数学奥赛040415
小学四年级奥学竞赛试题
小学四年级奥学竞赛试题小学四年级奥数竞赛试题通常包含基础数学知识、逻辑推理、空间想象、数学应用等方面的问题。
以下是一些可能的题目类型和示例:一、基础数学问题1. 计算题:计算下列各题的结果。
- 3456 × 78 = ?- 98765 - 12345 = ?2. 填空题:填入适当的数字使等式成立。
- 4 × □ + 6 = 26- □ - 15 = 35二、逻辑推理1. 判断题:下列说法正确的是哪一个?- A. 所有的偶数都是2的倍数。
- B. 一个数的最小公倍数是它自己。
- C. 两个质数的和一定是合数。
2. 推理题:根据题目给出的线索,找出正确的答案。
- 有5个同学,他们的名字分别是小明、小红、小华、小刚和小丽。
他们分别喜欢不同的颜色:红、黄、蓝、绿、紫。
已知小明不喜欢红色,小华不喜欢蓝色,小丽喜欢绿色。
请问小红喜欢什么颜色?三、空间想象1. 几何题:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
2. 拼图题:将下列图形分成两个相同的部分。
四、数学应用1. 应用题:小明有40张邮票,他决定将其中的一半送给小刚,剩下的一半送给小华。
请问小明最后剩下多少张邮票?2. 速度与时间问题:一辆汽车以每小时60公里的速度行驶,如果它从A地到B地需要2小时,那么A地到B地的距离是多少公里?五、数列与规律1. 数列题:观察下列数列的规律,并填入下一个数字。
- 2, 4, 8, 16, ?2. 规律题:下列图形序列遵循什么规律?请继续完成序列。
- △, □, △, □, △, ?六、组合与排列1. 组合题:从5个不同的颜色中选择3种不同的颜色,有多少种不同的组合方式?2. 排列题:4个不同的数字可以组成多少个不同的四位数?七、概率问题1. 概率题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?2. 事件问题:掷两次骰子,求两次都掷出6点的概率。
2023年全国中学生数学奥赛题目选
2023年全国中学生数学奥赛题目选【2023年全国中学生数学奥赛题目选】近年来,数学奥赛在全国中学生中越来越受欢迎,成为了展示学生数学水平和思维能力的重要平台。
作为参赛学生,我们应该积极备战,提高自己的数学实力。
以下是几道2023年全国中学生数学奥赛的题目,希望对广大中学生有所帮助。
题目一:集合概念的应用已知集合A = {1, 3, 5, 7, 9},B = {2, 4, 6, 8, 10},C = {2, 4, 6, 8},请回答以下问题:1. A ∪ B = ?2. A ∩ C = ?3. (B ∪ C) ∩ A = ?解析:1. A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}2. A ∩ C = ∅(空集)3. (B ∪ C) ∩ A = {2, 4, 6, 8}题目二:函数的性质和图像已知函数y = f(x)的图像关于x轴对称,且经过点(2, 3),点(4, 5)。
请回答以下问题:1. 函数y = f(x)是否为奇函数或偶函数?2. 函数y = f(x)的对称轴是哪一条直线?3. 经过点(0, -3)的函数y = f(x)的函数值是多少?解析:1. 函数y = f(x)为偶函数。
2. 函数y = f(x)的对称轴为y轴。
3. 经过点(0, -3)的函数y = f(x)的函数值是3。
题目三:平面几何的应用已知△ABC中,∠C = 90°,AD是BC的中线,且AB = 3AD。
请回答以下问题:1. AC与CD的比值是多少?2. 若BC = 12,求AD的长度。
3. 若BD = 8,求AC的长度。
解析:1. 根据中线定理,AC与CD的比值为2:1。
2. 由AB = 3AD可得AD = BC/4 = 12/4 = 3。
3. 由BD = 8,可得AB = 2BD = 2×8 = 16,再由勾股定理可得AC = √(AB²+BC²) = √(16²+12²) = √400 = 20。
北师大版最新小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库
北师大版最新小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.3.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.4.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.5.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.8.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.9.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?10.如果,那么=.11.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.12.两数相除,商是12,余数是3,被除数最小是.13.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此14.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…15.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.3.解:9⊙3=9×2+3=21;故答案为:21.4.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.5.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.8.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.9.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.10.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.11.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.12.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.13.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.14.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.15.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.。
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案
本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计962024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案分)1.设集合10,21x A x x−=≤ − 集合2{20}Bx x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
答案 3m ≤− 解 集合11,2A xx=<≤要使A B ⊆,则21210m +×+≤,解得3m ≤−。
2.设函数{}{}:1,2,32,3,4f → 满足 []()1()f f x f x −=,则这样的函数有_______个. 答案:10 解 令()1{1,2,3}yf x =−∈,则()1f y y =+。
对(1)2f =以下三种情况都满足条件(2)(3)2;(2)(3)3;(2)(3)4f f f f f f ======,共3种。
同理对(2)3,(1)(3)f f f ==有3种情况;(3)4,(1)(2)f f f ==也有3种情况。
又(1)2,(2)3,(3)4f f f ===显然满足条件。
所以满足已知条件的函数共有331×+= 10个。
(可以看出这种映射的限制仅在值域上,因此也可对值域大小分类讨论。
)3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
答案:34解 令sin ,11t x t =−≤≤ ,原式变形11,1y t t=++当0t ≠时13,22y ≤≤。
当0t =时,1y =。
所以y 的最大、最小值分别为3122,,其积为34。
4.已知数列{}n x满足:111n x x x n +=≥,则通项n x =__________。
答案解 将已知条件变形得22111111n n x x n n +−=−+,将上式从1到n 叠加得到 2211111n x x n−=−,即n x =。
5 .已知四面体A BCD −的外接球半径为1,若1,60BC BDC =∠= ,球心到平面BDC 的距离为______________。
2004年第4届中国西部数学奥林匹克竞赛试题
2004 年第 4 届中国西部数学奥林匹克竞赛
1圣.求所才有的学整数习n网,使w得wnw4 +.61n30+01lxn2u+e3第nx+一i3.1天是c完o全m平方学数.习网 圣才 2 .四边形 ABCD 为一凸四边形, I1 、 I2 分别为 ΔABC 、 ΔDBC 的内心,过点 I1 、 I2 的直线分别交
3 . 求 所 有 的 实 数 k , 使 得 不 等 式 a3 + b3 + c3 + d 3 +1 ≥ k (a + b + c + d ) 对 任 意 a 、 b 、 c 、
d ∈[−1,+ ∞] 都成立.
圣才学习网 学习网 4 .设n∈ N+ ,用d (n) 表示n的所有正约数的个数,φ (n) 表示1,2 ,",n中与n 互质的数的个
圣
中华数学竞赛网
中华数学竞赛网
3 .已知锐角 ΔABC 的三边长不全相等,周长为 l , P 是其内部一动点,点 P 在边 B D 、 E 、 F .求证: 2( AF + BD + CE ) = l 的充分必要条件是:点 P 在 ΔABC 的内心与外
才
圣
中华数学竞赛网
AB 、 DC 于点 E 、 F ,分别延长 AB 、 DC ,它们相交于点 P ,且 PE = PF .求证: A 、 B 、C 、 D
圣才学习网 学习网 四点共圆. 才
圣
中华数学竞赛网
中华数学竞赛网
圣才 数.求所有的非负整数 c ,使得存在正整数 n ,满足 d (n) + φ (n) = n + c ,且对这样的每一个 c ,求出所有
2023第39届全国数学奥赛试题
2023第39届全国数学奥赛试题2023第39届全国数学奥赛试题是中国举办的一项重要数学竞赛,旨在选拔出具有数学天赋和潜力的优秀学生。
本届数学奥赛试题分为多个题目,涵盖了数学的不同领域和难度级别。
在下面的文章中,我将为您介绍其中几道试题的题目要求和解题思路。
第一题:概率问题题目要求:在一堆扑克牌中,有26张红色的牌和26张黑色的牌。
现在从中随机抽取5张牌,问这5张牌中至少有一张红色牌的概率是多少?解题思路:首先,计算没有红色牌的情况。
由于一共有52张牌,其中红色牌26张,黑色牌26张,所以没有红色牌的情况就是从黑色牌中选取5张的概率。
即:C(26, 5) / C(52, 5)。
然后,用1减去没有红色牌的概率,就是至少有一张红色牌的概率。
即:1 - C(26, 5) / C(52, 5)。
第二题:函数方程题目要求:已知函数 f(x) 满足 f(x) + f(1-x) = 1,求 f(2023) 的值。
解题思路:将 x 替换为 1-x,原方程变为f(1-x) + f(x) = 1。
将这两个方程相加,得到 2f(x) + 2f(1-x) = 2。
化简得到 f(x) + f(1-x) = 1。
与原方程一致,说明 f(x) + f(1-x) 是一个恒等于1的常数函数。
因此,f(x) = 0.5。
将 x 替换为 2023,得到 f(2023)= 0.5。
第三题:平面几何问题题目要求:已知正方形 ABCD,点 P 为边 AB 上的一个固定点,点 Q 在正方形内任意取,求使得三角形 CPQ 的面积最大的点 Q 的位置。
解题思路:我们可以利用面积的性质来求解这道题。
首先,连接点 P 和点 C,得到线段 PC。
然后,连接点 P 和点 Q,得到线段 PQ。
根据正方形的性质,线段PC 和线段 PQ 一定垂直。
因此,三角形 CPQ 的面积等于线段 PC 的长度乘以线段PQ 的长度的一半。
由于点 P 为边 AB 上的一个固定点,线段 PC 的长度是固定的。
2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准
2024年广东省中学生数学奥林匹克竞赛答案及评分标准一试一、填空题1已知m ,a ,b ,c 为正整数,且a log m 2+b log m 3+c log m 5=2024,求m +a +b +c 的最小值是.【答案】 30662已知x >0,y >0,-log 3y +3x=y -2x =15⋅32x -1y,则y +x =【答案】 11 .3若A 、 B 为锐角且sin B ⋅sin A +B =sin A ,则tan A 的最大值为.【答案】434数列a n 满足:对任意n ≥2,a n =2024a n -1-n . 如果该数列的每一项都是正数,则a 1的最小值为【答案】40472023240474092529 5投篮测试规则如下:每人最多投三次,投中为止,且第i 次投中得分为4-i 分(i =1,2,3),若三次均未投中则得分为0分. 假设甲同学的投篮的命中率为p 0<p <1 ,若甲参加投篮测试的投篮次数的均值为 1.56,则p = ,甲投篮测试的得分的均值为. 【答案】 2.376 .6设x ,y 均为非零实数,且满足x sin π12+y cos π12x cos π12-y sin π12=tanπ3 . 在△ABC 中,若tan C =y x,则sin3A +3sin2B 的最大值为.【答案】327已知虚数z 满足z +2z∈R ,则z 2+2z -3 的最大值为【答案】1033 .8n 是正整数, 3n -1没有12以上的质因子,则所有满足条件的n 和是【答案】 129已知四面体PABC ,点A 1在△PBC 内,满足△A 1BP ,△A 1CP ,△A 1BC 的面积之比为3:2:1,G 在线段AA 1上,直线PG 交平面ABC 于点M ,且AG GA 1=PGGM ,则四面体PABC 与A 1AMB的体积之比为.【答案】 1210如图,在一个10×10的方格表中填入0和1,使得任意一个3×3的方格表中都恰有一个1 ,则满足要求的填法数共有种【答案】 261二、解答题1已知抛物线C :y 2=18x +27的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 2重合, C 的准线经过E 的左顶点.(1)求E 的方程;(2)已知点F 1为E 的左焦点, P 为E 上的一点(异于左、右顶点), △PF 1F 2外接圆的半径为R ,内切圆的半径为r ,求R ⋅r 的取值范围.【解析】(1) 易知 C 的顶点坐标为 -32,0 ,p 2=184=92,所以 C 的焦点坐标为 -32+92,0 ,即 3,0 ,C 的准线方程为 x =-32-92=-6,所以 a =6,c =3,b 2=a 2-c 2=27 ,所以 E 的方程为 E :x 236+y 227=1;4 分(2)设 ∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得 2R =F 1F 2sin θ=2csin θ,即R =c sin θ=3sin θ,则 cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=54cos θ+1, -8 分S △PF 1F 2=12a 1a 2sin θ=27sin θcos θ+1=27sin θ2cos θ2cos 2θ2=27tanθ2又 S △PF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =9r , -12 分所以 27tanθ2=9r ,即 r =3tan θ2,所以 R ⋅r =9tan θ2sin θ=92cos 2θ2,又因为当 P 在短轴的端点时, θ 最大,此时, θ=60° , -16 分所以 θ∈0,π3 ,即 θ2∈0,π6 ,所以 cos θ2∈32,1 ,故 R ⋅r =92cos 2θ2∈92,6. -20 分2已知方程ln x +x 1-m =0,m ∈R 有两个不同的零点,分别记为a ,b ,且a <b .(1)求实数m 的取值范围;(2)若不等式t +1<ln a +t ln b 恒成立,求正数t 的取值范围.【解析】(1)设 f x =ln x +x 1-m ,m ∈R 的定义域为 0,+∞ ,f x =1x+1-m ,当 m ≤1 时,因 f x >0,故函数 f x 在 0,+∞ 上单调递增,不存在两个零点,不合题意;当 m >1 时,设 g x =f x =1x +1-m ,g x =-1x2<0 ,故 g x 在 0,+∞ 上单调递减,即 f x =1x+1-m 在 0,+∞ 上单调递减,由 f x =0,得 x =1m -1,当 0<x <1m -1时, f x >0;当1m -1<x 时, f x <0;所以当 x =1m -1 时, f x 取得最大值.即 f 1m -1=ln 1m -1+1m -11-m =-ln m -1 -1,-⋯⋯-4 分若函数 f x 有两个不同的零点,则 -ln m -1 -1>0即 ln m -1 <-1=ln1e ,解得 m <1+1e,又 m >1当 x 趋近于 0+ 时, 1-m x 趋近于 0, ln x 趋近于负无穷, f x 趋近于负无穷;当 x 趋近于正无穷时, f x 趋近于负无穷.所以若函数 f x 有两个不同的零点,则实数 m 的取值范围 1<m <1+1e.---8 分(2)因为 f x =ln x +x 1-m m ∈R 有两个不同的零点 a ,b ,由题知 0<a <b ,且 ln a +a -am =0ln b +b -bm =0 ,相减得到:m -1=ln a -ln b a -b由 t +1<ln a +t ln b 恒成立,所以 t +1<am -a +t mb -b 恒成立,即 t +1<a +tb m -1 恒成立,---12 分所以 t +1<a +tb ln a -ln b a -b 恒成立,即 t +1<ab+t a b-1ln a b 恒成立.设 k =ab ,则 k ∈0,1 时,不等式 t +1<t +k ln k k -1恒成立,因为 t +k >0,k -1<0 进而得 ln k -t +1 k -1t +k<0 在 k ∈0,1 时恒成立,设 h k =ln k -t +1 k -1t +k, k ∈0,1 ,注意到 h 1 =0 .则 h k =1k -t +1 t +k -k -1 t +k2 ,即 hk =1k -t +1 2t +k2=t 2+k 2-t 2k -kk t +k 2=k -1 k -t 2 k t +k 2, -16 分又因为 k ∈0,1 且 t >0,则k -1k t +k 2<0 ,所以当 t ≥1 时, k -t 2<0,即 h k >0,故 h k 在 k ∈0,1 单调递增,而 k =1 时 ln k -t +1k -1t +k=0,所以 h k <0 恒成立,故 t ≥1 满足题意.当 0<t <1 时,若 k ∈t 2,1 ,由 h k <0,则 h k 在 k ∈t 2,1 单调递减,所以当 k ∈t 2,1 时 h k >0,与题设不符.综上所述,正数 t 的取值范围 t ≥1. ---20 分加试1设有限集A ,B ,C ⊆R ,A ,B ,C 为有限集,对任意x ∈R ,定义:N A ,B ,C x =a ,b ,c ∣a ∈A ,b ∈B ,c ∈C ,a +b +c =x ∣ . 证明以下结论:(1)存在x ∈R ,使得0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C(2)x ∈A +B +CN A ,B ,C x 2≥A2⋅B 2⋅C 2A +B +C 其中:A 表示集合A 中的元素个数, A +B +C ={a +b +c ∣a ∈A ,b ∈B ,c ∈C } .【解析】(1)x ∈A +B +CN A ,B ,C x =x ∈A +B +C a ,b ,c ∈A ×B ×C ,a +b +c =x1=a ,b ,c ∈A ×B ×C1=A ⋅B ⋅C由平均值原理,存在 x ∈A +B +C ,使得 0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C. .20 分(2)由柯西不等式x ∈A +B +CN A ,B ,C x 2≥X ∈A +B +C N A ,B ,C x 2⋅1A +B +C .. .30 分=1A +B +C x ∈A +B +C a ,b ,c ∈A ×B ×C a +b +c =x12=1A +B +Ca ,b ,c ∈A ×B ×C12=A2⋅B 2⋅C 2A +B +C. .40 分2如图, AB 为圆O 的一条弦(AB <3R ,R 为圆O 的半径), C 为优弧AB的中点, M 为弦AB 的中点. 点D ,E ,N 分别在BC ,CA和劣弧AB上,满足BD=CE,且AD ,BE ,CN 三线共点于F . 延长CN 至G ,使GN =FN . 求证:∠FMB =∠GMB .【解析一】如图,延长 CM 交圆 O 于 T ,以 T 为圆心, TA 为半径作圆,与 CN 延长线交于 G ∵C 为优弧 AB 中点, ∴B 在圆 T 上,且 CA 与 CB 是圆 T 的切线∵∠AFB =AB+ED2=∠ACB +∠CAB =180°-12∠ATB∴F 在圆 T 上. .10 分∵CT 是圆 O 的直径,所以 ∠TNF =90°∴N 为 FG 的中点, G 与 G 重叠∴AFBG 四点共圆. . .20 分(实际上点出圆心 T 的目的是为了证明 AFBG 的共圆,证明共圆之后这个圆心就再也不会 出现, 只要能够证明 AFBG 共圆无论是否点出圆心都可以获得 20 分)∵CA 与 CB 是圆 T 的切线∴△CAF ∽△CGA ,△CBF ∽△CGB∴AF ⋅BG =AG ⋅BF . .30 分由托勒密定理知, AG ⋅BF =12AB ⋅FG =BM ⋅FG ,且 ∠FBM =∠AGF ∴△BFM ∽△GFA ∴∠BMF =∠FAG同理 ∠BMG =∠FAG ∴BM 平分 ∠FMG .40 分证毕(最后导出等角后面的证明调和四边形, 都是相对平凡的步骤了, 各占 10 分)【解析二】解析二使用了调和点列的一些性质, 答案中会备注使用调和点列的地方, 请审卷 老师注意评分如图,连接 NB ,NA ,CN 交 AB 于 Q ∵C 是优弧 AB 的中点∴∠ANC =∠BNC ∵BD=EC∴∠BFN =BN+EC2=BN +BD2=DN2=∠NAF∴△BNF ∞△FNA∴NF 2=NA ⋅NB .10 分又 NC 平分 ∠ANB ,∴△QNB ∽△ANC ∴NA ⋅NB =NQ ⋅NC∴NF2=NQ⋅NC . . .20 分(每一个相似占 10 分)∵N 为 FG 中点∴NF NC =NQNF, ∴NF-NQNC-NF=NF+NQNC+NF,即FQFC=GQGC∴CFQG 成调和点列 (调和点列的性质) . .30 分(注: 有的学生可能会写成 C,Q;F,G=-1 也代表调和点列,可以给分)∵M 是 AB 中点, ∴CM⊥AB∴MQ 与 MC 分别是 ∠FMG 的内角平分线和外角平分线 (调和点列的性质) . .40 分 证毕。
完整版-2023年数学联赛试题及答案(学科竞赛圈)
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 .答案:2.解: 22910181n nn n z z .因21812023z ,而当3n 时, 181132023nn n z ,故n 的最大值为2. 2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z ”发生的概率为 . 答案:127. 解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z ”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627 . 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则|| 的最小值为 .答案:23. 解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y ,则由2|| 得2by a ,由3|| 得3ax b . 所以2232||2223b a x y xy a b . 取3,2a b ,此时6x y ,|| 取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 .答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k . 上述解亦可写成2()36Z k x k ,其中0,1,,19k 对应最小的20个正实数解,它们的和为1902219202013036326k k . 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a. 由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a . 令23()f x x x x ,则()abc f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r . 椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b . 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b. 又2264811a b,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .A BCD E F G H答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P -1G (m , n )P n ...210-1-2-m ... 取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f . 由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t ,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x . ……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示).显然此时有ABED ACFD BCFE S S S . ……………5分 XFE B D C A由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分 不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S . 取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此 2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD . ……………15分 于是 的高221352h AA AD . 又43ABCS ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求. 假如312t ,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分 以下考虑322t 的情形.为便于讨论,先指出如下引理. 引理:若1,2u v ,且52u v ,则1uv . 事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时 1(1)(1)(1)(1)S a b a b , 其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S . 若12a b ,则取1132t c d I ,此时 13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d . ②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图, 是以AB 为直径的固定的半圆弧, 是经过点A 及 上另一个定点T 的定圆,且 的圆心位于ABT 内.设P 是 的弧 TB(不含端点)上的动点,,C D 是 上的两个动点,满足:C 在线段AP 上,,C D 位于直线AB 的异侧,且CD AB .记CDP 的外心为K .证明:(1) 点K 在TDP 的外接圆上;(2) K 为定点. ΩωPD ABT C证明:(1) 易知PCD 为钝角,由K 为CDP 的外心知2(180)2PKD PCD ACD .由于90APB ,CD AB ,故PBA ACD ATD .……………10分 所以2180PTD PKD PTA ATD ACD PTA PBA . 又,K T 位于PD 异侧,因此点K 在TDP 的外接圆上. ……………20分(2) 取 的圆心O ,过点O 作AB 的平行线l ,则l 为CD 的中垂线,点K 在直线l 上. ……………30分由,,,T D P K 共圆及KD KP ,可知K 在DTP 的平分线上,而9090DTB ATD PBA PAB PTB ,故TB 为DTP 的平分线.所以点K 在直线TB 上.显然l 与TB 相交,且l 与TB 均为定直线,故K 为定点. ……………40分 ωΩl D P OK B ATC二.(本题满分40分)正整数n 称为“好数”,如果对任意不同于n 的正整数m ,均有2222n m n m ⎧⎫⎧⎫⎪⎪⎪⎪≠⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,这里,{}x 表示实数x 的小数部分. 证明:存在无穷多个两两互素的合数均为好数.证明:引理:设n 是正奇数,且2模n 的阶为偶数,则n 是好数.引理的证明:反证法.假设n 不是好数,则存在异于n 的正整数m ,使得2222n m n m .因此22n n 与22m m 写成既约分数后的分母相同.由n 为奇数知22n n 是既约分数,故2m 的最大奇因子为2n ,从而m 的最大奇因子为n .设2t m n ,其中t 为正整数(从而m 是偶数).于是22222m m t m n. 由22222m t n n n可得2222(mod )m t n n ,故 222(mod )m t n n . (*)设2模n 的阶为偶数d .由(*)及阶的基本性质得2(mod )m t n d ,故2m t n 是偶数.但2m t 是偶数,n 是奇数,矛盾.引理得证.……………20分回到原问题.设221(1,2,)k k F k .由于1221k k F ,而k F 221k,因此2模k F 的阶为12k ,是一个偶数.对正整数l ,由221(mod )l k F 可知21(mod )l k F ,故由阶的性质推出,2模2k F 的阶被2模k F 的阶整除,从而也是偶数.因2k F 是奇数,由引理知2k F 是好数.……………30分对任意正整数,()i j i j ,211(,)(,(21)2)(,2)1i i j i i i j i F F F F F F F ,故123,,,F F F 两两互素.所以222123,,,F F F 是两两互素的合数,且均为好数. ……………40分三.(本题满分50分) 求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在9个互不相同的红色的数129,,,x x x 满足1289x x x x +++< ,或者存在10个互不相同的蓝色的数1210,,,y y y 满足12910y y y y +++< .解:所求的最小正整数为408.一方面,若407k =时,将1,55,56,,407 染为红色,2,3,,54 染为蓝色,此时最小的8个红数之和为1555661407++++= ,最小的9个蓝数之和为231054+++= ,故不存在满足要求的9个红数或者10个蓝数.对407k <,可在上述例子中删去大于k 的数,则得到不符合要求的例子. 因此407k ≤不满足要求. ……………10分 另一方面,我们证明408k =具有题述性质.反证法.假设存在一种1,2,,408 的染色方法不满足要求,设R 是所有红数的集合,B 是所有蓝数的集合.将R 中的元素从小到大依次记为12,,,m r r r ,B 中的元素从小到大依次记为12,,,n b b b ,408m n +=.对于R ,或者8R ≤,或者128m r r r r +++≥ ;对于B ,或者9B ≤,或者129n b b b b +++≥ .在1,2,,16 中至少有9个蓝色的数或至少有8个红色的数.情形1:1,2,,16 中至少有9个蓝色的数.此时916b ≤.设区间9[1,]b 中共有t 个R 中的元素12,,,(08)t r r r t ≤< .记12t x r r r =+++ ,则112(1)2x t t t ≥+++=+ . 因为12912,,,,,,,t b b b r r r 是9[1,]b 中的所有正整数,故{}{}12912,,,,,,,1,2,,9t b b b r r r t =+ .于是 12912(9)n b b b b t x ≤+++=++++- 1(9)(10)2t t x =++-. (*) ……………20分 特别地,116171362n b ≤⨯⨯=.从而9R ≥. 对任意(1)i i m t ≤≤-,由(*)知1(9)(10)2t i n r b i t t x i +≤+≤++-+.从而 811811(9)(10)2t m t t i r r r r r x t t x i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(10)(8)(8)(9)(7)22t t t t t t x =++-+---- 111(9)(10)(8)(8)(9)(7)(1)222t t t t t t t t ≤++-+----⋅+ 2819396407t t =-++≤(考虑二次函数对称轴,即知1t =时取得最大). 又136n b ≤,这与,n m b r 中有一个为408矛盾. ……………40分情形2:1,2,,16 中至少有8个红色的数.论证类似于情形1.此时816r ≤.设区间8[1,]r 中共有s 个B 中的元素12,,,(09)s b b b s ≤< .记1s y b b =++ ,则1(1)2y s s ≥+. 因为12128,,,,,,,s b b b r r r 是8[1,]r 中的所有正整数,故 {}{}12128,,,,,,,1,2,,8s b b b r r r s =+ . 于是1(8)(9)2m r s s y ≤++-. 特别地,116171362m r ≤⨯⨯=.从而10B ≥. 对任意(1)i i n s ≤≤-,有1(8)(9)2s i m b r i s s y i +≤+≤++-+.从而 911911(8)(9)2s n s s i b b b b b y s s y i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(8)(9)(8)(9)(10)22s s s s y s s =-++--+--111(9)(8)(9)(8)(1)(9)(10)222s s s s s s s s ≤-++--⋅++-- 2727369395s s =-++≤(在2s =时取得最大), 又136m r ≤,这与,n m b r 中有一个为408矛盾.由情形1、2知408k =具有题述性质.综上,所求最小正整数k 为408. ……………50分四.(本题满分50分)设4110a -=+.在20232023⨯的方格表的每个小方格中填入区间[1,]a 中的一个实数.设第i 行的总和为i x ,第i 列的总和为i y ,12023i ≤≤.求122023122023y y y x x x 的最大值(答案用含a 的式子表示). 解:记2023n =,设方格表为(),1,ij a i j n ≤≤,122023122023y y y x x x λ= . 第一步:改变某个ij a 的值仅改变i x 和j y ,设第i 行中除ij a 外其余1n -个数的和为A ,第j 列中除ij a 外其余1n -个数的和为B ,则jij i ij y B a x A a +=+.当A B ≥时,关于ij a 递增,此时可将ij a 调整到,a λ值不减.当A B ≤时,关于ij a 递减,此时可将ij a 调整到1,λ值不减.因此,为求λ的最大值,只需考虑每个小方格中的数均为1或a 的情况. ……………10分第二步:设{}1,,1,ij a a i j n ∈≤≤,只有有限多种可能,我们选取一组ij a 使得λ达到最大值,并且11n nij i j a ==∑∑最小.此时我们有,,1,.i j ij i j a x y a x y ⎧>⎪=⎨≤⎪⎩(*) 事实上,若i j x y >,而1ij a =,则将ij a 改为a 后,行和及列和变为,i j x y '',则11j j j i i iy y a y x x a x '+-=>'+-, 与λ达到最大矛盾,故ij a a =.若i j x y ≤,而ij a a =,则将ij a 改为1后,λ不减,且11n nij i j a ==∑∑变小,与ij a 的选取矛盾.从而(*)成立.通过交换列,可不妨设12n y y y ≤≤≤ ,这样由(∗)可知每一行中a 排在1的左边,每一行中的数从左至右单调不增.由此可知12n y y y ≥≥≥ .因而只能12n y y y === ,故每一行中的数全都相等(全为1或全为a ).……………20分 第三步:由第二步可知求λ的最大值,可以假定每一行中的数全相等.设有k 行全为a ,有n k -行全为1,0k n ≤≤.此时()()()n nk k n k n k ka n k ka n k na nn a λ-+-+-==. 我们只需求01,,,n λλλ 中的最大值. ()11(1)1111()(1)nn n k k n k n kk a n k a n a ka n k a k a n n a λλ++++--⎛⎫- ⎪==+ ⎪+--+⎝⎭. 因此1111(1)n k k a a k a n λλ+⎛⎫- ⎪≥⇔+≥ ⎪-+⎝⎭ 11(1)n n x x k x n-⇔+≥-+(记n x a =) 2111(1)n n x x x k x n-++++⇔≥-+ 2111n n x x x n k x -++++-⇔≤- 211(1)(1)1n n x x x x x--+++++++=+++ . 记上式右边为y ,则211(2)1n n n n x x y x x ---+-++=+++ . 下面证明(1010,1011)y ∈. ……………30分 首先证明1011y <.1011y < 2021202220222021101110111011x x x x ⇔+++<+++1010101210132021202210111010210101011x x x x x x ⇔+++<++++ .由于220221x x x <<<< ,故101010101012011(1011)101110121011101222k k k x x x =-<⋅⋅<⋅⋅∑101110110k k kx +=<∑. ……………40分 再证明1010y >,等价于证明2021202200(2022)1010kk k k k x x ==->∑∑. 由于2021202100(2022)(2022)10112023k k k k x k ==->-=⨯∑∑, 20222022010101010202310102023k k x x a =<⨯<⨯∑,只需证明1011202310102023a ⨯>⨯,而410111101010a -=+<,故结论成立. 由上面的推导可知1k k λλ+≥当且仅当1010k ≤时成立,从而1011λ最大.故 2023max 101120231011(10111012)2023a aλλ+==. ……………50分。
2021年全国中学生数学奥林匹克竞赛试题及解答(初赛)
2021年全国中学生数学奥林匹克竞赛试题及解答(初赛)
NATIONAL DAY
共谱盛世华章
如今已然山河锦绣,国泰民安,这浩浩山河长治久安,盛世中华正如故人所想,所有风雨都同舟,所有言茶不言酒,所有故地与漂游,故事里的春与秋,都在脚下这片土地找到了。
最耀眼的星星,是五星红旗的光芒。
受疫情影响,江苏、河南2021数学高联延期到今日举行,12点30分考试结束。
在高联中取得省队的选手可以参加国决,争夺60个保送清北的国集名额,以及强基计划破格入围的资格
来段舞蹈放松一下。
2021年吉林数学奥林匹克竞赛名单
2021年吉林数学奥林匹克竞赛名单
摘要:
1.2021 年吉林数学奥林匹克竞赛名单公布
2.名单中的学生来自哪些地区和学校
3.竞赛的意义和目的
4.对参赛学生的祝福和期待
正文:
【1】2021 年吉林数学奥林匹克竞赛名单公布
近日,2021 年吉林数学奥林匹克竞赛名单已经公布。
此次竞赛吸引了众多中学生参加,他们在比赛中展示了自己的数学才能和解题能力。
经过激烈的角逐,一批优秀的学生脱颖而出,成功入选竞赛名单。
【2】名单中的学生来自哪些地区和学校
本次竞赛名单中的学生来自吉林各地,涵盖了多个地区和学校。
这些学生都是在各地区选拔赛中表现优异,获得了参加全省竞赛的资格。
他们在比赛中不仅展示了自己的数学才能,还体现了良好的团队合作精神。
【3】竞赛的意义和目的
吉林数学奥林匹克竞赛旨在选拔和培养优秀的数学人才,激发学生学习数学的兴趣,提高学生的数学素养。
通过参加竞赛,学生可以锻炼自己的逻辑思维和解题能力,提升自己的学术水平。
同时,竞赛也有助于选拔和培养具有创新精神和实践能力的数学人才,为我国的数学事业发展做出贡献。
【4】对参赛学生的祝福和期待
对于入选名单的学生,我们表示衷心的祝贺。
在接下来的比赛中,希望他
们能够再接再厉,发挥出自己最佳水平,取得优异的成绩。
2004年全国高中数学联合竞赛.doc
2004年全国高中数学联合竞赛(天津初赛)(9月19日上午9:00~11:00)一、选择题(本题共6个小题,每小题5分满分30分)(1)若函数x x x f 2sin 2cos 811)(--=的最大值为a ,最小值为b ,则ba 1-等于( ) (A )18 (B )6 (C )5 (D )0 (2)若b a <<0,且1=+b a ,则下列各式中最大的是( ) (A )1- (B )1log log 22++b a(C )b 2log(D ))(log 32232b ab b a a +++(3)已知数列2004,2005,1,2004-,2005-,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2004项之和2004S 等于( ) (A )2005(B )2004 (C )1 (D )0(4)已知函数xx xx ee e e xf --+-=)(的反函数是)(1x f -,且k f f =---|)6.0(||)8.0(|11,则( ) (A ))21,0(∈k (B ))1,21(∈k(C ))23,1(∈k(D ))2,23(∈k(5)正四棱锥ABCD S -中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则α、β、γ、θ的大小关系是( ) (A )θγβα<<< (B )γθβα<<< (C )βγαθ<<<(D )θβγα<<<(6)若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( ) (A )0>k (B )10≤<k (C )1>k(D )1≥k二、填空题(本题共6个小题,每小题5分,满分30分)1P 2P 3P AOBC4P 5P 6P(7)若关于x 的方程x ax a x =+-lg 1lg 2只有一个实数解,则a 的值等于 . (8)在ABC ∆中,若21tan =A ,31tan =B ,且最长的边的长为1,则最短的边的的长等于 .(9)若正奇数n 不能表示为三个不相等的合数之和,则满足条件的n 的最大值为 . (10)设a 、b 、c 是直角三角形的三条边长,且)(2)(2222n n nn nnc b a c b a ++=++,其中*N n ∈,2≥n ,则n 的值等于 .(11)连接正文体各个顶点的所有直线中,异面直线共有 对.(12)如图,以)0,0(O 、)0,1(A 为顶点作正1OAP ∆,再以1P 和A P 1的中点B 为顶点作正21BP P ∆,再以2P 和B P 2的中点C 为顶点作正32CP P ∆,…,如此继续下去.有如下结论:①所作的正三角形的边长构成公比为21的等比数列;②每一个正三角形都有一个顶点在直线2AP (1=x )上;③第六个正三角形的不在第五个正三角形边上的顶点6P 的坐标是)36421,6463(; ④第2004个正三角形的不在第2003个正三角形边上的顶点2004P 的横坐标是20042004211-=x .其中正确结论的序号是 (把你认为正确结论的序号都填上).三、解答题(本题共3小题,每小题20分,满分60分)(13)已知函数a a x f x3)(+=(0>a ,1≠a )的反函数是)(1x fy -=,而且函数)(x g y =的图象与函数)(1x fy -=的图象关于点)0,(a 对称.(Ⅰ)求函数)(x g y =的解析式; (Ⅱ)若函数)()()(1x g x f x F --=-在]3,2[++∈a a x 上有意义,求a 的取值范围.(14)设边长为1的正ABC ∆的边BC 上有n 等分点,沿点B 到点C 的方向,依次为1P ,2P ,…,1-n P ,若AC AP AP AP AP AB S n n ⋅++⋅+⋅=-1211 ,求证:nn S n 62112-=.(15)已知}{n a 是等差数列,d 为公差且不等于0,1a 和d 均为实数,它的前n 项和记作n S ,设集合}|),{(*N n n S a A n n ∈=,},,141|),{(22R y x y x y x B ∈=-=,试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(Ⅰ)若以集合A 中的元素作为点的坐标,则这些点都在一条直线上; (Ⅱ)B A 至多有一个元素;(Ⅲ)当01≠a 时,一定有∅≠B A .二00四年全国高中数学联合竞赛(天津初赛)试题参考答案及评分标准一、选择题(本题共6个小题,每小题5分满分30分)(1)B (2)C (3)D (4)D (5)A (6)D 二、填空题(本题共6个小题,每小题5分,满分30分) (7)100 (8)55(9)17 (10)4 (11)174 (12)①②③④ 三、解答题(本题共3小题,每小题20分,满分60分)(13)【解】(Ⅰ)由a a x f x3)(+=(0>a ,1≠a ),得)3(log )(1a x x fa -=-…………5分又函数)(x g y =的图象与函数)(1x fy -=的图象关于点)0,(a 对称,则)()(1x a f x a g --=+-,于是,)(l o g )2()(1a x x a fx g a---=--=-.(a x -<)…………………………………10分(Ⅱ)由(Ⅰ)的结论,有)(log )3(log )()()(1a x a x x g x fx F a a -+-=--=-.要使)(x F 有意义,必须⎩⎨⎧>->-.0,03a x a x又0>a ,故a x 3>. (15)分由题设)(x F 在]3,2[++∈a a x 上有意义,所以a a 32>+,即1<a .于是,10<<a . ……………………………………………………………………… 20分14.【证明】如图,设=,=,=, 令n=1,则p k c BP AB AP k k +=+=(0=k ,1,2,…,n ) 其中,AP =0,AP n =. ∴)(])1([1p k c p k c AP AP k k +⋅-+=⋅-22)1()12(p k k p c k c -+⋅-+=(0=k ,1,2,…,n ) ……………5分又∵AC AP AP AP AP AB S n n ⋅++⋅+⋅=-1211 , ∴2112)]1([)]12([p k k p c k c n S nk n k n ∑∑==-+⋅-+=222)(3)1)(1(n n n n n n -++⋅+= ……………………………………………10分22222231)(31)(nn n n n n n n n n -+⋅+=-+⋅+=. ………………………15分又∵1||||||===,与的夹角为60,∴nn n n n n S n 6211312122-=-++=. ……………………………………………………20分15.【解】(Ⅰ)正确.因为,在等差数列}{n a 中,2)(1n n a a n S +=,所以,21nn a a n S +=. 这表明点),(n S a n n 的坐标适合方程)(211a x y +=. 所以,点),(nS a nn 均在直线)(211a x y +=上. ……………………………………………5分 (Ⅱ)正确.设B A y x ∈),(,则),(y x 坐标中的x 、y 应是方程组⎪⎩⎪⎨⎧=-+=14,2121221y x a x y 的解. 解这个方程组,消去y ,得42211-=+a x a .(﹡)当01=a 时,方程(﹡)无解,此时,∅=B A . …………………………………10分当01≠a 时,方程(﹡)只有一个解12124a a x --=,此时方程组也只有一个解,即⎪⎪⎩⎪⎪⎨⎧-=--=.44,24121121a a y a a x 故上述方程组至多有一解,所以B A 至多有一个元素. ………………………………15分(Ⅲ)不正确.取11=a ,1=d ,对一切*N n ∈,有0)1(1>=-+=n d n a a n ,0>nS n. 这时集合A 中的元素的点的横、纵坐标均为正.另外,由于011≠=a ,如果∅≠B A ,那么根据(Ⅱ)的结论,B A 至多有一个元素(00,y x ),而025241210<-=--=a a x ,043441210<-=-=a a y .这样的A y x ∉),(00,产生矛盾.所以,11=a ,1=d 时,∅=B A ,故01≠a 时,一定有∅=B A 是不正确的. ……………………………………20分。
2021全国数学奥林匹克竞赛试题b卷解析
2021全国数学奥林匹克竞赛试题b卷解析2021年全国数学奥林匹克竞赛(China Mathematical Olympiad,简称CMO)B卷的试题涵盖了多个数学领域,包括代数、几何、组合和数论等。
以下是对B卷部分题目的解析。
# 第一题:代数问题本题考察了代数表达式的变形和不等式的证明。
首先,需要对给定的代数式进行适当的变换,然后利用不等式的性质进行证明。
解题的关键是要找到合适的代数恒等式,使得不等式成立。
# 第二题:几何问题这道题目涉及到平面几何中的相似三角形和圆的性质。
解题时,需要利用相似三角形的性质来证明某些线段的比例关系,同时结合圆的性质来求解问题。
在解题过程中,要注意几何图形的构造和辅助线的添加。
# 第三题:组合问题本题要求考生使用组合数学的方法来解决计数问题。
题目中涉及到排列组合的基本概念和原理,如加法原理、乘法原理等。
解题时,需要对问题进行合理的分解,然后逐一解决每个子问题,最后将结果合并。
# 第四题:数论问题数论问题通常涉及到整数的性质和数的分解。
这道题目要求考生对给定的数列进行分析,找出其中的规律,并利用数论的知识来证明或求解问题。
在解题过程中,要注意整数的性质,如整除性、同余等。
# 第五题:综合问题作为最后一道题目,这道综合问题往往需要考生综合运用代数、几何、组合和数论等多个领域的知识。
解题时,需要对问题进行深入的分析,找到问题的关键点,并运用合适的数学工具来解决问题。
# 解题策略1. 仔细阅读题目:理解题目的要求和给定的条件。
2. 分析问题:识别题目中的关键信息和潜在的数学结构。
3. 选择合适的方法:根据问题的性质选择合适的解题方法,如代数变换、几何构造、组合计数等。
4. 逐步求解:按照逻辑顺序逐步解决问题,注意每一步的合理性和准确性。
5. 检查和验证:完成解题后,要对结果进行检查和验证,确保没有遗漏或错误。
请注意,以上解析仅为概述,具体的解题步骤和方法需要根据实际题目来确定。
2024奥林匹克数学竞赛试题
2024奥林匹克数学竞赛试题一、代数部分小明发现有一个数,当它加上5之后再乘以3,然后减去12,最后除以2得到的结果是21。
这个数就像个调皮的小捣蛋,躲在算式后面,你能把它找出来吗?有两个数字兄弟,哥哥比弟弟大3。
如果把哥哥数字的平方减去弟弟数字的平方,结果是33。
你能说出这兄弟俩数字分别是多少吗?这就像在数字家族里玩一场猜谜游戏呢!有一列分数列车,第一个车厢是1/2,第二个车厢是2/3,第三个车厢是3/4,按照这个规律一直排下去。
那第100个车厢里的分数是多少呢?就像沿着分数轨道去寻找宝藏分数一样。
二、几何部分有一个三角形,它的三条边长度分别是3厘米、4厘米和5厘米。
现在这个三角形想长胖一点,每条边都增加相同的长度x厘米后,它的面积变成了原来的2倍。
这个x就像是三角形的成长魔法数字,你能算出它是多少吗?这就好比给三角形吃了神奇的成长药丸。
有一个圆形池塘,它的半径是5米。
现在池塘周围要建一圈很窄的环形小路,小路的面积是18π平方米。
那这个环形小路的外半径是多少呢?就像圆形池塘在进行一场向外扩张的大冒险。
有一个正六边形和一个正方形,它们的边长之和是20厘米。
如果正六边形的面积比正方形的面积大12平方厘米,那它们各自的边长是多少呢?这就像是多边形们在开一场比大小、比边长的聚会。
三、组合数学部分老师有10颗不同口味的糖果,要分给3个小朋友。
每个小朋友至少得到一颗糖果,而且不同的分配方式代表不同的甜蜜方案。
那一共有多少种甜蜜的分配方案呢?这就像在糖果的世界里玩一场复杂的分配游戏。
有10个同学要排成一排照相。
但是其中有两个同学是好朋友,他们必须要挨在一起。
那这样的排队方式有多少种呢?这就像是在安排一场有特殊要求的同学聚会排队。
有五张数字卡片,上面分别写着1、2、3、4、5。
把它们排成一排,要求所有奇数数字都要相邻。
那有多少种神奇的排列方式呢?这就像是在数字卡片的魔法世界里寻找特定的排列咒语。
2023年奥林匹克数学竞赛题目
2023年奥林匹克数学竞赛题目摘要:1.奥林匹克数学竞赛简介2.2023年奥林匹克数学竞赛题目概述3.题目分析与解题思路4.备赛建议与策略正文:尊敬的读者,您好!本文将为您介绍2023年奥林匹克数学竞赛题目,并对题目进行深入分析,提供解题思路。
同时,为您提供一些备赛建议与策略,帮助您在竞赛中取得优异成绩。
一、奥林匹克数学竞赛简介奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO)是世界上最具影响力的青少年数学竞赛活动。
自1959年起,每年举办一次。
我国自1989年开始参加IMO,取得了举世瞩目的成绩。
奥林匹克数学竞赛旨在选拔数学天才,激发青少年对数学的兴趣和热情,促进数学教育的发展。
二、2023年奥林匹克数学竞赛题目概述2023年奥林匹克数学竞赛共分为两个阶段,初赛和决赛。
初赛题目涵盖初中数学知识,决赛题目则涉及高中数学知识。
竞赛题目注重数学思维能力的考查,包括计算能力、逻辑推理能力、创新能力等。
以下是对2023年奥林匹克数学竞赛题目的简要概述:1.初赛题目:初赛共分为两部分,每部分满分100分,总分200分。
题目主要包括代数、几何、组合、概率与统计、数学建模等模块。
2.决赛题目:决赛共分为四部分,每部分满分100分,总分400分。
题目难度较高,涉及高中数学知识,包括解析几何、立体几何、复数、函数与导数、数论等。
三、题目分析与解题思路为了更好地备战2023年奥林匹克数学竞赛,我们需要对历年真题进行深入分析,总结解题思路。
以下是对部分题目的简要分析:1.代数题:注重考查考生的基本运算能力、公式应用和化简求解能力。
解题思路通常是提取公因式、运用二次公式、求解方程组等。
2.几何题:主要考查考生的基本几何知识、逻辑推理能力和空间想象能力。
解题思路包括利用几何性质、构造辅助线、运用向量法等。
3.组合题:注重考查考生的计数能力、排列组合知识和逻辑思维能力。
解题思路通常是利用组合数公式、抽屉原理、容斥原理等。
数学奥林匹克竞赛
数学奥林匹克竞赛
奥林匹克数学竞赛(Olympic Math Competition)或数学奥林匹克竞赛,简称奥数。
1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒
斯特举办第一届国际数学奥林匹克。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。
有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。
2012年8月21日,北京采取多项措施坚决治理奥数成绩与升学挂钩。
奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比
普通数学要深奥些。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A卷)与答案
说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,102024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12.又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12.…………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21mC m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x . 若021mm,则121m a k m .若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121ma a r kr r r m . …………30分另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n ma m m,由二项式展开可知11(211)(1)2121n n n m ma m K m m,其中K 为整数,故21n m a m .这意味着21mC m 满足要求.从而满足要求的C 的最大值为212(1)m rm r.综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)rr . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CFCB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF ABAL KA. …………20分同理,记,DQ CA 的延长线交于点L ,则KE ADAL KA.又由||,||KE AB KF AD 知KE CK KFAB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2bS n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2wS n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥. 综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ; (4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S . 证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
黑龙江省哈尔滨市师范附属小学四年级奥数竞赛数学竞赛试卷及答案百度文库
黑龙江省哈尔滨市师范附属小学四年级奥数竞赛数学竞赛试卷及答案百度文库一、拓展提优试题1.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.如果,那么=.4.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.5.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.6.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.7.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.8.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.9.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.10.小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买支相同的钢笔.11.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.12.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.13.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..14.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.15.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.16.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.17.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.18.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.19.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.20.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.21.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.22.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.23.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.24.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.25.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.26.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.27.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.28.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.29.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.30.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.31.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.32.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.33.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.34.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.35.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.36.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.37.在□中填上适当的数,使竖式成立.38.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.39.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.40.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.【参考答案】一、拓展提优试题1.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.4.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.5.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.6.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.7.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.8.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.9.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).10.【分析】根据题意,可用100减去61计算出购买3支钢笔花的钱数,然后再除以3计算出每支钢笔的钱数,最后再用100除以每支钢笔的钱数进行计算,得到的商就是最多购买钢笔的支数,得到的余数就是剩余的钱数,最后再用最多购买的钢笔数减去原来买的3支即可.解:(100﹣61)÷3=39÷3=13(元)100÷13=7(支)…9(元)7﹣3=4(支)答:他最多还可以买4支同样的钢笔.故答案为:4.【点评】此题主要考查的有余数除法计算方法的应用,解答时关键求出每支钢笔的单价.11.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.12.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.13.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.14.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.15.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.16.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.17.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.18.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天19.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.20.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.21.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.22.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).23.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.24.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.25.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.26.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.27.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.28.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.29.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.30.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.31.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.32.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.33.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.34.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.35.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.36.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.37.解:根据题干分析可得:38.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.39.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.40.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卉新综合能力培训中心
模拟试题
1、华罗庚是1910年出生的,下面算式里“华杯”代表的两位数是多少?
1910
+华杯
2004
2、长方形各边长增加10%,它的周长和面积分别增加百分之几?
3、图中是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为1,则ABC处填的数各是多少?
4、在一列数:……中,从何数开始,1与每个数之差都小于?
5、“神州五号”载人航天飞船绕地球飞行14圈,后10圈沿离地球343千米的圆形轨道飞行,请计算沿圆形轨道飞行了多少千米?
6、如图,一块圆形纸片分成4个相同的扇形用红、黄两种颜色分别图满个扇形,有几种图法?
7、在9点到10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,问:此时刻时9点几分?
8、一副扑克牌有54张,最少抽取几张,方能使其中至少有2张牌有相同的点数?
9、任意写一个两位数在将它一次重复3遍成一个8位数,将此8位数除以该两位数,所得的商再除以9,问:得的余数是多少?
10、一块长方体木板,长90cm,宽40cm,将它据成2块,再拼成一个正方形,你能做到吗?
11、如图,大小两个半圆的直径在同一直线上,弦AB与小半圆切,且与直径平行,弦AB 长12cm,求图中红色部分的面积(圆周率=3.14)
12、半径为25cm的小铁环沿着半径位50cm的大铁环的内侧作无滑动的滚动,当小铁环滚动一周后,回到原位置,问:小铁环自身转了几圈?
答案:
第1题:94
第2题:周长增加10%,面积增加21%
第3题:A-6;B-5;C-3
第4题:从1999/2001 开始
第5题:421639.2千米
第6题:6种。
按逆时针方向涂染各扇形:
红红红红红红红黄红红黄黄
红黄红黄红黄黄黄黄黄黄黄
学生答16种也对
第7题:9点55分
第8题:16张
第9题:4
第10题:能够。
因为90×40=3600,3600=60×60,所求正方形的边长为60厘米,可以如下图拼成:
第11题:56.52平方厘米
第12题:1圈。