﹣a2b+2a2b;(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;(4)2a2b+3a2b﹣a2b24.(1)﹣a2bc+cba2(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab (3)(﹣x+2x2+5)+(4x2﹣3﹣6x)(4)(2x2﹣+3x)﹣4(x﹣x2+)25.先化简,再求值:3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣3x2﹣4x),其中x=.34 4 参考答案一.选择题(共12小题)1.C.2.D.3.A.4.B.5.B.6.B.7.B.8.C.9.C.10.B.11.C.12.D.二.填空题(共8小题)13.6.14.a2b.15.2a2b.16.13.17.﹣4a2+ab+6b2.18.﹣7x2+6x+2.19.(a﹣2b).20.﹣b+c+a三.解答题(共5小题)21.解:(1)原式=﹣3x+2;(2)原式=﹣x+y﹣z;(3)原式=3x﹣6y;(4)原式=9a+6b﹣3c.22.解:∵单项式5x a+3b y5与﹣3x7y2a+3b是同类项,∴,解得:,即a=﹣2,b=3.23.:(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1;(2)﹣a2b+2a2b=(﹣1+2)a2b=a2b;(3)a3﹣a2b+ab2+a2b﹣2ab2+b3=a3+(﹣1+1)a2b+(1﹣2)ab2+b3=a3﹣ab2+b3;(4)2a2b+3a2b ﹣a2b=(2+3﹣)a2b=a2b.24.(1)原式=(﹣+)a2bc=0;(2)原式=(﹣3a2b2+3a2b2)+(7ab﹣7ab)+(7﹣3)+8ab2 =4+8ab2;(3)原式=﹣x+2x2+5+4x2﹣3﹣6x=(2x2+4x2)+(﹣x﹣6x)+(5﹣3)=6x2﹣7x+2;(4)原式=2x2﹣+3x﹣4x+4x2﹣2=(2x2+4x2)+(3x﹣4x)+(﹣﹣2)=6x2﹣x﹣2.25.原式=3x3﹣x3﹣2x3﹣6x2+6x2+7x+4x =15x,当x=时,原式=15×=﹣5.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 整式的加减(1)
一、填空题
1.3x与-5x的和是__________,3x与-5x的差是__________.
2.a-b,b-c,c-a三个多项式的和是 .
3.x+y-z+z-y+x-x+y+z=________.
二、选择题
1.计算-2a2+a2的结果为( )
A.3a
B.-a
C.-3a2
D.-a2
2. 若长方形长是2a+3b,宽为a+b,则其周长是( )
A.6a+8b
B.12a+16b
C.3a+8b
D.6a+4b
3.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,
则m等于( )
A.2
B.-2
C.-4
D.-8
三、解答题
1.小明计划三天看完一本书,于是预计第一天看x页,第二天看的页数比第一天看的页数多50页,第三天看的页数比第二天看的页数的还少5页.求这本书的页数.
2.已知小明的年龄是m岁,小红的年龄比小明年龄的2倍少4岁,小华的年龄比小红年龄多1岁,这三个人的年龄之和是多少?
3.4 整式的加减(2)
一、填空题
1. a-(b+c)=_________,c-(b-a)=_________.
2.化简:2(a+1)-a= .
3.把3+[3a-2(a-1)]化简得.
二、选择题
1.下面的计算正确的是( )
A.6a-5a=1
B.a+2a2=3a3
C.-(a-b)=-a+b
D.2(a+b)=2a+b
2.如图,从边长为(a +1)cm的正方形纸片中剪去一个边长为(a -1)cm的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积为( )
A.2cm2
B.2acm2
C.4acm2
D.(a2-1)cm2
3.当a=5时,(a2-a)-(a2-2a+1)的值是( )
A.4
B.-4
C.-14
D.1
三、解答题
1.化简
(1)(2x2-x-3)+(3-4x+x2). (2)(3y3-5y2-6)-(y-2+3y2).
2.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求多项式C.
3.4 整式的加减(3)
一、填空题
1.化简:2x -(2-5x)=__________.3x 2y+(2x -5x 2y)=__________.
2.计算:a -(2a -3b)+(3a -4b)=__________.
3.若x 2y=x m y n ,则m=______,n=______.
4.化简x+{3y -[2y -(2x -3y)]}=__________.
5.m+n -p 的相反数为__________.
二、选择题
1.当a=5,b=3时,a -[b -2a -(a -b)]等于( )
A.10
B.14
C.-10
D.4
2.如果(3x 2-2)-(3x 2-y)=-2,那么代数式(x+y)+3(x -y)-4(x -y -2)的值是(
)
A.4
B.20
C.8
D.-6
3.-[-(-a 2)+b 2]-[a 2-(+b 2)]等于( )
A.2a 2
B.2b 2
C.-2a 2
D.2(b 2-a 2)
三、解答题
1.已知a=1,b=2,c=21
,计算2a -3b -[3abc -(2b -a)]+2abc 的值.
2.已知2x m y 2与-3xy n 是同类项,计算m -(m 2n+3m -4n)+(2nm 2-3n)的值.
3.把(a+b)当作一个整体化简,5(a+b)2-(a+b)+2(a+b)2+2(a+b).
3.4 整式的加减(1)
一、1.-2x 8x 2. 0 3. x+y+z
二、1.D 2. A 3. C
三、1.(2.2x+55)页 2.(4m-5)岁
3.4 整式的加减(2)
一、1.a-b-c 2.a+2 3. a+5
二、1.C 2. C 3. A
三、1.(1) 3x2-5x (2) 3y3-8y2-y-4 2.3a2-3b2-2c2
3.4 整式的加减(3)
一、1. 7x-2 ,-2x2y+2x 2. 2a-b 3. 2 , 1 4.3x-2y 5.p-m-n
二、1.A 2. C 3. C
三、1.-2 2. 2 3.7(a+b)2+(a+b)。