专题10 不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(原卷版)

合集下载

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

2019年新课标全国卷1理科数学考点讲评与真题分析10.不等式选讲一、考试大纲(一)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3)222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-. (此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. (二)基本不等式 1.基本不等式:(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、考点讲评与真题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

专题10 不等式、推理与证明-2019年高考数学(理)考试大纲解读 Word版含解析

专题10 不等式、推理与证明-2019年高考数学(理)考试大纲解读 Word版含解析

2019年考试大纲解读10 不等式、推理与证明(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. (2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 3.数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.这部分内容与2018考纲相比没有什么变化,主要以客观题的形式出现,命题方向如下:不等式的命题方向为:(1)选择题、填空题中以简单的线性规划、不等式的性质为主,有时也与其他知识相交汇,试题难度中等;(2)解答题中通常以其他知识为主,结合不等式的相关知识或有关不等式问题的证明等,试题难度中等偏上.推理与证明的命题方向为:(1)选择题或填空题中常将有关归纳方法的应用与其他知识相交汇,有时以数学文化为背景,试题难度中等;(2)解答题中通常以其他知识为主,通过推理与证明来解决相关问题,注意反证法的应用,试题难度中等或中等偏上.考向一 解不等式样题1 (2018新课标全国Ⅲ理科)设0.2log 0.3a =,2log 0.3b =,则A .B .C .D .【答案】B【解析】∵0.2log 0.3a =,2log 0.3b =,,,,即,又,,即,故选B.考向二 一元二次不等式的解法ð样题2 (2018新课标全国Ⅰ理科)已知集合,则A=RA.B.C.D.【答案】B【解析】解不等式得,所以,所以可以求得,故选B.样题3 若不等式的解集为,则不等式的解集为A.或B.C .D.或【答案】B考向三目标函数的最值问题样题4(2018新课标I理科)若x,y满足约束条件,则32=+的最大值为z x y_____________.【答案】6【解析】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+可得,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值,由,解得()2,0B ,此时,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.样题5 已知,x y 满足,则的取值范围是A .121,812⎡⎤⎢⎥⎣⎦ B .121,732⎡⎤⎢⎥⎣⎦C .[]65,73 D .[]65,81【答案】A【解析】作出不等式组所表示的平面区域,如图中阴影部分所示,目标函数表示点()3,4P -- 与可行域内点的距离的平方,点P 到直线4x y +=的距离:,点P 到坐标原点的距离加上半径:,则目标函数的取值范围是121,812⎡⎤⎢⎥⎣⎦.故选A .考向四利用线性规划解决实际问题样题6某颜料公司生产两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果产品的利润为300元/吨,产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为A.14000元B.16000元C.16000元D.20000元【答案】A【解析】依题意,将题中数据统计如下表所示:学-科网设该公司一天内安排生产产品吨、产品吨,所获利润为元,依据题意得目标函数为,约束条件为,欲求目标函数的最大值,先画出约束条件表示的可行域,如图中阴影部分所示,则点,,,,作直线,当移动该直线过点时,取得最大值,则也取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得).故.所以工厂每天生产产品40吨,产品10吨时,才可获得最大利润,为14000元.选A.考向五 推理样题7 (2017新课标全国Ⅱ理科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩【答案】D考向六 数学归纳法样题8 设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.【解析】(1)当n =1时,方程x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, ∴(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,∴⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.下面用数学归纳法证明这个结论. ①当n =1时,结论成立.②假设n =k (k ∈N *,k ≥1)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k=12-k k +1=k +1k +2=1(1)1k k +++. 即当n =k +1时结论成立.由①②知S n =nn +1对任意的正整数n 都成立.。

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
16.已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
【答案】2.
【思路引导】
通过向量关系得到 和 ,得到 ,结合双曲线的渐近线可得 从而由 可求离心率.
【解析】如图,
由 得 又 得OA是三角形 的中位线,即 由 ,得 则 有 ,
【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b满足 =2 ,且(a–b) b,则a与b的夹角为
A. B. C. D.
【答案】B
【思路引导】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 得出向量 数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【解为 ,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【思路引导】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【解析】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.

2019高考数学理高分大二轮课件专题10第2讲不等式选讲

2019高考数学理高分大二轮课件专题10第2讲不等式选讲

因此只需证明(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3. 而ab+bc+ca=1, 故只需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca),即证a2+b2+c2≥ab+bc +ca.
10
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二
考点二 不等式的证明 设a,b,c>0,且ab+bc+ca=1.求证:
(1) a+ b+ c≥ 3;
(2)
a bc

b ac

c ab

3(
a+
b+
c).
证明: (1)要证 a+b+c≥ 3,由于 a,b,c>0,
即-
2x≥3.不等式组
?? ?
x≤-1,
?? f?x?≥ 3
的解集为 (-∞,-32].
b .当- 1<x≤1 时,原不等式可化为 1- x+ x+ 1≥3,不可能成立.不等式组
?? - 1<x≤ 1,
?
的解集为 ?.
?? f?x?≥ 3
5
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
可得f(x)≥0的解集为{x|-2≤x≤3}.
2
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二
(2)f(x)≤1等价于|x+a|+|x-2|≥4. 而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立. 故f(x)≤1等价于|a+2|≥4. 由|a+2|≥4可得a≤-6或a≥2. 所以a的取值范围是(-∞,-6]∪[2,+∞).

不等式选讲--2019年高考真题和模拟题分项汇编数学(理)+Word版含解析

不等式选讲--2019年高考真题和模拟题分项汇编数学(理)+Word版含解析
解得 ,从而 .
于是只需证明 ,
即证 ,
因为
所以 ,证毕.
【点睛】本题主要考查了绝对值不等式的解法和证明,主要注意先确定参数的值,进而对定义域进行分类讨论,确定解所在的区间,属于中档题.
11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】设函数 .
(1)当 时,求不等式 的解集;
(2)当 时, ,求 的取值范围.
7.【安徽省合肥市2019届高三第一次教学质量检测数学】设函数 .
(1)若 ,求实数 的取值范围;
(2)设 ,若 的最小值为 ,求 的值.
【答案】(1) ;(2) .
【解析】(1) ,即
或 ,
∴实数 的取值范围是 .
(2)∵ ,∴ ,∴ ,
易知函数 在 单调递减,在 单调递增,
∴ .
∴ ,解得 .
【点睛】本道题考查了含绝对值不等式的解法,考查了结合单调性计算函数最值,关键得到函数解析式,难度中等.
【答案】(1) ;(2)
【解析】(1)当a=1时, ,
可得 的解集为 ;
(2)当 时,

因为 ,
所以 .
所以 ,所以 .
所以a的取值范围是[–3,–1].
【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用.
【点睛】主要考查了绝对值不等式的求解、不等式证明、以及基本不等式的应用,属于中档题.对于绝对值不等式的求解,主要运用零点分段法,也可以运用图像法.而不等式的证明,关键是灵活运用不等式的性质以及基本不等式.

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

2019年全国统一高考数学试卷(理)(新课标Ⅰ)【后附:极详细的解析、分析、考点、答案解释等】

2019年全国统一高考数学试卷(理)(新课标Ⅰ)【后附:极详细的解析、分析、考点、答案解释等】

【后附:极详细的解析、分析、考点、答案解释等】 2019年全国统一高考数学试卷(理)(新课标Ⅰ)一、选择题1. 已知集合M ={x|−4<x <2},N ={x|x 2−x −6<0},则M ∩N =( ) A.{x|−4<x <3} B.{x|−4<x <−2} C.{x|−2<x <2} D.{x|2<x <3}2. 设复数z 满足|z −i|=1,z 在复平面内对应的点为(x,y),则( ) A.(x +1)2+y 2=1 B.(x −1)2+y 2=1 C.x 2+(y −1)2=1 D.x 2+(y +1)2=13. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A.a <b <cB.a <c <bC.c <a <bD.b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是√5−12(√5−12=0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此。

此外,最美人体的头顶至咽喉的长度与咽喉至肚挤的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm5. 函数f(x)=sinx+x cosx+x 2的[−π,π]图像大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132 C.2132 D.11167. 已知非零向量a→,b→满足|a→|=2|b→|,且(a→−b→)⊥b→,则a→与b→的夹角为()A.π6B.π3C.2π3D.5π68. 下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1AC.A=11+2A D.A=1+12A9. 记S n为等差数列{a n}的前n项和,已知S4=0,a5=5,则( )A.a n=2n−5B.a n=3n−10C.S n=2n2−8nD.Sn =12n2−2n10. 已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点,若|AF2|= 2|F2B|,|AB|=|BF1|,则C的方程为( )A.x22+y2=1 B.x23+y22=1C.x24+y23=1 D.x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π2,π)单调递增;其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③12. 已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,EF分别是PAAB的中点,∠CEF=90∘,则球O的体积为( )A.8√6πB.4√6πC.2√6πD.√6π二、填空题曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.记S n为等比数列{a n}的前n项和,若a1=12,a42=a6,则S5=________.甲、乙两队进行篮球决赛,采取七场四胜(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜的概率是________.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点. 若F1A→=AB→,F1B→⋅F2B→=0,则C的离心率为________.三、解答题△ABC的内角A, B, C的对边分别为a,b,c,设(sinB−sinC)2=sin2A−sinBsinC.(1)求A;(2)若√2a+b=2c,求sinC.如图,直四棱柱ABCD−A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60∘,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.已知抛物线C:y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A,B ,与x 轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP →=3PB →,求|AB|.已知函数f(x)=sinx −ln(1+x),f ′(x)为f(x)的导数.证明: (1)f ′(x)在区间(−1,π2)存在唯一极大值点;(2)f(x)有且仅有2个零点.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分:若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效“的概率,则p 0=0,p 8=1,p i =ap i−1+bp i +cp i+1(i =1,2,⋯,7),其中a =P(X =−1),b =P(X =0), c =P(X =1).假设α=0.5, β=0.8.(i)证明:{p i+1−p i }(i =0,1,2,⋯,7)为等比数列; (ii)求p 4,并根据p 4的值解释这种试方案的合理性.在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2;(2)(a +b)3+(b +c)3+(c +a)3≥24.参考答案与试题解析2019年全国统一高考数学试卷(理)(新课标Ⅰ)一、选择题1.【答案】C【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:∵M={x|−4<x<2};N={x|x2−x−6<0}={x|(x−3)(x+2)<0}={x|−2<x<3},∴ M∩N={x|−4<x<2}∩{x|−2<x<3}={x|−2<x<2}.故选C.2.【答案】C【考点】复数的模复数代数形式的加减运算复数的代数表示法及其几何意义【解析】此题暂无解析【解答】解:设z=x+yi,x,y∈R,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1.故选C.3.【答案】【考点】指数式、对数式的综合比较【解析】此题暂无解析【解答】解:由已知得:a=log20.2<log21=0;b=20.2>20=1;c=0.20.3<0.20=1且0<c<1;∴a<c<b,故选B.4.【答案】B【考点】黄金分割法—0.618法【解析】此题暂无解析【解答】解:记其咽喉至肚挤的长度为xcm,依题,有:26x=√5−12,则:x=√5−1≈42.07,记其身高为y,则y=26+x+105=131+x≈173.08,故选B.5.【答案】D【考点】函数图象的作法【解析】此题暂无解析【解答】解:∵ f(−x)=sin(−x)+(−x)cos(−x)+(−x)2=−sinx+xcosx+x2=−f(x),∴ f(x)为奇函数,可排除A,而f(π)=π>0,∴ 可排除B 和C . 故选D . 6.【答案】 A【考点】古典概型及其概率计算公式 【解析】 此题暂无解析 【解答】解:对六个位置放置“阴爻”和“阳爻”,共有26=64种方法;然后从六个位置中选出三个放置“阳爻”,共有C 63=20种方法; 因而,满足条件的概率为:C 6326=2064=516.故选A . 7.【答案】B【考点】数量积判断两个平面向量的垂直关系 数量积表示两个向量的夹角 平面向量数量积的运算 【解析】 此题暂无解析 【解答】解:∵ (a →−b →)⊥b →,|a →|=2|b →|,∴ (a →−b →)⋅b →=a →⋅b →−b →2 =|a →||b →|cos <a →,b →>−|b →|2=(2cos <a →,b →>−1)|b →|2=0, 而:|b →|≠0,∴ 2cos <a →,b →>−1=0,由:<a →,b →>∈[0,π]知:<a →,b →>=π3.8.【答案】A【考点】程序框图【解析】此题暂无解析【解答】解:空白框填12+A 时, 当k =1, A =12+12,当k =2,A =12+12+12,满足题意. 故选A . 9.【答案】A【考点】等差数列的前n 项和等差数列的通项公式 【解析】 此题暂无解析 【解答】解:由题意得: {4a 1+6d =0a 1+4d =5得a 1=−3,d =2,得a n =2n −5,S n =n 2−4n . 故选A . 10.【答案】 B【考点】直线与椭圆的位置关系 椭圆的定义和性质 余弦定理此题暂无解析【解答】解:由定义|AF1|+|BF1|+|AB|=4a,|BF2|+|BF1|=2a,|AF2|=2|F2B|及|AB|=|BF1|,得|AF1|=|AF2|=a,|BF1|=3a2,|BF2|=a2,由∠AF2F1+∠BF2F1=π,得cos∠AF2F1+cos∠BF2F1=0,(2c)2+(a2)2−(32a)22×2c×a2+(2c)2+a2−a22×2c×a=0,解得a2=3, b2=2.故选B.11.【答案】C【考点】三角函数的最值复合三角函数的单调性函数的零点函数奇偶性的判断【解析】此题暂无解析【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),∴f(x)是偶函数,故①正确;当x∈(π2,π)时,f(x)=sinx+sinx=2sinx,此时f(x)在(π2,π)递减,故②错误;当x∈[0,π]时,f(x)=2sinx,此时有2个零点,根据偶函数可知,在x∈[−π,π]时只有3个零点,故③错误;当x>0时,f(x)=sinx+|sinx|≤|sinx|+|sinx|≤2,当x=π2+2kπ(k≥0,k∈Z)等号成立,故④正确.故选C.12.【答案】D 球内接多面体球的体积和表面积【解析】此题暂无解析【解答】解:如图,连接EFEC,取AC的中点N,连接PNBN,取△ABC的内心O1,连接PO1,O1C,在PO1上取点O,使PO=OC,则点O即为三棱锥的外接球的球心. ∵∠CEF=90∘,∴CE⊥EF.∵EF分别是PA,AB的中点,∴EF//PB.∴CE⊥PB.∵△ABC是边长为2的正三角形,∴AC⊥BN.∵PA=PB=PC,∴AC⊥PN.∵PN∩BN=N,∴AC⊥面PBN.∴AC⊥PB.又CE⊥PB,AC∩CE=C,∴BP⊥面PAC,∴BP⊥PC∴△PBC是等腰直角三角形,∴PB=PC=√2在Rt△O1NC中,O1C=NCcos30∘=√32=2√33在Rt△O1CP中,O1P=√PC2−O1C2=√2−43=√63.∴在Rt△OO1C中,(√6 3−R)2+(2√33)2=R2,解得R=√62故球的体积为43πR3=√6π.故选D.二、填空题【答案】y=3x【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:∵点(0,0)在曲线上,∴(0,0)是切点.对y=3(x2+x)e x求导得:y′=3(2x+1)e x+3(x2+x)e x =3e x(x2+3x+1),∴切线斜率k=y′|x=0=3.又∵切线过切点(0,0),∴切线方程为y=3x.故答案为:y=3x.【答案】312【考点】等比数列的前n项和【解析】此题暂无解析解:∵{a n}是等比数列,且a42=a6,∴(a1q3)2=a1q5,∵a1=12,故解出q=2,∴S5=a1(1−q5)1−q=12(1−25)1−2=312.故答案为:312.【答案】0.18【考点】相互独立事件的概率乘法公式【解析】此题暂无解析【解答】解:由题意可知,比赛共进行了5场,且前4场中甲胜出3场,乙胜出1场;记甲在主场胜出为事件A1,甲在客场胜出为事件A2;则乙在主场胜出为事件A1,乙在客场胜出为事件A2;由于各场比赛结果相互独立,则根据独立事件的概率甲以4:1胜出的概率P为:P=P(A1A1A2A2A1)+P(A1A1A2A2A1)+P(A1A1A2A2A1) +P(A1A1A2A2A1)=0.4×0.6×0.5×0.5×0.6+0.6×0.4×0.5×0.5×0.6+ 0.6×0.6×0.5×0.5×0.6+0.6×0.6×0.5×0.5×0.6=0.6×0.5×0.5×0.6×(0.4+0.4+0.6+0.6)=0.18.故答案为:0.18.【答案】2【考点】双曲线的离心率【解析】此题暂无解析【解答】解:设点B在第二象限,∵ BF 1→⋅BF 2→=0,∴ BF 1⊥BF 2,在Rt △F 1BF 2中,|OB|=|OF 1|=|OF 2|=c , 又因为点B 在直线y =ba x 上,则B(a,b); ∵ F 1A →=AB →,∴ 点A 为线段BF 1的中点,且有OA//BF 2,渐近线OA 的斜率为k OA =−|F 1A ||OA|=−ba ,并且|OA|2+|F 1A |2=|OF 1|2=c 2,得到|F 1A |=b ,|OA|=a ,|F 1B |=2b ,|F 2B |=2a ; 在Rt △F 1BF 2中,由等面积法12⋅|F 1F 2|⋅|y B |=12⋅|F 1B |⋅|F 2B |, 得到y B =2ab c ,∴ b =2abc ,解得e =ca =2,故答案为:2. 三、解答题【答案】解:(1)由题意得:(sinB −sinC)2=sin 2A −sinBsinC , ∴ sin 2B −2sinBsinC +sin 2C =sin 2A −sinBsinC , 由正弦定理可得:asinA =bsinB =csinC =2R , ∴ b 2−2bc +c 2=a 2−bc , ∴ cosA =12(A 为三角形内角), ∴ A =π3;(2)∵ √2a +b =2c ,∴ √2sinA +sinB =2sinC ,∴ √2sinA +sin(A +C)=2sinC ,∴ √2sinA +sinAcosC +cosAsinC =2sinC , ∴ √62+√32cosC −32sinC =0,√3cos (C +π3)=−√62, ∴ cos (C +π3)=−√22,∴ C =3π4−π3=5π12,∴ sinC =sin (π6+π4) =sin π6cos π4+cos π6sin π4=√2+√64. 【考点】两角和与差的正弦公式 两角和与差的余弦公式 余弦定理的应用 正弦定理 【解析】 此题暂无解析 【解答】解:(1)由题意得:(sinB −sinC)2=sin 2A −sinBsinC , ∴ sin 2B −2sinBsinC +sin 2C =sin 2A −sinBsinC , 由正弦定理可得:asinA =bsinB =csinC =2R , ∴ b 2−2bc +c 2=a 2−bc , ∴ cosA =12(A 为三角形内角), ∴ A =π3;(2)∵ √2a +b =2c ,∴ √2sinA +sinB =2sinC ,∴ √2sinA +sin(A +C)=2sinC ,∴ √2sinA +sinAcosC +cosAsinC =2sinC , ∴ √62+√32cosC −32sinC =0,√3cos (C +π3)=−√62, ∴ cos (C +π3)=−√22,∴ C =3π4−π3=5π12,∴sinC=sin(π6+π4)=sin πcosπ+cosπsinπ=√2+√64.【答案】(1)证明:连接ME,B1C,在△B1BC中,M,E为BB1和BC中点,∴ME//B1C,且ME=12B1C,∵A1D//B1C且N为A1D的中点,∴ND//ME且ND=ME,∴四边形NDEM是平行四边形,∴NM//DE.∵NM平面C1DE且DE⊂平面C1DE,∴MN//平面C1DE.(2)解:取AC与BD的交点O,四边形ABCD是菱形,∴AC⊥BD,以OA为x轴,OB为y轴,过原点O平行于BB1的直线为z轴,建立如图所示的空间直角坐标系,∴A(√3,0,0) M(0,1,2),A(√3,0,4), N(√3,−1,2), ∴MA1→=(√3,−1,2),MA→=(√3,−1,−2),MN→=(√32,−32,0),设m→,n→分别为平面AMA1和平面MA1N的一个法向量,∴设m→=(x1,y1,z1),n→=(x2,y2,z2),∴{m→⋅MA1→=0m→⋅MA→=0当x1=1时,m→=(1,√3,0),∴{n→⋅MA1→=0n→⋅MN→=0当x2=√3时,n→=(√3,1,−1),∴cos⟨m→,n→⟩=m→⋅n→|m→|⋅|n→|=√3+√3+0√1+(√3)2+0⋅√(√3)2+1+1=√155,∴sin⟨m→,n→⟩=√1−(√155)2=√105,∴二面角A−MA1−N的正弦值为√105.【考点】用空间向量求平面间的夹角直线与平面平行的判定【解析】此题暂无解析【解答】(1)证明:连接ME,B1C,在△B1BC中,M,E为BB1和BC中点,∴ ME//B 1C ,且ME =12B 1C ,∵ A 1D//B 1C 且N 为A 1D 的中点, ∴ ND//ME 且ND =ME ,∴ 四边形NDEM 是平行四边形, ∴ NM//DE .∵ NM 平面C 1DE 且DE ⊂平面C 1DE , ∴ MN//平面C 1DE .(2)解:取AC 与BD 的交点O ,四边形ABCD 是菱形, ∴ AC ⊥BD ,以OA 为x 轴,OB 为y 轴,过原点O 平行于BB 1的直线为z 轴,建立如图所示的空间直角坐标系,∴A(√3,0,0) M(0,1,2),A 1(√3,0,4), N (√32,−12,2),∴ MA 1→=(√3,−1,2),MA →=(√3,−1,−2),MN →=(√32,−32,0),设m →,n →分别为平面AMA 1和平面MA 1N 的一个法向量,∴ 设m →=(x 1,y 1,z 1),n →=(x 2,y 2,z 2), ∴ {m →⋅MA 1→=0m →⋅MA →=0当x 1=1时,m →=(1,√3,0),∴ {n →⋅MA 1→=0n →⋅MN →=0当x 2=√3时,n →=(√3,1,−1), ∴ cos ⟨m →,n →⟩=m →⋅n→|m →|⋅|n →|=√3+√3+0√1+(√3)2+0⋅√(√3)2+1+1=√155, ∴ sin ⟨m →,n →⟩=√1−(√155)2=√105, ∴ 二面角A −MA 1−N 的正弦值为√105.【答案】解:(1)设直线l 的方程:y =32x +n,A (x 1,y 1),B (x 2,y 2) 联立方程组{y =32x +ny 2=3x,整理化简得9x 2+(12n −12)x +4n 2=0, 由题意,Δ=(12n −12)2−4×9×4n 2=−288n +144>0, 则n <12.由韦达定理得,x 1+x 2=−4n−43,由抛物线的性质得,|AF|+|BF|=x 1+x 2+p =−4n−43+32=4,解得n =−78, 经检验,满足Δ>0. 故直线l 的方程:y =32x −78. (2)设P(m,0),则AP →=(m −x 1,−y 1),PB →=(x 2−m,y 2), 由于AP →=3PB →, 易知y 1=−3y 2.由题意可设直线AB :x =23y +m . 联立方程组{x =23y +my 2=3x 整理化简得:有韦达定理可得:y 1+y 2=2,y 1y 2=−3m . ∵ y 1=−3y 2,∴ y 1=3,y 2=−1, ∴ y 1y 2=−3m =−3, ∴ m =1.计算可得:A(3,3), B (13,−1), 故|AB|=√(3−13)2+(3+1)2=4√133.【考点】圆锥曲线的综合问题向量数乘的运算及其几何意义 两点间的距离公式 直线的一般式方程 【解析】 此题暂无解析 【解答】解:(1)设直线l 的方程:y =32x +n,A (x 1,y 1),B (x 2,y 2) 联立方程组{y =32x +ny 2=3x, 整理化简得9x 2+(12n −12)x +4n 2=0, 由题意,Δ=(12n −12)2−4×9×4n 2=−288n +144>0, 则n <12.由韦达定理得,x 1+x 2=−4n−43,由抛物线的性质得,|AF|+|BF|=x 1+x 2+p =−4n−43+32=4,解得n =−78, 经检验,满足Δ>0. 故直线l 的方程:y =32x −78. (2)设P(m,0),则AP →=(m −x 1,−y 1),PB →=(x 2−m,y 2), 由于AP →=3PB →, 易知y 1=−3y 2.由题意可设直线AB :x =23y +m . 联立方程组{x =23y +my 2=3x 整理化简得:y 2−2y −3m =0. 有韦达定理可得:y 1+y 2=2,y 1y 2=−3m . ∵ y 1=−3y 2,∴ y 1=3,y 2=−1, ∴ y 1y 2=−3m =−3, ∴ m =1.计算可得:A(3,3), B (13,−1), 故|AB|=√(3−13)2+(3+1)2=4√133.【答案】证明:(1)易知f(x)的定义域为(−1,+∞), 设g(x)=f ′(x)=cosx −1x+1, 则g ′(x)=−sinx +1(x+1)2,设g ′(x)的导函数为g ′′(x), g ′′(x)=−cosx −2(x+1)3,当x ∈(−1,π2)时,cosx >0,2(x+1)3>0, 则g ′′(x)<0在(−1,π2)上恒成立. 所以g ′(x)在(−1,π2)上单调递减, 当x →−1时,g ′(x)→+∞,当x →π2时,g ′(x)→−1+1(π2+1)2<0,由零点存在定理,在区间(−1,π2)内,g′(x)存在唯一零点,记为x0,当x∈(−1,x0)时,g′(x)>0,当x∈(x0,π2)时,g′(x)<0,从而x0为f′(x)的极大值点,故f′(x)在区间(−1,π2)存在唯一极大值点.(2)由f(x)解析式易知f(0)=0,故0为f(x)的一个零点,由(1)知f′(x)=cosx−1x+1,以下分四种情况进行讨论:i)当x∈(−1,0)时,cos1<cosx<1,1x+1>1,∴f′(x)<0在(−1,0)上恒成立,∴ f(x)>f(0)=0,即在(−1,0)上,f(x)>0恒成立,不存在零点;ii)当x∈(0,π2)时,由(1)的证明可知,f′(x)在(0,x0)单调递增,在(x0,π2)单调递减,∵f′(0)=0, ∴f′(x0)>0,∵f′(π2)=−1π2+1<0,由零点存在定理,f′(x)在区间(x0,π2)存在唯一零点,记为m,当x∈(x0,m)时,f′(x)>0,∴ f(x)在(x0,m)内单调递增;当x∈(m,π2)时,f′(x)<0,∴ f(x)在(m,π2)内单调递减.∵f′(x)在(0,x0)单调递增,∴f′(x)>f′(0)=0,即f(x)在(0,x0)单调递增,从而f(x)在(0,m)单调递增,(m,π2)单调递减,∵ f(0)=0,f(π2)=1−ln(1+π2)>0,∴ f(x)>0在(0,π2)内恒成立,没有零点;iii)当x∈(π2,π)时,f′(x)<0恒成立,f(π2)=1−ln(1+π2)>0,f(π)=−ln(π+1)<0,由零点存在定理,f(x)在(π2,π)内存在唯一零点.iv)当x∈(π,+∞)时,由于sinx≤1,ln(x+1)>1,f(x)<0恒成立,故f(x)在(π,+∞)内无零点.综上所述,f(x)在(−1,+∞)内有且仅有两个零点.【考点】利用导数研究与函数零点有关的问题利用导数研究函数的极值函数零点的判定定理【解析】此题暂无解析【解答】证明:(1)易知f(x)的定义域为(−1,+∞),设g(x)=f′(x)=cosx−1x+1,则g′(x)=−sinx+1(x+1)2,设g′(x)的导函数为g′′(x),g′′(x)=−cosx−2(x+1)3,当x∈(−1,π2)时,cosx>0,2(x+1)3>0,则g′′(x)<0在(−1,π2)上恒成立.所以g′(x)在(−1,π2)上单调递减,当x→−1时,g′(x)→+∞,当x→π2时,g′(x)→−1+1(π2+1)2<0,由零点存在定理,在区间(−1,π2)内,g′(x)存在唯一零点,记为x0,当x∈(−1,x0)时,g′(x)>0,当x∈(x0,π2)时,g′(x)<0,从而x0为f′(x)的极大值点,故f′(x)在区间(−1,π2)存在唯一极大值点.(2)由f(x)解析式易知f(0)=0,故0为f(x)的一个零点,由(1)知f′(x)=cosx−1x+1,以下分四种情况进行讨论:i)当x∈(−1,0)时,cos1<cosx<1,1x+1>1,∴f′(x)<0在(−1,0)上恒成立,∴ f(x)>f(0)=0,即在(−1,0)上,f(x)>0恒成立,不存在零点;ii)当x∈(0,π2)时,由(1)的证明可知,f′(x)在(0,x0)单调递增,在(x0,π2)单调递减,∵f′(0)=0, ∴f′(x0)>0,∵f′(π2)=−1π2+1<0,由零点存在定理,f′(x)在区间(x0,π2)存在唯一零点,记为m,当x∈(x0,m)时,f′(x)>0,∴ f(x)在(x0,m)内单调递增;当x∈(m,π2)时,f′(x)<0,∴ f(x)在(m,π2)内单调递减.∵f′(x)在(0,x0)单调递增,∴f′(x)>f′(0)=0,即f(x)在(0,x0)单调递增,从而f(x)在(0,m)单调递增,(m,π2)单调递减,∵ f(0)=0,f(π2)=1−ln(1+π2)>0,∴ f(x)>0在(0,π2)内恒成立,没有零点;iii)当x∈(π2,π)时,f′(x)<0恒成立,f(π2)=1−ln(1+π2)>0,f(π)=−ln(π+1)<0,由零点存在定理,f(x)在(π2,π)内存在唯一零点.iv)当x∈(π,+∞)时,由于sinx≤1,ln(x+1)>1,f(x)<0恒成立,故f(x)在(π,+∞)内无零点.综上所述,f(x)在(−1,+∞)内有且仅有两个零点.【答案】解:(1)设一轮试验中甲药治愈了白鼠为事件A;乙药治愈了白鼠为事件B.P(x=0)=P(AB)+P(AB)=P(A)P(B)+[1−P(A)][1−P(B)]=αβ+(1−α)(1−β),P(x=−1)=P(AB)=P(A)P(B)=[1−P(A)]P(B)=(1−α)β,P(x=1)=P(AB)=P(A)P(B)=P(A)[1−P(B)]=α(1−β),故可列X的分布列如下:(2)(i)由(1)知a=P(X=−1)=(1−α)β=0.4;b=P(X=0)=αβ+(1−α)(1−β)=0.5;c=P(X=1)=α(1−β)=0.1,由P i=aP i−1+bP i+cP i+1可得P i+1−5P i+4P i−1=0,即P i+1−P i=4(P i−P i−1),故P i+1−P iP i−P i−1=4;所以{P i+1−P i}是以(P1−P0)为首项,4为公比的等比数列;(ii)由(i)知P i−P i−1=(P1−P0)4i−1;∴P i−P1=(P1−P0)(4+42+⋯+4i−1) =(P1−P0)4i−43,∵P0=0,∴P i=4i−13P1,∵P8=1,∴P8=48−13P1,∴P1=348−1,∴P4=44−13P1=44−148−1=144+1=1257,∴P4≈0.039.由于P4的值很小,说明这种试验方案可以将更有效的乙药分辨出来,所以此方案合理. 【考点】离散型随机变量及其分布列等比数列的前n项和等比关系的确定等比数列的通项公式【解析】此题暂无解析【解答】解:(1)设一轮试验中甲药治愈了白鼠为事件A;乙药治愈了白鼠为事件B.P(x=0)=P(AB)+P(AB)=P(A)P(B)+[1−P(A)][1−P(B)]=αβ+(1−α)(1−β),P(x=−1)=P(AB)=P(A)P(B)=[1−P(A)]P(B)=(1−α)β,P(x=1)=P(AB)=P(A)P(B)=P(A)[1−P(B)]=α(1−β),故可列X的分布列如下: (2)(i)由(1)知a=P(X=−1)=(1−α)β=0.4;b=P(X=0)=αβ+(1−α)(1−β)=0.5;c=P(X=1)=α(1−β)=0.1,由P i=aP i−1+bP i+cP i+1可得P i+1−5P i+4P i−1=0,即P i+1−P i=4(P i−P i−1),故P i+1−P iP i−P i−1=4;所以{P i+1−P i}是以(P1−P0)为首项,4为公比的等比数列;(ii)由(i)知P i−P i−1=(P1−P0)4i−1;∴P i−P1=(P1−P0)(4+42+⋯+4i−1)=(P1−P0)4i−43,∵P0=0,∴P i=4i−13P1,∵P8=1,∴P8=48−13P1,∴P1=348−1,∴P4=44−13P1=44−14−1=14+1=1257,∴P4≈0.039.由于P4的值很小,说明这种试验方案可以将更有效的乙药分辨出来,所以此方案合理. 【答案】解:(1)∵直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0由{x=ρcosθ,y=ρsinθ,可得直线l的直角坐标方程为2x+√3y+11=0,∵曲线C的参数方程为{x=1−t21+t2,y=4t1+t2,(t为参数)∴x2=(1−t2)2(1+t2)2, y2=16t2(1+t2)2,∴x2+y24=(1−t2)2(1+t2)2+4t2(1+t2)2=(1+t2)2(1+t2)2=1,∴ 曲线C 的直角坐标方程为x 2+y 24=1.(2)∵ 曲线C 的直角坐标方程为x 2+y 24=1∴ 可设曲线C 上任意一点P(cosα, 2sinα)(0≤α<2π), ∴ 点P 到直线l 的距离 d =|2cosα+2√3sinα+11|√4+3 =|4sin(α+π6)+11|√7.∵ 0≤α<2π,∴ 当sin(α+π6)=−1时, d 取得最小值.∴ 曲线C 上的点到l 距离的最小值 d min =√7=√7.【考点】两角和与差的正弦公式 椭圆的参数方程直线的极坐标方程与直角坐标方程的互化 点到直线的距离公式 【解析】 此题暂无解析 【解答】解:(1)∵ 直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0 由{x =ρcosθ,y =ρsinθ,可得直线l 的直角坐标方程为2x +√3y +11=0, ∵ 曲线C 的参数方程为{x =1−t 21+t 2,y =4t 1+t 2,(t 为参数) ∴ x 2=(1−t 2)2(1+t 2)2, y 2=16t 2(1+t 2)2, ∴ x 2+y 24=(1−t 2)2(1+t 2)2+4t 2(1+t 2)2=(1+t 2)2(1+t 2)2=1,∴ 曲线C 的直角坐标方程为x 2+y 24=1.(2)∵ 曲线C 的直角坐标方程为x 2+y 24=1∴ 可设曲线C 上任意一点P(cosα, 2sinα)(0≤α<2π), ∴ 点P 到直线l 的距离 d =|2cosα+2√3sinα+11|√4+3=|4sin(α+π6)+11|√7.∵ 0≤α<2π,∴ 当sin(α+π6)=−1时, d 取得最小值.∴ 曲线C 上的点到l 距离的最小值 d min =√7=√7.【答案】解:(1)∵ a,b,c 为正数,且满足abc =1, ∴ 1a +1b +1c =(1a +1b +1c )⋅abc =bc +ac +ab =12(2bc +2ac +2ab) ≤12(b 2+c 2+a 2+c 2+a 2+b 2) =12(2a 2+2b 2+2c 2) =a 2+b 2+c 2.当且仅当a =b =c =1时,等号成立. (2)由基本不等式得:(a +b)3+(b +c)3+(c +a)3≥(2√ab)3+(2√bc)3+(2√ca)3 ≥3√(2√ab)3⋅(2√bc)3⋅(2√ca)33=24. 当且仅当a =b =c =1时,等号成立. 【考点】 不等式的证明 基本不等式 【解析】 此题暂无解析 【解答】解:(1)∵ a,b,c 为正数,且满足abc =1,∴ 1a +1b +1c =(1a +1b +1c )⋅abc =bc +ac +ab =1(2bc +2ac +2ab) ≤12(b 2+c 2+a 2+c 2+a 2+b 2) =12(2a 2+2b 2+2c 2) =a 2+b 2+c 2.当且仅当a =b =c =1时,等号成立. (2)由基本不等式得:(a +b)3+(b +c)3+(c +a)3≥(2√ab)3+(2√bc)3+(2√ca)3 ≥3√(2√ab)3⋅(2√bc)3⋅(2√ca)33=24. 当且仅当a =b =c =1时,等号成立.。

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

2019年新课标全国卷1理科数学考点讲评与真题分析7.解析几何一、考试大纲1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式), 了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.3.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.4.曲线与方程了解方程的曲线与曲线的方程的对应关系.二、新课标全国卷命题分析解析几何部分一般是2小1大,小题一般考查圆、圆锥曲线的性质,如离心率、渐近线,与圆、圆锥曲线有关的最值、取值范围问题,解答题一般考查直线与圆、圆锥曲线的位置关系,充分地考查了考生的逻辑思维能力、应用解析几何思想解决问题的能力和进行代数运算的能力.突出考查了用解析几何方法解决几何问题的能力,试题计算量较大,在计算的过程中,无论是公式记错了,用错了,还是算错了,都会由于一步的计算错误而导致整道试题的解答错误,因此,强调运算的准确性对于解析几何是十分必要的,充分应用解析几何基本知识与基本思想的通性通法.二、考点讲评与真题分析题型一 圆的标准方程例1 (2018·新课标1,理14)一个圆经过椭圆221164x y +=错误!未找到引用源。

2019年高考数学全国卷1(文理科试题及答案)

2019年高考数学全国卷1(文理科试题及答案)

2019 年普通高等学校招生全国统一考试(全国卷1)理科数学2019年聊通高筲学枝IW 上全国统与试理科数学1. 善巻啊.蛊生务愛耨自已的蚪化、齐生号霁垃q 在善變节*1弑嘗搭电他*上.2. 阿巻就卄虺uh 迤出禅小町善丽,用樹笔把仔国鬥tlSJ ■貝曲唇塞标号找事,如蒂改圍”用 檢皮崔「浄后・再选涂其它袴索标号"凤祎非选择期时.特嘗案耳在答理卡匕耳左血试卷匕无牡・3-苇试姑柬斤,将事试卷和書岂卡一弁宦回°、业獎砸:本翹弍垃小SL 爼水粗占分.共⑷分.在毎小題箱出的四个选亚中.人有--助超胡倉饉 目贾康的"】.己如能會M ■徉4< JT 莖工}, N = |x -r-6<o|» HA/nJV =(A. [.r|-4 < x <3. (r-4 < x < -2^C.[ .v -1 < J <D. (JL |2 < A <d 试耳烈:満足:一F| = l*匚料珏罪血内时咻的戌対(斗y)・确r 】A.(x-i) +3': =1B (J -1 + >2 - IC t' +( i -l)J =i D.r +(.V + 1)3 = 1弘已刘iM = 】Qg ;0£ b 二 0 • e-o^1' ・剧 i JA,.ti<h<ce. < f < bCvai^bu.Zt <c<a朽一]4,古希雅时朗.人怕认为星类人井的齊哺至肚睛的绘度勺肚1ft 帘足底的氏度之比是七一吕首的-瞬嘗聲抽飓・便艮则此Jtt>K 摊羌人体的久3证1%1/5噸的快度与咽麻奇tt 席酋长嵐之比也呈坐二.拧卓人厲址h.ifffif 黄童井制比桝.105cm.AJMSIF f F 韻的叹度为Mcrm 则K 甘岳町施址(1A,]lKcm B.l 75cm 匚185cm5,i 炯柱小}壬二町・屁訂的側粉打)ccs r +□ 190cm*: 0.611!.轧爲竝;:寸乩比隣.*"tty氐我岡古代典攜(周SP用H卄”推述打物的堂比邯一“直5K山从卜之1齐列的EG弦爼获.Jt分为團爻■■一 -•- ■■右圈就是M・也所有重計中融机取£幷’则谍啃料惜盯于个们爻的栅率¥(〕5 II 2\IIA.—&.—C,— D.—16 竝竝169.记旺为:字衣吐列仏}的前』」1杷L1畑二=0・山二5.驅CA.叫= 2rt 5B. = 3n 10CS =2n:D.S =-ft-2nh °2ltt已如«•■<;的世点为^(-W) . FW 过珂的fL^'j C丸于礼H阳点雷|娠卜2|两国,\AH=2|占F,則亡的力糧为(>①丿足腾咕救②/|町任邂的|彳,用)单闊理增③f (x I住区间[一亿訂f:F个-匸?.i ④/V)的赧(伯X-j 22/5 三三A,—Uu b)-i・则:与石的夹甬沟<fiSMEB・图中空白框*■ I丄rL缶航朗是求二己知羊零向鐵:* &WM 22/711.艾干诵豹f ix)= sin J* |>in A'| f」下述四个馆论t匚①④埠巴如三检推F —川封匸的四牛I 加的用商上,PA^PB^PC, AX5CMlt£^2 rn 止-M t £尸介別兄加「祐的中九 ZCEF = 90 ’则球O 的休机为( t34vf )zr二 填空嵐:本鹽找4「|咂.毎小駆S 井”其加分达曲凹7 = 3(屮7片在点((}期社儿•:叫川沟 ________________ .地记屯为等比栽手|{叫}的前萌项和,若納二y tr? = a..则员= _____________________ .Je.屮.乙洒賦诜恬槪球比賽.光用七场西胜制.幄捲訓期比赛成细,屮认的主客甬安排粮抚旳"主主客 峯L 客广.设甲阻主场即胜的柢率为06辉场駅胖的觀率肯血窑(1各场比赛靖黑梱互1M 則甲駅以4: 1塡腔的槪率 ________________ .J甲W 已知或曲険C:肴-舊 “BI" 0)的底右儒点分別为耳迅.迁片的血线二匸的两最潮瓦钱甘 ^TA y B^F [A = AB. FR 化 S 則卍的离也那肯 ________________________________ .三' 解善題:M7C^・聲笞应写出文字说明、证明过程亚演算步骑L 第E1锂为必考麵.毎『试饉 老生都必顼作啤 闕瞬” 口罚为选老題・老主喂西英求作?£• (一)叱老證匸別分"17. <12山I&C 的内ftX.JJ,C 的柑边分别是ng 设(sin£ —sinQ 『 =sin 2/I-sm ffsiuC,ti )求右;2)?7 ^2a + 6 = 2c .求*nJ “IS. (12 *、 斗呃直网檢哇卫处Q-月風CD 的虑曲是菱器*.11, = 41 AB = 2 ・ £BAD =■ 6O P . E,M r N^\^BC.RH 、 J Q ;勺中止”丸①②④-Ci5 / 36i)旺明i .,WA P//2)求_i加傩卫一址气一用的止強值.19”〔12 分}己却删为尸,期卓为斗的直教却C的蛉伪小总,S轴的仝山为"Xi11務|/<尸| + 0F卜£ 求*的力軒;2*越乔二[两.求\AU .30.(12^)dfti^Si/(r)=(mx-hi(l + T). f(x)^i/(r)的#敷就削:⑴『匕)杞皿’—】.亍存杞唯…的极人值点;⑵血工”相农有2卒毒丸21- C12 分〉为冷疗革种臥両”研制了甲、乙两种折科,需型知洞那种軒药更TT故・为此进打动梅实越真验收fill心毎轮逸取詡卿自臥对貞1效进荷对比试鑿.对F闊!!勺就・RI机选•射只施氐乙罚. M MB HINNIA ffiBI卜--轮试戦.当齐中--忡童称直的白嵐出另咐> i门二h、;.: a」一- 就碎止试驰丼从曲治倉只數命的荊史有玆・为了方便描述问臥的定*对于厘Flit魅・若itu甲药的白艮治載且16玖兀药的白損耒谢蠢惰甲蘇禅I分,二药斜-】血若施以乙药时口瞬泊JftlL施以屮葯的白亂走冶愈刚乙罚堺lih甲冊-】4h若欄治竈诚暮水治壷嘲两种眦均鮒0分耳、£两种拘闱治愈率廿别记如和". 熾试猫申甲的的咼灯记沖Y.1)哦JV的少舟列t⑵ 若甲药、乙t?孫试验幵始时都瞋"井.期"=0J,2…問老示存甲苟的當计得分知仇最终儿为屮知比乙热屯白%”的槻典刖地=0,仇=1+冏=即严如+甲⑴(:=】2 <7},儿中芒=尸(,丫=0), f) -P(.¥ -0), < = P( A J/7-0>.:i)hi小—瓦}"二12…⑺为鼻比故処;门门求齐.井規揣円的您駢痒试种试誥方當的合證性.4/5(二)粧电瓯:it 10^.请弋生在察2叭為赣中作讐.如睾第妣・则按所憎的策一晅计分.22.[选悔V 坐标集与題數晒(10井】"为需歎)息堂标底成O为駆点.石轴在帆角坐标纂呦冲*曲爼C的辩数方押为f -1 ~止半稱为槻轴建立璇坐标系.的概生桩方租为2“顷旧 + JJpsin日+丨1・0,11)*匚与』的直箱坐栋方程I:空痕匚上财点到F跑寄的最小值.21[4iU-5t不芳氏注讲]10 5Z)已抑臥he为壬敕・且胃足nhc- I.证弗(1)丄4■丄+丄羞应『卜胪+『和a b c!2)(a + ^)J + (A+r)- +(c+<J)' >245/58 / 362019年査通爲零学校招化全国统一考试文科数学注卷車顶:1.售卷前・考牛•务感将口己的姓洛号空号黑填垢在割S卡铀试卷指建位胃匕.孔河答址择期i・h旌出毎小童答案冶*期铅里把菩匙轻对应題目鸚I■如需盘4h用也皮攥「-净后.再选洙其它答慕标h昇回霜4延择题时.瘙椁家写隹粹朗卡上.写芒本试卷L:无效"3.考试轴束已将体试程和剳冒卡一件交同―、选擇慙;本駆共12小怂"程小融弓分*共60分在毎小融绐出的四个进念中* 口右一砺星轩合豔目要求的=2B.V3 c. 41ai1L1知#0U =①狛从氐7}・A ={234・5;,Z?二h・3百・7}・A=(】A ;L6(B-{1J| C. {6.7} D. {1,6,7} 乱已知a = lo^r DN・h = 2a2, c = 0.2in. IM t )A.ii <h<f R.ti<c<hC.c<ti<hD.^ <4 一古乖聊时训”人心认为於兀人侏的义顶至肚M的山A乌丄情孚足呸的li哽之比兄"匚‘^5-1*0.618.林为黄金分割比榊人着呂的•斷惮醴抽斯”良足JU此,此外.扯k扎障的久顶至啥2喉的fei44i咽喉至It脐的怪度立比也昱{口+若臬人涌匸丨述两个扯金分削比悯*巨腿圧为KScm’2张顼奎聆『卜-端的悅度为265・耻其身禹町能足(>^lGSem B.175cm CJBScm D.190em 去汝嚼数/{巧二竺斗■理[饥厅]的轻|他为(-COS J + X立科軸学10 / 36氐某学栈为r 解1 Q00宕新生怕刖悻當际将这些学牛編弓为眞2+ -+ 1000.^^^<k 屮用系统抽枠 的加i 等距抽9U00名手空进行测试.若輻号学牛被抽轧 则下面4名宁主中被抽取的址()A.B :^^T. B 200 号学中- C 616 ^4^1:D 81S 号即上&己划 忤向施.匸祸斗:=平.11币一和丄乳则门示的夹旳,1LAXSC 的内脚扎鼠匸的时处务刑是鸟氏c LliuasiiM- bsia&-4ca\nC . e«j» J = - T M* =4 cA.6B.5C.d a.3区L 2掠瞬闘匚的囁点为林一 1、创・rtkOl ・过巧的起缕耳匚交:■-」/ 九忆苦I”; =2|/';^・I 姐=2)昭|・则(7的方程为<)11 T 丁*■* 1 x'2 .犷 y .工” y .匕 A ' v .A . — + r = I玫一 + J 匸】匚一+ — = I& - -+ — = I232435 4->才空题;本题共4小題,霽小題5井,共20分.= ^x~ +扌片件点(0X )牡的切纯方出为 ________________ .皿记比为等比數时就}的斛丹顷和.若坷丄・衬=毎.则乂二 _______________________ .17. un 255 =【Rg 号学生 B 200号学生 C616号供主0415 v^tB. - ? ■ v'?i€-2"D 2 + V3■右— 的程序帼用.圈屮空口框屮应塡入]■応础戟(?:二—吴三财>0上M )的一柚f 近线的幢料角为口0 .则匕的离心莘为< abA. 2 sin 4(}B. 2 cos 40sin 50D. ---------cos 502 + 4CA =1*2#甲2/515 医靈/(P v)=siml v 4-—)-Jcnsx 的瑕小恆为_______________________值已如ZJCB二90’・P为芈迪A&C外规FC = 2 ■点尸到^ACB两边"G AB的距离均A I J5.廉么P到辛祈冲占“的护离为 ______________________ .三i離答孤共7C^解答內写出文字说馭证明讨幻走洁草梅第1严21孤为必老黑.岛个试耶不生都必须件答“第2氛刀就为选青!L电生觸据聲求作答.C-)必书迩;60分*17.(1Z 时)臬南场为提1W务櫛孟驰机调查了和粕男贼客神疔「窑立顒罂毎忖蹊客村谨商场恂审务给出満总戍平满意的泮比眸到下列列联祐D分別估计职女岡客对谐商场服务满强的槪執C2)能否有95%的把握认為?b女陵第对谁斷炀服务的评价有館异? 附宀——凹」竺——(tj + h)(c^-ii )(/T-*-L')(/J +18 <12 ^f)记&为零龙:数列®」的前舟驷h曲0罠=—令*1> 阻%軒帆}他通项公戌*(2)若>?0・頼購£ 土斗術I刀取苟小范鬧.立理數学13 / 3619. (12如& 豐四變柱ABCD -叫垃3的旳如辛菱厢-AA,= 4 (AH-2. r£4匚*分别晁/?「.11歇..4、D的中点.[D 证I则v.w/TmcDFi[?>求点<到平[tic,n£的距离,竹、Ml 朗数 f (x) - 2 sin v - .vcos x~x , f f(x)为f(x)的冷 ft.[|>证罔:_f{-r)托IK间®.JT)存序吋-话点t⑵占上£[0卫]时,/(.r)>ax T求“的収價小也囤20, <12 分)已姐山彳.F艾尸叶函:口。

专题02 平面向量、不等式与线性规划、二项式定理-2019年高考数学(理)新课标全国卷Ⅰ考点讲评

专题02 平面向量、不等式与线性规划、二项式定理-2019年高考数学(理)新课标全国卷Ⅰ考点讲评
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(二)不等式与线性规划
1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
类型4平面向量的平行与垂直
例4.(2013全国1理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________.
解析:∵c=ta+(1-t)b,∴b·c=ta·b+(1-t)|b|2,
又∵|a|=|b|=1,且a与b夹角为60°,b⊥c,
∴0=t|a||b|cos 60°+(1-t),0= +1-t,
(三)二项式定理
1.二项式定理
(1)能用计数原理证明二项式定理.
(2)会用二项式定理解决与二项展开式有关的简单问题.
二、考点讲评与真题分析
题型一平面向量
平面向量是高考必考内容,一般来说平面向量突出考查向量的几何运算或代数运算,结合图形和向量加法的三角形法则、平行四边形法,难度适中,侧重于考查向量的基本运算,很少与其它知识交汇,常考的题型有平面向量的线性表示、平行、垂直、数量积、平面向量的模.
(2)也可以利用定比分点,若 则 .
类型2平面向量基本定理及坐标运算
例2(2016·新课标Ⅰ,13)设向量a ,b ,且 a b a b ,则 .
【解析】由已知得: ,
∴ ,
解得 .
类型3平面向量的数量积、模长
例3(2017全国1理13)已知向量 , 的夹角为 , , ,则 .

2019年高考理科数学全国卷1(附参考答案和详解)

2019年高考理科数学全国卷1(附参考答案和详解)

可 得"+'% 槡5"&!&#!'!6!解 得 +"2"!#7!!
由已


得 *&"'"+))+"'#*
槡5&! "
&
#!'!6!解

*
"
!76!"!6! 综上!此人身高 * 满足!'$!6$#"*"!76!"!6!所以 其 身 高 可能为!7534!故选 .! 5!答 案 8
解析- ,"&"#*3099",:&""&#")#"&&""#" *&,""#! + ,""#为奇函数!排除 ;!
,%'- '+-(!#
-%,- '$-$ (4-
.%,-' !$-$($-
!#!已知椭圆 . 的焦 点 为/!$(!##%#/$ $!##%#过 /$ 的 直 线
与 . 交于+#0 两点!若"+/$"'$"/$0"#"+0"'"0/!"#
则. 的方程为
$! ! %
*%#$$ 0&$'!
,%#+$ 0&$$ '!
*%
,%
-%
.%
!$!已 知 三 棱 锥 12+0. 的 四 个 顶 点 在 球 3 的 球 面 上#1+'

2019高考题 全国1卷 详解

2019高考题 全国1卷 详解

2019高考题全国1卷详解一、引言在2019年的高考中,全国1卷的数学试题备受关注。

数学作为高考的主要科目之一,对于考生来说具有举足轻重的地位。

本文将对2019年全国1卷的数学试题进行详细解析,深入探讨每一道题目背后的数学思想和解题技巧,帮助读者更好地理解并掌握这一科目。

二、整体分析在2019年全国1卷的数学试题中,涵盖了代数、几何、概率统计等多个数学领域的知识点。

试题整体难度适中,具有一定的代表性和典型性,能够考查考生对数学知识的全面掌握和应用能力。

接下来,我们将分别对每个知识点进行详细分析和解答。

三、代数题解析1. 设定主题字符“A”。

在试题中多次提到这一字符,我们将从简单的代数方程式探讨起,如下:(1)若A+3=7,求A的值;(2)若A^2=16,求A的值。

2. 通过上述简单的代数方程式,引出代数不等式的讨论。

例如:(1)若A-5<2,求A的取值范围;(2)若A^2-4>0,求A的取值范围。

3. 由于代数题的题目较多,我们不再一一列举,但需要强调的是,在解答代数题时,我们需要充分理解主题字符“A”,并善用数学方法对其进行分析和运算。

四、几何题解析1. 在几何题中,主题文字“直线”、“三角形”、“平行四边形”等词汇频繁出现。

以“直线”为例,我们可以从直线的性质、方程和斜率等方面展开讨论,如:(1)如何通过两点确定一条直线的方程;(2)如何求解直线的斜率和截距。

2. 对于三角形题目,我们可以从三角形的性质、角度和边长等方面进行讨论,例如:(1)根据三角形内角和定理,如何求解三角形内角的大小;(2)如何根据已知角度和边长,构造一个三角形。

3. 在解答平行四边形题目时,我们可以重点讲解平行四边形的性质和判定条件,如:(1)平行四边形的对角线相等证明;(2)平行四边形的对边互补证明。

五、概率统计题解析1. 在概率统计题中,我们需要关注主题文字“概率”和“统计”。

以概率为例,我们可以讨论以下问题:(1)如何计算事件发生的概率;(2)如何利用排列组合进行概率计算。

2019年全国卷Ⅰ理科数学高考真题及答案解析(word精编)

2019年全国卷Ⅰ理科数学高考真题及答案解析(word精编)

D. 6
13.曲线 y 3(x2 x)ex 在点 (0,0) 处的切线方程为____________.
14.记
Sn 为等比数列{an}的前
n
项和.若 a1
1 3
,a42
a6
,则
S5=____________.
15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前 期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为 0.6,客场取胜的 概率为 0.5,且各场比赛结果相互独立,则甲队以 4∶1 获胜的概率是____________.
A. 5 16
B. 11 32
C. 21 32
D. 11 16
7.已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b,则 a 与 b 的夹角为
A. π 6
B. π 3
C. 2π 3
8.如图是求
2
1 1
2 1
的程序框图,图中空白框中应填入
2
D. 5π 6
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
试卷类型(B)填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;
如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应
位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按 以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。

理在课内,题在课外--2019年高考全国I卷不等式选讲试题的解析和启示

理在课内,题在课外--2019年高考全国I卷不等式选讲试题的解析和启示
型. (1) 利用 abc=1 将所证不等式可变为证明: a2+b2+c2≥bc+ ac+ab, 利用基本不等式可证得 2(a2+b2+c2)≥2ab+2bc+2ac, 从 而得到结论; (2) 利用基本不等式可得 (a+b)3+(b+c)3+(c+a)3 ≥3(a+b)(b+c)(c+a), 再次利用基本不等式可将式转化为 (a+
b)3+(b+c)3+(c+a)3≥24 姨(abc)2 , 在取等条件一致的情况下,
可得结论. 主要考查利用基本不等式进行不等式的证明问题,
考查学生对于基本不等式的变形和应用能力, 需要注意的是
在利用基本不等式时需注意取等条件能否成立.
解析 2:
(1)
因为 abc=1,
所以
1 a
+
1 b
+
1 c
=
足题意的点.
责任编辑 徐国坚
广东教育·高中 2019 年第 7·8 期 47
应考方略 数学有数
∴ 2(a2+b2+c2)≥2( 1 + 1 + 1 ),即: a2+b2+c2≥ 1 + 1 + 1 .
abc
abc
(2) ∵(a+b)3+(b+c)3+(c+a)3≥3(a+b)(b+c)(c+a), 当且
解析 1: (1)∵ abc=1,

1 a
+
1 b
+
1 c
=(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年新课标全国卷1理科数学考点讲评与真题分析
10.不等式选讲
一、考试大纲
(一)不等式选讲
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ (2)a b a c c b -≤-+-
(3)会利用绝对值的几何意义求解以下类型的不等式:
ax b c +≤;ax b c +≥;x a x b c -+-≥
2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)a b a b ⋅≥⋅;
(2)2
2
2
2
2
()()()a b c d ac bd ++≥+;
(3≥(此不等式通常称为平面三角不等式.)
3.会用参数配方法讨论柯西不等式的一般情形:2221
1
1
()n n
n
i i
i i i i i a b
a b ===⋅≥∑∑∑
4.会用向量递归方法讨论排序不等式.
5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:
(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),
了解当n 为大于1的实数时伯努利不等式也成立.
7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. (二)基本不等式 1.基本不等式:
(a ≥0,b ≥0)
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的最大(小)值问题.
二、考点讲评与真题分析
不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

分析问题的方法是不等式证明的关键,关于不等式证明的方法,没有具体的知识点,只有方法要求,因此它的载体丰富多彩.
题型一 绝对值不等式的解法
例1 (2018·新课标I 卷,23)已知()11f x x ax =+--.
(I )当1a =时,求不等式()1f x >的解集;
(II )若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 解析:(I )依题意,111x x +-->,
该不等式等价于1,
111,x x x <-⎧⎨
--+->⎩11,111,x x x -≤≤⎧⎨++->⎩或1,
111,x x x >⎧⎨
+-+>⎩
解得1
2x >
,即等式()1f x >的解集为12x x ⎧⎫>⎨⎬⎩
⎭;
(II )依题意,11x ax x +-->;当()0,1x ∈时,该式化为 11x ax x +-->,即11ax -<,
即111ax -<-<,即02ax <<,故0,
2,ax ax >⎧⎨<⎩
在()0,1上恒成立,
故02a <≤,即a 的取值范围为(]0,2.
【解题技巧】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:
(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集;
(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解. 不等式的恒成立问题是高考的重难点,此类问题一般有两种解法: (1)利用函数思想转化为函数的最值问题进行分析;
(2)通过数形结合构造出两个函数,通过寻找临界状态得到参数的取值范围. 题型二 基本不等式的应用
例2 【2014,24)】若0,0a b >>
,且
11
a b
+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 【解析】:(Ⅰ)
11a b =
+≥
,得2ab ≥
,且当a b == 故3
3
3
3
42a b
b +≥=,且当a b ==
时等号成立,
∴33a b +的最小值为.
……5分
(Ⅱ)由623a b =+≥3
2
ab ≤
,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立. ……………10分
题型三 不等式与参数问题
【2017,23】已知函数()2
4f x x ax =-++,()11g x x x =++-.
(1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.
【解析】(1)当1a =时,()2
4f x x x =-++,是开口向下,对称轴1
2
x =
的二次函数. ()211121121
x x g x x x x x >⎧⎪
=++-=-⎨⎪-<-⎩
,,≤x ≤,,当(1,)x ∈+∞时,令242x
x x -++=,解得x =,()g x 在
()1+∞,上单调递增,()f x 在()1+∞,上单调递减,∴此时()(
)f x g x ≥解集为1⎛

. 当[]11x ∈-,
时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-,时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()(
)f x g x ≥解集1⎡-⎢⎣.
(2)依题意得:242x ax -++≥在[]11-,
恒成立.即220x ax --≤在[]11-,恒成立. 则只须()()2
2
1120
1120
a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解出:11a -≤≤.故a 取值范围是[]11-,.
三、高考真题分类汇编
2011年—2018年新课标全国卷Ⅰ理科数学分类汇编
13.不等式选讲
一、解答题
【2018,23】已知()11f x x ax =+--.
(I )当1a =时,求不等式()1f x >的解集;
(II )若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.
【2017,23】已知函数()2
4f x x ax =-++,()11g x x x =++-.
(1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.
【2016,23】已知函数321)(--+=x x x f . (Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像;
(Ⅱ)求不等式1)(>x f 的解集.
【2015,24】已知函数()12,0f x x x a a =+-->.
(I )当1a =时求不等式()1f x >的解集;
(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.
【2014,24)】若0,0a b >>,且
11
a b
+=. (Ⅰ) 求3
3
a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.
【2013,24】已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.
(1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ⎡⎫
-
⎪⎢⎣⎭
时,f (x )≤g (x ),求a 的取值范围.
【2012,24】已知函数()|||2|f x x a x =++-。

(1)当3-=a 时,求不等式3)(≥x f 的解集;(2)若|4|)(-≤x x f 的解集包含[1,2],求a 的取值范围。

【2011,24】设函数()3f x x a x =-+,其中0a >。

(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。

相关文档
最新文档