配华中科大机电传动控制(第五版)课后习题答案全解
《机电传动控制》第五版课后习题答案
第3章直流电机的工作原理及特性习题3.1 为什么直流电机的转子要用表面有绝缘层的硅钢片叠压而成?答案:直流电动机工作时,(1)电枢绕组中流过交变电流,它产生的磁通当然是交变的。
这个(2)变化的磁通在铁芯中产生感应电流。
铁芯中产生的感应电流,在(3)垂直于磁通方向的平面内环流,所以叫涡流。
涡流损耗会使铁芯发热。
为了减小这种涡流损耗,电枢铁芯采用彼此绝缘的硅钢片叠压而成,使涡流在狭长形的回路中,通过较小的截面,以(4)增大涡流通路上的电阻,从而起到(5)减小涡流的作用。
如果没有绝缘层,会使整个电枢铁芯成为一体,涡流将增大,使铁芯发热。
因此,如果没有绝缘,就起不到削减涡流的作用。
习题3.4 一台他励直流电动机在稳态下运行时,电枢反电势E =E1,如负载转矩TL =常数,外加电压和电枢电路中的电阻均不变,问减弱励磁使转速上升到新的稳定值后,电枢反电势将如何变化?是大于、小于还是等于E1?答案:∵当电动机再次达到稳定状态后,输出转矩仍等于负载转矩,即输出转矩T =T L =常200aae e ae m ae m e e R U n I K K R U n E K n T K I n n n K K K U T K =Φ=−ΦΦ=∴=Φ−Φ∴−∆=Φ=ΦQ Q 又当T=0a aU E I R =+数。
又根据公式(3.2), T =K t ФI a 。
∵励磁磁通Ф减小,T 、K t 不变。
∴电枢电流I a 增大。
再根据公式(3.11),U =E +I a ·R a 。
∴E=U -I a ·R a 。
又∵U 、R a 不变,I a 增大。
∴E 减小即减弱励磁到达稳定后,电动机反电势将小于E 1。
习题3.8 一台他励直流电动机的铭牌数据为:P N =5.5KW ,U N =110V ,I N =62A ,n N =1000r/min ,试绘出它的固有机械特性曲线。
(1)第一步,求出n 0 (2)第二步,求出(T N ,n N )答案:根据公式(3.15),(1-1)Ra =(0.50~0.75)(N N N I U P −1)NN I U我们取Ra =0.7(N N N I U P −1)NN I U, 计算可得,Ra =0.24 Ω 再根据公式(3.16)得,(1-2) Ke ФN =(U N -I N Ra )/n N =0.095 又根据(1-3) n 0=U N /(Ke ФN ),计算可得,n 0=1158 r/min 根据公式(3.17),(2-1) T N =9.55NNn P , 计算可得,T N =52.525 N ·M 根据上述参数,绘制电动机固有机械特性曲线如下:3.10一台他励直流电动机的技术数据如下:P N =6.5KW ,U N =220V , IN=34.4A , n N =1500r/min , R a =0.242Ω,试计算出此电动机的如下特性:①固有机械特性;②电枢附加电阻分别为3Ω和5Ω时的人为机械特性;③电枢电压为U N /2时的人为机械特性; ④磁通φ=0.8φN 时的人为机械特性;并绘出上述特性的图形。
机电传动控制第五版课后答案--最全版
机电传动控制第五版课后答案--最全版机电传动控制是一门涉及机械、电气和控制等多领域知识的重要学科,对于相关专业的学生和从业者来说,掌握这门课程的知识至关重要。
而课后习题的答案则是检验学习成果、加深理解的重要工具。
以下为您提供机电传动控制第五版的课后答案,希望能对您的学习有所帮助。
第一章绪论1、机电传动控制的目的是什么?答:机电传动控制的目的是将电能转变为机械能,实现生产机械的启动、停止、调速、反转以及各种生产工艺过程的要求,以满足生产的需要,提高生产效率和产品质量。
2、机电传动系统由哪些部分组成?答:机电传动系统通常由电动机、传动机构、生产机械、控制系统和电源等部分组成。
电动机作为动力源,将电能转化为机械能;传动机构用于传递动力和改变运动形式;生产机械是工作对象;控制系统用于控制电动机的运行状态;电源则为整个系统提供电能。
3、机电传动系统的运动方程式是什么?其含义是什么?答:运动方程式为 T M T L =J(dω/dt) 。
其中,T M 是电动机产生的电磁转矩,T L 是负载转矩,J 是转动惯量,ω 是角速度,dω/dt 是角加速度。
该方程式表明了机电传动系统中电动机的电磁转矩与负载转矩之间的平衡关系,当 T M > T L 时,系统加速;当 T M < T L 时,系统减速;当 T M = T L 时,系统以恒定速度运行。
第二章机电传动系统的动力学基础1、为什么机电传动系统中一般需要考虑转动惯量的影响?答:转动惯量反映了物体转动时惯性的大小。
在机电传动系统中,由于电动机的转速变化会引起负载的惯性力和惯性转矩,转动惯量越大,系统的加速和减速过程就越困难,响应速度越慢。
因此,在设计和分析机电传动系统时,需要考虑转动惯量的影响,以确保系统的性能和稳定性。
2、多轴传动系统等效为单轴系统的原则是什么?答:多轴传动系统等效为单轴系统的原则是:系统传递的功率不变,等效前后系统的动能相等。
3、如何计算机电传动系统的动态转矩?答:动态转矩 T d = T M T L ,其中 T M 是电动机的电磁转矩,TL 是负载转矩。
华中科大机电传动控制(第五版)课后习题答案解析
反接制动:电源反接时,制动电流大,定子或转子需串接电阻,制动速度快容易造成 反转,准确停车有一定困难,电能损耗大。当倒拉制动时,用于低速下放重物,机械功率、 电功率都消耗在电阻上。
2.7 如图所示,电动机轴上的转动惯量 JM=2.5kg.m2,转速 nM=900r/mim;中间传动轴的 转动惯量 J1=2kg.m2,转速 n1=300r/mim;生产机械轴的惯量 JL=16kg.m2,转速 nL= 60r/mim。试求折算到电动机轴上的等效转动惯量。
答: j1=ωM/ω1= nM/n1=900/300=3 jL=ωM/ωL= nM/nL=900/60=15
n0
60 f p
60 50 1500 (r / min) 2
因为S N
n0
nN n0
,nN
(1 S N )n0
(1 0.02) 1500
1470 r / min
f2 S N f1 0.02 50 1(Hz )
5.3 有一台三相异步电动机,其 nN=1470r/min,电源频率为 50Hz。当在额定负载下运行, 试求:(1) 定子旋转磁场对定子的转速;(2) 定子旋转磁场对转子的转速;(3) 转子旋转 磁场对转子的转速;(4) 转子旋转磁场对定子的转速;(5) 转子旋转磁场对定子旋转磁场 的转速。 答:
齿轮、滑轮和卷筒总的传动效率为 0.83。试求提升速度 v 和折算到电动机轴上的静态转矩
TL 以及折算到电动机轴上整个拖动系统的飞轮惯量 GDZ2。
机电传动控制(第五版)课后习题答案
2.1 说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。
拖动转矩是由电动机产生用来克服负载转矩,以带动生产机械运动的。
静态转矩就是由生产机械产生的负载转矩。
动态转矩是拖动转矩减去静态转矩。
2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。
TM-TL>0说明系统处于加速,TM-TL<0 说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。
这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。
所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。
转矩折算前后功率不变的原则是P=Tω, p不变。
转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω22.6为什么机电传动系统中低速轴的G D2比高速轴的GD2大得多?因为P=Tω,T=G∂D2/375. P=ωG∂D2/375. ,P不变转速越小GD2越大,转速越大GD2越小。
2.7 如图2.3(a)所示,电动机轴上的转动惯量J M=2.5kgm2,转速n M=900r/min; 中间传动轴的转动惯量J L=16kgm2,转速n L=60 r/min。
试求折算到电动机轴上的等效专惯量。
折算到电动机轴上的等效转动惯量:j=Nm/N1=900/300=3,j1=Nm/Nl=15J=JM+J1/j2+ JL/j12=2.5+2/9+16/225=2.79kgm2. 2.8如图2.3(b)所示,电动机转速n M=950 r/min,齿轮减速箱的传动比J1= J2=4,卷筒直径D=0.24m,滑轮的减速比J3=2,起重负荷力 F=100N,电动机的费轮转距GD2M=1.05N m2, 齿轮,滑轮和卷筒总的传动效率为0.83。
机电传动控制(第五版)课后习题答案解析全集.共114页文档
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
机电传动控制(第五版)课后习题答案解
析全集.
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。-- 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
机电传动控制第五版课后答案--最全版
机电传动控制第五版课后答案--最全版机电传动控制第五版课后答案最全版机电传动控制是一门涉及电机、电气控制、自动化等多个领域的重要课程。
对于学习这门课程的同学来说,课后答案的准确性和完整性至关重要。
以下是为大家整理的机电传动控制第五版的课后答案,希望能对大家的学习有所帮助。
一、第一章绪论1、机电传动控制的目的是什么?答:机电传动控制的目的是将电能转换为机械能,实现生产机械的启动、停止、调速、反转和制动等动作,以满足生产工艺的要求,提高生产效率和产品质量。
2、机电传动系统的发展经历了哪几个阶段?答:机电传动系统的发展经历了成组拖动、单电机拖动和多电机拖动三个阶段。
3、机电传动系统的运动方程式中,各物理量的含义是什么?答:T 为电动机产生的电磁转矩,T L 为负载转矩,J 为转动惯量,ω 为角速度。
当 T>T L 时,系统加速;当 T<T L 时,系统减速;当T = T L 时,系统匀速运转。
二、第二章机电传动系统的动力学基础1、转动惯量的物理意义是什么?它与哪些因素有关?答:转动惯量是物体转动时惯性的度量,反映了物体抵抗转动状态变化的能力。
其大小与物体的质量、质量分布以及转轴的位置有关。
2、飞轮转矩的概念是什么?它与转动惯量有何关系?答:飞轮转矩 G D 2 是指转动惯量 J 与角速度ω平方的乘积。
飞轮转矩越大,系统储存的动能越大,系统的稳定性越好。
3、如何根据机电传动系统的运动方程式判断系统的运行状态?答:当 T T L > 0 时,系统加速;当 T T L < 0 时,系统减速;当T T L = 0 时,系统匀速运行。
三、第三章直流电机的工作原理及特性1、直流电机的工作原理是什么?答:直流电机是基于电磁感应定律和电磁力定律工作的。
通过电刷和换向器的作用,使电枢绕组中的电流方向交替变化,从而在磁场中产生持续的电磁转矩,驱动电机旋转。
2、直流电机的励磁方式有哪几种?答:直流电机的励磁方式有他励、并励、串励和复励四种。
机电传动控制(第五版)课后习题答案解析
机电传动控制
冯清秀 邓星钟 等编著 第五版 课后习题答案详解
2.1 说明机电传动系统运动方程式中的拖动转矩、静态转矩和动 态转矩的概念。
答:
Ra
0.50
~
0.751
PN UNI
N
UN IN
Ra
0.50
~
0.751
5.5 1000 110 62
110 62
0.172
~
0.258 ()
n0
UN Ke N
U N nN U N I N Ra
110 1000
n0
110
62(0.172
~
0.258 )
1107
~ 1170 (r / min)
TN
9550
PN nN
9550 5.5 1000
52.53(N m)
3.9一台并励直流电动机的技术数据如下:PN=5.5kW,UN=110V, IN=61A,额定励磁电流IfN=2A,nN=1500r/min,电枢电阻Ra=0.2 Ω,若忽略机械磨擦和转子的铜耗、铁损,认为额定运行状态下 的电磁转矩近似等于额定输出转矩,试绘出它近似的固有机械特 性曲线。
答: j1=ωM/ω1= nM/n1=900/300=3
jL=ωM/ωL= nM/nL=900/60=15
JZ
JM
J1 j12
JL
j
配华中科大机电传动控制(第五版)课后习题答案全解
拖动转矩:电动机产生的转矩Tm或负载转矩TL与转速n相同时,就是拖动转矩。
静态转矩:电动机轴上的负载转矩TL,它不随系统加速或减速而变化。
动态转矩:系统加速或减速时,存在一个动态转矩Td,它使系统的运动状态发生变化。
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?答:在多轴拖动系统情况下,为了列出这个系统运动方程,必须先把各传动部分的转矩和转动惯量或直线运动部分的质量都折算到电动机轴上。
由于负载转矩是静态转矩,所以可根据静态时功率守恒原则进行折算。
由于转动惯量和飞轮转矩与运动系统动能有关,所以可根据动能守恒原则进行折算。
2.5 为什么低速轴转矩大?调速轴转矩小?答:忽略磨擦损失的情况下,传动系统的低速轴和调速轴传递的功率是一样的,即P1=P2 而P1=T1ω1,P2=T2ω2所以T1ω1=T2ω2,当ω1>ω2时,T1<T22.6 为什么机电传动系统中低速轴的GD2比高速轴的GD2大得多?答:因为低速轴的转矩大,所设计的低速轴的直径及轴上的齿轮等零件尺寸大,质量也大,所以GD2大,而高速轴正好相反。
2.10 反抗静态转矩与位能静态转矩有何区别,各有什么特点?答:反抗性恒转矩负载恒与运动方向相反。
位能性恒转矩负载作用方向恒定,与运动方向无关。
3.1 为什么直流电机的转子要用表面有绝缘层的硅钢片叠压而成?答:转子在主磁通中旋转,要产生涡流和磁滞损耗,采用硅钢软磁材料,可减少磁滞损耗,而采用“片”叠压成,可减少涡流损耗。
3.11为什么直流电动机直接启动时启动电流很大?答:因为Tst=UN/Ra,Ra很小,所以Tst很大,会产生控制火花,电动应力,机械动态转矩冲击,使电网保护装置动作,切断电源造成事故,或电网电压下降等。
故不能直接启动。
3.12 他励直流电动机启动过程中有哪些要求?如何实现?答:要求电流Ist≤(1.5~2)IN,可采用降压启动、电枢回路串电阻进行启动。
机电传动控制(第五版)课后习题答案解析全集
自动往复运动控制电路
SB1 KMR STa KMF
FR
SBF
KMF STb
KMR
SBR
关键措施
KMR 限位开关 采用复合式开 关。正向运行 停车的同时,自动起动反向 运行;反之亦然。
KMF
电机
STb
STa
(4)程序控制
8.16 要求三台电动机1M、2M、3M按一定顺序启动:即1M 启动后,2M才能启动; 2M启动后,3M才能启动;停产时 则同时停。试设计此控制线路。
110 1500 1680 (r / min) 110 59 0.2
Ra U n T 2 K EΦ KT K EΦ
3.10 一台他励直流电动机的技术数据如下:PN=6.5kW, UN=220V,IN=34.4A,nN=1500r/min,Ra=0.242 Ω,试计算出此 电动机的如下特性: ⑴ 固有机械特性 ⑵ 电枢附加电阻分别为3 Ω和5 Ω 时的人为机械特性 ⑶ 电枢电压为UN/2时的人为机械特性 ⑷ 磁通Φ=0.8 ΦN时的人为机械特性
在( 1 )中,n n0 nN 1559 1500 59(r / min)
Ra RaTN 2 T n ,所以 K K N e t n Ke Kt 2 R ad 1 Ra Rad 1 Ra Rad 1 当串入 R ad 1 3时, n1 TN n= 1+ n 2 Ra Ra Ke Kt 3 n1 1+ 59 790(r / min) 0.242
正反转控制线路
L1 S
L2 L3
FU
KM
FR M 3~ KM2 R2 KM1 R1
串电阻启动
S FU
KM1 KM2
机电传动控制(第五版)课后习题答案
机电传动控制(第五版)课后习题答案习题与思考题第⼆章机电传动系统的动⼒学基础2.1 说明机电传动系统运动⽅程中的拖动转矩,静态转矩和动态转矩的概念。
拖动转矩是有电动机产⽣⽤来克服负载转矩,以带动⽣产机械运动的。
静态转矩就是由⽣产机械产⽣的负载转矩。
动态转矩是拖动转矩减去静态转矩。
2.2 从运动⽅程式怎样看出系统是处于加速,减速,稳态的和静态的⼯作状态。
>0说明系统处于加速,<0 说明系统处于减速,0说明系统处于稳态(即静态)的⼯作状态。
2.3 试列出以下⼏种情况下(见题2.3图)系统的运动⽅程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头⽅向表⽰转矩的实际作⽤⽅向)<>0说明系统处于加速。
<0 说明系统处于减速系统的运动状态是减速系统的运动状态是加速系统的运动状态是减速系统的运动状态是匀速2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多⽣产机械要求低转速运⾏,⽽电动机⼀般具有较⾼的额定转速。
这样,电动机与⽣产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,⽪带等减速装置。
所以为了列出系统运动⽅程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到⼀根轴上。
转矩折算前后功率不变的原则是ω, p 不变。
转动惯量折算前后动能不变原则是能量守恒0.5Jω22.5为什么低速轴转矩⼤,⾼速轴转矩⼩?因为 Tω不变ω越⼩T越⼤,ω越⼤T 越⼩。
2.6为什么机电传动系统中低速轴的2逼⾼速轴的2⼤得多?因为ω,?D2/375. ωG?D2/375. 不变转速越⼩2越⼤,转速越⼤2越⼩。
2.7 如图2.3(a)所⽰,电动机轴上的转动惯量2.52, 转速900;中间传动轴的转动惯量162,转速60。
试求折算到电动机轴上的等效专惯量。
折算到电动机轴上的等效转动惯量1=900/300=311512+ 12=2.5+2/9+16/225=2.792.2.8如图2.3(b)所⽰,电动机转速950 ,齿轮减速箱的传动⽐J1= J2=4,卷筒直径0.24m,滑轮的减速⽐J3=2,起重负荷⼒100N,电动机的费轮转距2M1.05N m2, 齿轮,滑轮和卷筒总的传动效率为0.83。
机电传动控制第五版课后答案
机电传动控制第五版课后答案【篇一:机电传动控制(第五版)课后习题答案】态转矩。
拖动转矩是由电动机产生用来克服负载转矩,以带动生产机械运动的。
静态转矩就是由生产机械产生的负载转矩。
动态转矩是拖动转矩减去静态转矩。
2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?2.6为什么机电传动系统中低速轴的gd2比高速轴的gd2大得多?2.7 如图2.3(a)所示,电动机轴上的转动惯量jm=2.5kgm2, 转速nm=900r/min; 中间传动轴的转动惯量jl=16kgm2,转速nl=60 r/min。
试求折算到电动机轴上的等效专惯量。
折算到电动机轴上的等效转动惯量:j=nm/n1=900/300=3,j1=nm/nl=15j=jm+j1/j2+ jl/j12=2.5+2/9+16/225=2.79kgm2. 2.8 如图2.3(b)所示,电动机转速nm=950 r/min,齿轮减速箱的传动比j1= j2=4,卷筒直径d=0.24m,滑轮的减速比j3=2,起重负荷力 f=100n,电动机的费轮转距gd2m=1.05n m2, 齿轮,滑轮和卷筒总的传动效率为0.83。
试球体胜速度v和折算到电动机轴上的静态转矩t l 以及折算到电动机轴上整个拖动系统的飞轮惯量gd2z.。
=1.25*1.05+100*0.242/322=1.318nm22.9 一般生产机械按其运动受阻力的性质来分可有哪几种类型的负载?可分为1恒转矩型机械特性2离心式通风机型机械特性3直线型机械特性4恒功率型机械特性,4种类型的负载.2.10 反抗静态转矩与位能静态转矩有何区别,各有什么特点?反抗转矩的方向与运动方向相反,,方向发生改变时,负载转矩的方向也会随着改变,因而他总是阻碍运动的.位能转矩的作用方向恒定,与运动方向无关,它在某方向阻碍运动,而在相反方向便促使运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拖动转矩:电动机产生的转矩Tm或负载转矩TL与转速n相同时,就是拖动转矩。
静态转矩:电动机轴上的负载转矩TL,它不随系统加速或减速而变化。
动态转矩:系统加速或减速时,存在一个动态转矩Td,它使系统的运动状态发生变化。
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?答:在多轴拖动系统情况下,为了列出这个系统运动方程,必须先把各传动部分的转矩和转动惯量或直线运动部分的质量都折算到电动机轴上。
由于负载转矩是静态转矩,所以可根据静态时功率守恒原则进行折算。
由于转动惯量和飞轮转矩与运动系统动能有关,所以可根据动能守恒原则进行折算。
2.5 为什么低速轴转矩大?调速轴转矩小?答:忽略磨擦损失的情况下,传动系统的低速轴和调速轴传递的功率是一样的,即P1=P2 而P1=T1ω1,P2=T2ω2所以T1ω1=T2ω2,当ω1>ω2时,T1<T22.6 为什么机电传动系统中低速轴的GD2比高速轴的GD2大得多?答:因为低速轴的转矩大,所设计的低速轴的直径及轴上的齿轮等零件尺寸大,质量也大,所以GD2大,而高速轴正好相反。
2.10 反抗静态转矩与位能静态转矩有何区别,各有什么特点?答:反抗性恒转矩负载恒与运动方向相反。
位能性恒转矩负载作用方向恒定,与运动方向无关。
3.1 为什么直流电机的转子要用表面有绝缘层的硅钢片叠压而成?答:转子在主磁通中旋转,要产生涡流和磁滞损耗,采用硅钢软磁材料,可减少磁滞损耗,而采用“片”叠压成,可减少涡流损耗。
3.11为什么直流电动机直接启动时启动电流很大?答:因为T st=UN/Ra,Ra很小,所以T st很大,会产生控制火花,电动应力,机械动态转矩冲击,使电网保护装置动作,切断电源造成事故,或电网电压下降等。
故不能直接启动。
3.12 他励直流电动机启动过程中有哪些要求?如何实现?答:要求电流Ist≤(1.5~2)IN,可采用降压启动、电枢回路串电阻进行启动。
3.13直流他励电动机启动时,为什么一定要先把励磁电流加上,若忘了先合励磁绕组的电源开关就把电枢电源接通,这时会产生什么现象(试从TL=0和TL=TN两种情况加以分析)?当电动机运行在额定转速下,若突然将励磁绕组断开,此时又将出现什么情况?答:当TL=0启动时:因为励磁绕组有一定剩磁,使Φ≈0;启动时,n=0,E=0,根据UN=E+IaRa 知,UN全加在电阻Ra上,产生很大的Ia ((10~20)IN),但因为Φ≈0,所以T=KtΦIa并不大,因为TL≈0,所以动转矩大于0,系统会加速启动;启动后,虽有n,使E变大点,但因为Φ≈0,所以E仍不大,UN大部分仍要加在电阻Ra上,产生很大Ia和不大的T,使系统不断加速;当系统达到“飞车”时,在相当大的某一n稳速运行时,T=KtΦIa=TL ≈0,所以Ia ≈0,此时,E相当大,UN几乎和E平衡。
当TL=TN启动时:n=0,E=0,根据UN=E+IaRa 知,UN全加在电阻Ra上,产生很大的Ia((10~20)IN),但因为Φ≈0,所以T=KtΦIa并不大,因为TL= TN,所以系统无法启动。
当电动机运行在额定转速下,T=KtΦNIaN = TL=TN,n=nN,此时断开励磁,Φ≈0,虽然仍有n=nN,但E ≈0,根据UN=E+IaRa 知,UN全加在电阻Ra上,产生很大的Ia,但因为Φ≈0,所以T=KtΦIa并不大,因为TL= TN,所以T<TL,系统逐渐减速到停车。
3.16直流电机用电枢电路串电阻的办法启动时,为什么要逐渐切除启动电阻?切除太快,会带来什么后果?答:见书上图3.23。
如果只一段启动电阻,当启动后,把电阻一下切除,则电流会超过2IN,冲击大。
所以应采用逐级切除电阻办法,切除太快,也会产生电流冲击大,见书上图3.24。
3.17 转速调节(调速)与固有的速度变化在概念上有什么区别?答:调速:在一定负载条件下,人为地改变电动机的电路参数,以改变电动机的稳定转速。
速度变化:由于电动机负载转矩发生变化而引起的电动机转速变化。
3.18他励直流电动机有哪些方法进行调速?它们的特点是什么?答:改变电枢电路外串电阻调速:机械特性较软,稳定度低;空载或轻载时,调速范围不大;实现无级调速困难;电阻上消耗电能大。
用于起重机、卷扬机等低速运转时间不长的传动系统。
改变电动机电枢供电电压调速:电源电压连续变化时,转速可以平滑无级调节;在额定转速以下调;特性与固有特性平行,硬度不变,稳定度高,调速范围大;属恒转矩调速,适合拖动恒转矩负载,可以靠调电枢电压启动电机,不用其它设备。
改变电机主磁通调速:可无级调速,额定转速以上调(弱磁升速),特性软,最高转速不得超过额定转速的1.2倍,调速范围不大;属恒功率调速,适合于恒功率负载。
往往和调压调速配合使用。
3.19直流电动机的电动与制动两种运转状态的根本区别何在?答:电动:电动机发出的转矩T与转速n方向相同;制动:T与n相反。
3.20他励直流电动机有哪几种制动方法?它们的机械特性如何?试比较各种制动方法的优缺点。
答:反馈制动:运行在二、四象限,转速大于理想空载转速。
用于起重机调速下放重物,电网吸收电能,运行经济。
电源反接制动:制动迅速,能量靠电阻吸收,但容易反向启动。
倒拉反接制动:可得较低下降速度,对TL大小估计不准,本应下降,也许会上升,特性硬度小,稳定性差,电阻消耗全部能量。
能耗制动:用于迅速准确停车及恒速下放重物,电阻消耗全部能量。
5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么?答:会反转。
因为三相绕组中电流的相序发生改变。
5.4当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?答:当负载增加时,转子电流增加;因为转子相当于变压器的副边,而定子相当于变压器的原边,所以当转子电流增加时,定子电流也会增加。
5.8三相异步电动机断了一根电源线后,为什么不能启动?而在运行时断了一线,为什么仍能继续转动?这两种情况对电动机将产生什么影响?答:断了一根电源线后,变成单相异步电动机,没有旋转磁场,所以不能启动。
但仍能继续运转。
启动时,脉动磁场使转子产生交变电流,发热。
运转时,因为断了一相,变成单相,而单相产生的脉动磁场,分解成两个转向相反的旋转磁场后,存在:Bm1=Bm2=Bm/2与转子旋转方向相同的旋转磁场的Φ比三相运转时的Φ要小,所以I2增大;另外,与转子旋转方向相反的旋转磁场的Φ使T减小。
所以,断了一根电源线后,如果较大的TL 还不变,当稳定运行时,不但n下降,面且I2相当大,会烧坏电机。
5.9 三相异步电动机在相同电源电压下,满载和空载启动时,启动电流是否相同?启动转矩是否相同?答:启动电流一样,启动转矩相同。
5.10 三相异步电机为什么不运行在Tmax或接近Tmax的情况下?答:一般Tmax是TN的2~2.5倍,在Tmax或接近Tmax运行时,I2大很多,电机会被烧坏。
5.13 线绕式异步电动机采用转子串电阻启动时,所串电阻愈大,启动转矩是否也愈大?答:不是。
串电阻大到一定程度后,启动转矩会变小,因为虽然cosφ2增大,但I2减小太多。
5.14 为什么线绕式异步电动机在转子串电阻启动时,启动电流减少而启动转矩反而增大?答:因为适当串入电阻后,虽然I2减少,但cosφ2增大很多,所以启动转矩增加。
5.15 异步电动机有哪几种调速方法?各种调速方法有何优缺点?答:调压调速:可无级调速,但减小U时,T按U2减少,所以调速范围不大。
转子电路串电阻调速:只适于线绕式。
启动电阻可兼作调速电阻,简单、可靠,但属有级调速。
随转速降低,特性变软,低速损耗大,用在重复短期运转的机械,如起重机。
变极对数调速:多速电动机,体积大,价贵,有级调速。
结构简单,效率高,调速附加设备少。
用于机电联合调速。
变频调速:用于一般鼠笼式异步电动机,采用晶闸管变频装置。
5.16 什么叫恒功率调速?什么叫恒转矩调速?答:在调速过程中,无论速度高低,当电动机电流保持不变时,电磁转矩也不变,这种调速叫恒转矩调速。
在调速过程中,无论速度高低,当电动机电流保持不变时,功率也不变,叫恒功率调速。
5.17 异步电动机变极调速的可能性和原理是什么?其接线图是怎样的?答:使每相定子绕组中一半绕组内的电流改变方向,即可改变极对数,也就改变了转速。
接线图如书上图5.40。
5.18 异步电动机有哪几种制动状态?各有何特点?答:反馈制动:用于起重机高速下放重物,反馈制动时,动能变为电能回馈给电网,较经济,只能在高于同步转速下使用。
反接制动:电源反接时,制动电流大,定子或转子需串接电阻,制动速度快容易造成反转,准确停车有一定困难,电能损耗大。
当倒拉制动时,用于低速下放重物,机械功率、电功率都消耗在电阻上。
能耗制动:比较常用的准确停车方法,制动效果比反接制动差。
5.19 试说明鼠笼式异步电动机定子极对数突然增加时,电动机的降速过程。
答:见书上图5.42。
原来运行在a点。
当p突然↑时,n>n02,所以T<0,和TL一起使n↓→s绝对值↓→I2 ↓→T ↓。
当n= n02时,I2=0,T=0。
当n<n02时,I2反向,I2>0,T>0,变为电动转矩,但T<TL,所以→n↓→s↑→I2↑→T ↑,直到T=TL,系统稳定运行在c 点。
5.20 试说明异步电动机定子相序突然改变时,电动机的降速过程。
答:见书上图5.43。
原来运行在a点。
当相序改变时,旋转磁场旋转方向改变。
因为惯性,n不能立即改变,所以运行于b点。
因为旋转磁场方向变了,所以I2<0,T<0,为制动转矩。
在T和TL作用下,n↓,此时,s>1。
当n↓时,s↓→cosφ2 ↑→T↑→n↓更快。
5.21 如图5.51所示,为什么改变QB的接通方向即可改变单相异步电动机的旋转方向?答:QB改变时,就可使电容分别拉入A相可B相绕组,接C的绕组电流在相位上会超前于另一相绕组90度时间电角度,面旋转磁场的旋转方向是由电流的超前相向电流的落后相。
所以改变QB接法,就可改变n0的方向。
5.23 同步电动机的工作原理与异步电动机的有何不同?答:定子绕组通三相交流电后,产生旋转磁场,而转子绕组通直流电,产生固定的磁场,极对数和旋转磁场极对数一样,旋转磁极与转子磁极异性相吸,所以转子转动。
而异步电动机的旋转磁场被转子导体切割,转子产生感应电动势和感应电流,电流在磁场中产生电磁力和电磁转矩,由此产生转速。
5.24 一般情况下,同步电动机为什么要采用异步启动法?答:定子通三相电后,立即产生n0,很快,而转子n=0,有惯性,当S0吸引N,N0吸引S时,转子有转动趋势,但还没等转起来,S0对S,N0对N又排斥,这样一吸一斥,转子始终转不起来,所以要用异步启动法。