21.2_解一元二次方程(第2课时)同步练习_(新版)新人教版

合集下载

人教版九年级21.2 降次解一元二次方程同步练习

人教版九年级21.2 降次解一元二次方程同步练习

《21.2 降次——解一元二次方程》一、选择题(共13小题)1.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥19.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x210.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=012.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=______.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是______(写出一个即可).16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是______(填序号).17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m=______.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是______.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是______.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是______.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=______,b=______.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是______.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是______.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是______.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为______.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.27.已知:关于x 的方程x 2+2mx+m 2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.28.已知关于x 的一元二次方程(x ﹣3)(x ﹣2)=|m|.(1)求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根.29.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.30.已知关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根.(1)求m 的值;(2)解原方程.《21.2 降次——解一元二次方程》参考答案与试题解析一、选择题(共13小题)1.一元二次方程x 2﹣4x+5=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【考点】根的判别式.【分析】把a=1,b=﹣4,c=5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b 2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.下列关于x 的方程有实数根的是( )A .x 2﹣x+1=0B .x 2+x+1=0C .(x ﹣1)(x+2)=0D .(x ﹣1)2+1=0【考点】根的判别式.【专题】计算题.【分析】分别计算A 、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D 进行判断.【解答】解:A 、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A 选项错误;B 、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B 选项错误;C 、x ﹣1=0或x+2=0,则x 1=1,x 2=﹣2,所以C 选项正确;D 、(x ﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D 选项错误. 故选:C .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( )A.B.C.D.【考点】根的判别式.【专题】判别式法.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【考点】根的判别式;一元二次方程的解;根与系数的关系.【专题】压轴题.【分析】利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C 与D.【解答】解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.【点评】本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.5.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别计算四个方程的判别式的值,然后根据判别式的意义判断各方程根的情况.【解答】解:A、x2﹣8=0,这里a=1,b=0,c=﹣8,∵△=b2﹣4ac=02﹣4×1×(﹣8)=32>0,∴方程有两个不相等的实数根,故本选项错误;B、2x2﹣4x+3=0,这里a=2,b=﹣4,c=3,∵△=b2﹣4ac=(﹣4)2﹣4×2×3=﹣8<0,∴方程没有实数根,故本选项错误;C、9x2+6x+1=0,这里a=9,b=6,c=1,∵△=b2﹣4ac=62﹣4×9×1=0,∴方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x2﹣5x﹣2=0,这里a=3,b=﹣5,c=﹣2,∵△=b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴方程有两个不相等的实数根,故本选项错误;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0【考点】根的判别式.【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能【考点】根的判别式;一元一次方程的解;解一元一次不等式组.【分析】求出a的取值范围,表示出已知方程根的判别式,判断得到根的判别式的值小于0,可得出方程没有实数根.【解答】解:解不等式组得a<﹣3,∵△=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5,∵a<﹣3,∴△=2a+5<0,∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根,故选C.【点评】此题考查了解一元一次不等式组,一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无实数根.13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0【考点】根的判别式.【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.【点评】本题主要考查了根的判别式,解题的关键是熟记判别式的公式.二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .【考点】根的判别式.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是0 (写出一个即可).【考点】根的判别式.【专题】开放型.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵一元二次方程x2﹣x+m=0有两个不相等的实数根,∴△=1﹣4m>0,解得m<,故m的值可能是0,故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯一,只需满足m<即可.16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【专题】分类讨论.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.【解答】解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠0 .【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a >0,解不等式组即可求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是m>.【考点】根的判别式.【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:根据方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,解得:m>.故答案为:m>.【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1 .【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是a≤1 .【考点】根的判别式.【专题】计算题.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是m<.【考点】根的判别式;一元二次方程的定义.【分析】据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范围.【解答】解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是a>0 .【考点】根的判别式.【专题】计算题.【分析】根据方程没有实数根,得到根的判别式小于0,求出a的范围即可.【解答】解:∵方程x2+a=0没有实数根,∴△=﹣4a<0,解得:a>0,故答案为:a>0【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为﹣3 .【考点】根的判别式.【分析】因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.【考点】根的判别式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b 2﹣4ac ≥0,建立关于m 的不等式,求出m 的取值范围;(2)根据根与系数的关系得到x 1+x 2=4,又5x 1+2x 2=2求出函数实数根,代入m=x 1x 2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m ≥0,∴m ≤4;(2)∵x 1+x 2=4,∴5x 1+2x 2=2(x 1+x 2)+3x 1=2×4+3x 1=2,∴x 1=﹣2,把x 1=﹣2代入x 2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.27.已知:关于x 的方程x 2+2mx+m 2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.【考点】根的判别式;一元二次方程的解.【分析】(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.【解答】解:(1)由题意得,a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx+m 2﹣1=0有两个不相等的实数根;(2)∵x 2+2mx+m 2﹣1=0有一个根是3,∴32+2m ×3+m 2﹣1=0,解得,m=﹣4或m=﹣2.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【考点】根的判别式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【解答】(1)证明:△=(m+2)2﹣8m=m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x 1=,x 2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.30.已知关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根.(1)求m 的值;(2)解原方程.【考点】根的判别式.【分析】(1)根据题意得到:△=0,由此列出关于m 的方程并解答;(2)利用直接开平方法解方程.【解答】解:(1)∵关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根,∴△=m 2﹣4×m ×(m ﹣1)=0,且m ≠0,解得m=2;(2)由(1)知,m=2,则该方程为:x 2+2x+1=0,即(x+1)2=0,解得x 1=x 2=﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.。

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的实数根的个数是()A.0个B.1个C.2个D.无法确定2.以3,4为两实数根的一元二次方程为()A.B.C.D.3.用配方法解方程,下列配方正确的是()A.B.C.D.4.若是方程的一个根,则此方程的另一个根是()A.B.C.D.5.若关于的一元二次方程有实数根,则实数的取值范围是()A.B.C.且D.且6.若是一元二次方程的两根,则的值是()A.B.1 C.5 D.7.亮亮在解一元二次方程+▢=0时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是()A.7 B.12 C.16 D.188.已知是关于x的方程的实数根.下列说法:①此方程有两个不相等的实数根;②当时,一定有;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A.①②B.②③C.①③D.③④二、填空题:(本题共5小题,每小题3分,共15分.)9.方程x2-4x=5的根是.10.关于x的方程有两个不相等的实数根,则m的取值范围是.11.一元二次方程的两根为和,则的值为.12.已知一元二次方程▢+2=0,在▢中添加一个合适的数字,使该方程没有实数根,则添加的数字可以是.13.已知关于x的一元二次方程,当的斜边长a为,且两条直角边的长b、c恰好是这个方程的两个根,的周长为.三、解答题:(本题共5题,共45分)14.(1)(2)15.(1);(2) .16.当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.已知有关于x的一元二次方程.(1)求k的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为-2,求k的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k的值.18.已知关于的一元二次方程有两个不相等的实数根. (1)求m的取值范围;(2)若两实数根分别为和,且,求m的值.参考答案:1.B 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.5或-110.m>-111.912.大于就行13.14.(1)解:.(2)解:或.15.(1)解:因式分解,得于是得或解得:;(2)解:∵∴∴∴解得: .16.解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣,∵2<<3,∴3<1+ <4,符合题意∴x=1+ .17.(1)解:∵关于x的一元二次方程∴∴;而∴原方程方程有两个实数根(2)解:∵方程有一个根为∴解得:∴方程为:∴∴解得:∴方程的另一个解为1.(3)解:∵∴∴解得:∵方程的一个根是另一个根3倍当时,解得:,经检验符合题意;当时,解得:,经检验符合题意;综上:或.18.(1)解:∵关于x的一元二次方程有两个不相等的实数根∴Δ>0,即,解得;∴m的取值范围为.(2)解:∵方程的两个实数根分别为x1和x2∴x1+x2=,x1x2=∴∵∴解得m=1或-3∵∴。

人教版九年级数学上册21.2:解一元二次方程 (二)同步练习(包含答案)

人教版九年级数学上册21.2:解一元二次方程 (二)同步练习(包含答案)

第二十一章 21.2 解一元二次方程(二)同步练习解一元二次方程:公式法同步练习(答题时间:15分钟)1. 利用求根公式求x x 62152=+的根时,a 、b 、c 的值分别是 ( ) A.6215、、 B. 2165、、 C. 2165、、- D. 2165--、、 2. 方程012=-+x x 的一个根是 ( )A. 1 –5B. 251- C. –1+5 D. 251+- 3. 要使6429+-n n a 与n a 3是同类项,则n 等于 ( )A. 2B. 3C. 0D. 2或3 4. 若04)1(5)2(22=-+-+-m x m x m 是关于x 的一元二次方程,且该方程有一个根是0,则m =_______。

5. 若)0(03422≠=+-xy y xy x ,则y x 的值是_________。

6. 用公式法解下列方程:(1)0432=--x x (2)322=+x x (3) 24210x x --=(4)2610y y --=7. 已知921-=x y ,x y -=32,当x 为何值时,1y 与2y 相等?解一元二次方程:公式法同步练习参考答案1. C 解析:先将原方程化为一般形式得,215602x x -+=,即1562a b c ==-=,,,故选C 。

2. D 解析:利用求根公式得:x ==,112-+=x212--=x ,故选D 。

3. D 解析:∵两代数式是同类项,∴246n n n -+=,即:2560n n -+=,利用求根公式可得:1232n n ==,,故选D 。

4. -2 解析:把0x =代入方程得:240m -=,∴2m =±,∵20m -≠,∴2m ≠, ∴2m =-。

5. 1或3 解析:∵0xy ≠,∴00x y ≠≠,,两边同时除以2y 得:22430x x y y-+=, 令x a y=,则原方程可化为:2430a a -+=,利用求根公式得: 1231a a ==,。

九年级数学上册21.2解一元二次方程21.2.3解一元二次方程_公式法同步练习(新版)新人教版

九年级数学上册21.2解一元二次方程21.2.3解一元二次方程_公式法同步练习(新版)新人教版

21.2.3解一元二次方程-公式法学校:___________姓名:___________班级:___________一.选择题(共12小题)1.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣32.用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=3.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是()A.﹣2<a<﹣1 B.2<a<3 C.﹣3<a<﹣4 D.4<a<54.若一元二次方程x2+x﹣1=0的较大根是m,则()A.m>2 B.m<﹣1 C.1<m<2 D.0<m<15.方程x2﹣3|x|﹣2=0的最小一个根的负倒数是()A.B.C.D.6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,07.一元二次方程x2﹣4x+3=0的解是()A.x=1 B.x1=﹣1,x2=﹣3 C.x=3 D.x1=1,x2=38.以x=为根的一元二次方程可能是()A.x2+bx+c=0 B.x2+bx﹣c=0 C.x2﹣bx+c=0 D.x2﹣bx﹣c=09.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,110.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A.3 B.2 C.1 D.11.一元二次方程x2﹣x﹣1=0的两个实数根中较大的根是()A.1+B.C.D.12.关于x的方程x(x+6)=16解为()A.x1=2,x2=2 B.x1=8,x2=﹣4 C.x1=﹣8,x2=2 D.x1=8,x2=﹣2二.填空题(共6小题)13.方程ax2+bx+c=0(a≠0)的判别式是,求根公式是.14.小明同学用配方法推导关于x的一元二次方程ax2+bx+c=0的求根公式时,对于b2﹣4ac >0的情况,他是这样做的:小明的解法从第步开始出现错误;这一步的运算依据应是.15.已知x=(b2﹣4c>0),则x2+bx+c的值为.16.已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x= .17.利用求根公式解一元二次方程时,首先要把方程化为,确定的值,当时,把a,b,c的值代入公式,x1,x2= 求得方程的解.18.已知等腰三角形的一腰为x,周长为20,则方程x2﹣12x+31=0的根为.三.解答题(共5小题)19.(1)用配方法解方程:3x2﹣12x+9=0.(2)用公式法解方程:3x2﹣9x+4=0.20.x2﹣2x﹣15=0.(公式法)21.用适当的方法解方程:(1)(5x+3)2﹣4=0;(2)2x2﹣4x+1=0.22.(1)解一元二次方程:x2﹣3x=1(2)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,求四边形ABFD 的周长.23.〔1〕若,则x的取值范围是;〔2〕在〔1〕的条件下,试求方程x2+|x﹣1|﹣3=0的解.参考答案与试题解析一.选择题(共12小题)1.解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.2.解:∵4y2=12y+3∴4y2﹣12y﹣3=0∴a=4,b=﹣12,c=﹣3∴b2﹣4ac=192∴y==.故选C.3.解:一元二次方程x2﹣3x﹣5=0,∵a=1,b=﹣3,c=﹣5,∴△=9+20=29,∴x=,则较小的根a=,即﹣2<a<﹣1,故选:A.4.解:∵a=1,b=1,c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=,∴方程的较大根m=,∵2<<3,∴<<1,故选:D.5.解:设|x|=y此方程变形为y2﹣3y﹣2=0,解得:y=,∴|x|=或|x|=<0(舍),则x=或x=﹣,∴最小的根为﹣,它的负倒数是=,故选:A.6.解:解方程2x2﹣2x﹣1=0得:x=1±,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.7.解:a=1,b=﹣4,c=3△=16﹣12=4>0x=解得:x1=3,x2=1;故选D.8.解:根据求根公式知,﹣b是一次项系数,二次项系数是1或﹣1,常数项是﹣c或c.所以,符合题意的只有D选项.故选:D.9.解:方程﹣x2+3x=1整理得:﹣x2+3x﹣1=0,则a,b,c依次为﹣1;3;﹣1.故选:A.10.解:2x2﹣6x+3=0,这里a=2,b=﹣6,c=3,∵△=36﹣24=12,∴x==,即p=;2x2﹣2x﹣1=0,这里a=2,b=﹣2,c=﹣1,∵△=4+8=12,∴x==,即q=,则p+q=+==2.故选:B.11.解:∵一元二次方程x2﹣x﹣1=0中,a=1,b=﹣1,c=﹣1,∴x==,∴一元二次方程x2﹣x﹣1=0的两个实数根中较大的根是.故选:B.12.解:原方程变形为:x2+6x﹣16=0,x==∴x1=﹣8,x2=2,故选:C.二.填空题(共6小题)13.解:方程ax2+bx+c=0(a≠0)的判别式是b2﹣4ac,求根公式为.14.解:小明的解法从第四步开始出现错误;这一步的运算依据应是平方根的定义;故答案为四;平方根的定义.15.解:∵x=(b2﹣4c>0),∴x2+bx+c=()2+b+c=++c===0.故答案为:0.16.解:根据题意得:7x(x+5)+10+9x﹣9=0,整理得:7x2+44x+1=0,这里a=7,b=44,c=1,∵△=442﹣28=1908,∴x==.故答案为:.17.解:利用求根公式解一元二次方程时,首先要把方程化为一般式方程,确定a,b,c的值,当△>0时,把a,b,c的值代入公式,x1,x2=求得方程的解.故答案是:一般式方程;a,b,c;△>0;.18.解:方程x2﹣12x+31=0,变形得:x2﹣12x=﹣31,配方得:x2﹣12x+36=5,即(x﹣6)2=5,开方得:x﹣6=±,解得:x=6+或x=6﹣,当x=6﹣时,2x=12﹣2<20﹣12+2,不能构成三角形,舍去,则方程x2﹣12x+31=0的根为6+.故答案为:6+三.解答题(共5小题)19.解:(1)两边同除以3,得x2﹣4x+3=0,移项,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,(x﹣2)2=1,x﹣2=±1,x1=3,x2=1;(2)∵a=3,b=﹣9,c=4,∴△=b2﹣4a c=(﹣9)2﹣4×3×4=33>0,∴方程有两个不相等的实数根为x=,x1=,x2=.20.解:∵x2﹣2x﹣15=0.∴a=1,b=﹣2,c=﹣15,∴b2﹣4ac=4+60=64>0,∴x=,∴x=5或﹣3.21.解:(1)方程整理得:(5x+3)2=4,开方得:5x+3=2或5x+3=﹣2,解得:x1=﹣,x2=﹣1;(2)这里a=2,b=﹣4,c=1,∵△=16﹣8=8,∴x==.22.解:(1)这里a=1,b=3,c=﹣1,∵△=9+4=13,∴x=.(2)∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.23.解:(1)∵=|x﹣1|=1﹣x,∴x﹣1≤0,即x≤1.故答案为x≤1.(2)由x≤1,方程化为:x2﹣x﹣2=0,则(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.。

人教版九年级上册 21.2 解一元二次方程 同步练习(含答案)

人教版九年级上册  21.2 解一元二次方程     同步练习(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解一元二次方程 同步练习
一.选择题(共 12 小题)
1.一元二次方程 x2-5x+6=0 的解为( ) A.x1=2,x2=-3 B.x1=-2,x2=3 C.x1=-2,x2=-3 D.x1=2,x2=3 2.下列方程中,有两个相等实数根的是( ) A.x2+1=2x B.x2+1=0 C.x2-2x=3 D.x2-2x=0 3.一元二次方程 x2-6x+5=0 的两根分别是 x1、x2,则 x1•x2 的值是( ) A.5 B.-5 C.6 D.-6 4.设方程 x2+x-2=0 的两个根为 α,β,那么 α+β-αβ 的值等于( ) A.-3 B.-1
C.1
D.-3 或 0
7.已知 a≠b 且 a2-a=6,b2-b=6,则 a+b=( )
A.1
B.-1
C.3
D.-3
8.若 12-3k<0,则关于 x 的一元二次方程 x2+4x+k=0 的根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.没有实数根
2/9
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
D.无法判断
9.如果关于 x 的一元二次方程 kx2-3x+1=0 有两个实数根,那么 k 的取值范围是( )
A.k≥2.25
Hale Waihona Puke B.k≥−2.25 且 k≠0
C.k≤2.25 且 k≠0
D.k≤−2.25
10.已知等腰三角形的两边长分别是一元二次方程 x2-6x+8=0 的两根,则该等腰三角形的底 边长为( )

《21.2解一元二次方程》同步专题提升训练(附答案)2021-2022学年九年级数学人教版上册

《21.2解一元二次方程》同步专题提升训练(附答案)2021-2022学年九年级数学人教版上册

2021-2022学年人教版九年级数学上册《21.2解一元二次方程》同步专题提升训练(附答案)一.选择题1.若关于x的一元二次方程mx2+2mx+4=0有两个相等的实数根,则m的值为()A.0B.4C.0或4D.0或﹣42.一元二次方程x2+6x﹣5=0配方后可化为()A.(x+3)2=5B.(x+3)2=14C.(x﹣3)2=5D.(x﹣3)2=14 3.一元二次方程3x2+5x+1=0根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法判断4.若关于x的一元二次方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,则k的取值范围()A.k>﹣3B.k>﹣3且k≠1C.k≥﹣3且k≠1D.k<﹣35.一个等腰三角形两条边长分别是方程x2﹣9x+18=0的两根,则该等腰三角形周长是()A.12B.9C.15D.12或156.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.B.4C.25D.57.若(a2+b2)(a2+b2﹣3)=4,则a2+b2的值为()A.4B.﹣4C.﹣1D.4或﹣18.下列一元二次方程中,没有实数根的是()A.x2+2x+1=0B.x2+x+2=0C.x2﹣2x=0D.(x﹣3)2﹣2=0二.填空题9.方程x2﹣4x=0的实数解是.10.已知一元二次方程2x2+mx﹣4=0的一个根是,则该方程的另一个根是.11.若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则的值为.12.关于x的一元二次方程x2﹣10x+m=0的两个实数根分别是x1,x2,且以x1,x2,6为三边的三角形恰好是等腰三角形,则m的值为.13.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=1,x2=2;小刚看错了常数项c,得到的解为x1=3,x2=4.请你写出正确的一元二次方程.14.已知一元二次方程x2+x﹣2021=0的两根分别为m,n,则+的值为.15.已知α、β是一元二次方程x2﹣2021x+2020=0的两实根,则代数式(α﹣2021)(β﹣2021)=.16.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x13x2﹣3x12x2=.三.解答题17.解下列方程:(1)x2﹣4x﹣5=0;(2)x2﹣7x+1=0(用公式法解).18.解方程:(1)x2+6x+4=0;(2)x(x﹣2)+x﹣2=0.19.已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,若x1=3﹣x2,求方程的两个根.20.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为x1、x2,且x12+x22=12,求m的值.21.已知关于x的方程x2+(a﹣2)x﹣a=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若此方程两个实数根都是正实数,求a取值范围.22.已知关于x的一元二次方程x2﹣(2k+4)x+k2+4k+3=0.(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根;(2)若此一元二次方程的两根是Rt△ABC两直角边AB、AC的长,斜边BC的长为10,求k的值.参考答案一.选择题1.解:∵mx2+2mx+4=0是一元二次方程,∴m≠0,∵方程有两个相等的实数根,∴Δ=4m2﹣16m=0,∴m=0或m=4,∴m=4,故选:B.2.解:∵x2+6x﹣5=0,∴x2+6x=5,∴x2+6x+9=14,∴(x+3)2=14.故选:B.3.解:∵一元二次方程3x2+5x+1=0中,a=3,b=5,c=1,∴△=52﹣4×3×1=13>0,∴方程有两个不相等的实数根故选:B.4.解:根据题意得:Δ=b2﹣4ac=16+4(k﹣1)=4k+12>0,且k﹣1≠0,解得:k>﹣3且k≠1.故选:B.5.解:∵x2﹣9x+18=0,∴(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.6.解:解方程x2﹣6x+8=0得:x=4和2,即AC=4,BD=2,∵四边形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故选:A.7.解:设y=a2+b2(y≥0),则由原方程得到y(y﹣3)=4.整理,得(y﹣4)(y+1)=0.解得y=4或y=﹣1(舍去).即a2+b2的值为4.故选:A.8.解:A、Δ=22﹣4×1=0,则方程有两个相等的实数根,所以A选项不符合题意;B、Δ=12﹣4×2=﹣7<0,则方程没有实数根,所以B选项符合题意;C、Δ=(﹣2)2﹣4×0=4>0,则方程有两个不相等的实数根,所以C选项不符合题意;D、整理整理为x2﹣6x+7=0,Δ=62﹣4×7=8>0,则方程有两个不相等的实数根,所以D选项不符合题意.故选:B.二.填空题9.解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.10.解:设方程的另一根为x2,∵一元二次方程2x2+mx﹣4=0的一个根是,∴x2=.解得x2=﹣4.故答案是:﹣4.11.解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∵Δ=13>0,∴m+n=﹣3,∴===3,故答案为3.12.解:当6为底边时,则x1=x2,∴Δ=100﹣4m=0,∴m=25,∴方程为x2﹣10x+25=0,∴x1=x2=5,∵5+5>6,∴5,5,6能构成等腰三角形;当6为腰时,则设x1=6,∴36﹣60+m=0,∴m=24,∴方程为x2﹣10x+24=0,∴x1=6,x2=4,∵6+4>6,∴4,6,6能构成等腰三角形;综上所述:m=24或25,故答案为24或25.13.解:∵小明看错了一次项系数b,∴c=x1•x2=1×2=2;∵小刚看错了常数项c,∴﹣b=x1+x2=3+4=7,∴b=﹣7.∴正确的一元二次方程为x2﹣7x+2=0.故答案为:x2﹣7x+2=0.14.解:∵一元二次方程x2+x﹣2021=0的两根分别为m,n,∴m+n=﹣1,mn=﹣2021,∴+===,故答案为:.15.解:∵α、β是一元二次方程x2﹣2021x+2020=0的两实根,∴α+β=2021,αβ=2020,∴(α﹣2021)(β﹣2021)=αβ﹣2021(α+β)+20212=2020﹣2021×2021+20212=2020.故答案为:2020.16.解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1=1,x1x2=﹣1,∴x13x2﹣3x12x2=x1x2•(x12﹣3x1)=(﹣1)×1=﹣1,故答案为:﹣1.三.解答题17.解:(1)x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,解得:x1=5,x2=﹣1;(2)x2﹣7x+1=0,∵Δ=b2﹣4ac=(﹣7)2﹣4×1×1=45>0,∴x==,解得:x1=,x2=.18.解:(1)∵x2+6x=﹣4,∴x2+6x+9=﹣4+9,即(x+3)2=5,则x+3=±,∴,;(2)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得x1=﹣1,x2=2.19.解:(1)∵△=(4m)2﹣4×1×(4m2﹣9)=16m2﹣16m2+36=36>0,∴已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0一定有两个不相等的实数根;(2)∵x=,∵,∴x1+x2=6,∵x1+x2=4m,∴4m=6,∴,∴,∴x1=6,x2=0.20.解:(1)根据题意得Δ=(2m)2﹣4(m2+m)≥0,解得m≤0.故m的取值范围是m≤0;(2)根据题意得x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=(x1+x2)2﹣2x1•x2=12,∴(﹣2m)2﹣2(m2+m)=12,即m2﹣m﹣6=0,解得m1=﹣2,m2=3(舍去).故m的值为﹣2.21.解:(1)在方程x2+(a﹣2)x﹣a=0中,∵Δ=(a﹣2)2﹣4×1×(﹣a)=a2+4,∵a2+4≥4,∴不论a取何实数,该方程都有两个不相等的实数根.(2)设方程的两个根分别为α和β,由根与系数的关系得:,解得:a<0.22.(1)证明:∵△=[﹣(2k+4)]2﹣4(k2+4k+3)=4>0,∴不论k取何值,此一元二次方程总有两个不相等的实数根;(2)解:x2﹣(2k+4)x+k2+4k+3=0,(x﹣k﹣1)(x﹣k﹣3)=0,∴x1=k+1>0,x2=k+3>0,∴Rt△ABC两直角边的长为k+1和k+3,斜边BC的长为10,∴(k+1)2+(k+3)2=102,解得k1=﹣9(舍去),k2=5,∴k的值为5.。

九年级数学上册第二十一章21.2解一元二次方程课时练(

九年级数学上册第二十一章21.2解一元二次方程课时练(

21.2 解一元二次方程学校:姓名:班考号:A. x=-4B. x=5C. x1=-4,x2=5 D. 以上结论都不对2. 方程ax(x-b)+(b-x)=0的根是()A. x1=b,x2=a B. x1=b,x2= C.x 1=a,x2= D. x1=a2,x2=b23. 如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A. b2-4ac≥0B. b2-4ac≤0C. b2-4ac>0D. b2-4ac<04. 若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A. k>-1B. k<1且k≠0C. k≥-1且k≠0D. k>-1且k≠05. 用配方法解关于x的方程x2+bx+c=0时,此方程可变形为()A. B. C.D.6. 对形如(x+m)2=n的方程,下列说法正确的为()A. 可用直接开平方法求得根x=±B. 当n≥0时,x=±-mC. 当n≥0时,x=±+mD. 当n≥0时,x=±7. 若在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为()A. -2B. -2,3 C. , D. ,2 8. 已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A. b =-1B. b =2C. b =-2D. b =09. 解方程(x -1)2-5(x -1)+4=0时,我们可以将x -1看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.则利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为 ( ) A. x 1=1,x 2=3 B. x 1=-2,x 2=3 C.x 1=-3,x 2=-1 D. x 1=-1,x 2=-210. 关于x 的一元二次方程x 2+2(m -1)x +m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是( )A. m ≤B. m ≤且m ≠0C. m <1D. m <1且m ≠0二、填空题11. 若|b -1|+=0,且一元二次方程kx 2+ax +b =0有两个实数根,则k 的取值范围是 . 12. 设a ,b 是一个直角三角形两直角边的长,且(a 2+b 2-3)(a 2+b 2+1)=0,则这个直角三角形的斜边长为 .13. 若关于x 的一元二次方程ax 2+bx +c =0中二次项系数与常数项之和等于一次项系数,那么方程必有一根为 .14. (规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.15. 若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一.个.符合题意的一元二次方程________.16. 已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③<a2+b2.则正确结论的序号是________.(填上你认为正确结论的所有序号)17. 已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=___________.三、解答题(1)(3x+8)2-(2x-3)2=0;(2)2x2-6x+3=0.19. 已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.20. 已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.4 (1)求实数k 的取值范围.(2)是否存在实数k 使得x 1·x 2-≥0成立? 若存在,请求出k 的值;若不存在,请说明理由.参考答案1. 【答案】D 【解析】解法一:原方程化为,利用求根公式有,明显A,B,C 中没有方程的根,选D.解法二:无论是x =-4还是x =5,代入到方程里,等式左边都是0,而右边为1,所以这两个都不是方程的根.2. 【答案】B 【解析】等式左边可以提出公因式(x -b ),所以有(x -b )(ax -1)=0.所以x 1=b ,x 2=.故选B.3. 【答案】A 【解析】考查方程有实数根则应有判别式∆=b 2-4ac ≥0.4. 【答案】D 【解析】由题意知,方程的判别式∆=b 2-4ac =4+4k >0,且k ≠0,解得:k >-1且k ≠0.故选D.注意:二次项系数不等于0.5. 【答案】A 【解析】移项,得x 2+bx =-c .配方,得x 2+bx +()2=-c +()2=,即(x +)2=.故选A.6. 【答案】B 【解析】解形如(x +m )2=n 的方程时,只有当n ≥0时,方程有实数解.否则,方程没有实数解.7. 【答案】D 【解析】∵a*b =(a +1)2-ab , ∴(x +2)*5=(x +2+1)2-5(x +2)= x 2+x -1, ∵(x +2)*5=0, ∴x 2+x -1=0,解得x 1=,x 2=.故选D.8. 【答案】A 【解析】一元二次方程x 2+bx +1=0中Δ=b 2-4,A.当b =-1时,Δ=-3<0,此时方程无实数解,可证明原命题是假命题;B.当b =2时,与b <0不符,不能说明原命题的真假;C.当b =-2时,Δ=0,此时方程有两个相等的实数解,不能说明原命题是假命题;D.当b =0时,与b <0不符,不能说明原命题的真假,故选A.9. 【答案】D 【解析】设y =2x +5,则原方程可化为y 2-4y +3=0, 解得y 1=3,y 2=1. 当y =3时,即2x +5=3,解得x =-1; 当y =1时,即2x +5=1,解得x =-2.所以原方程的解为x 1=-1,x 2=-2. 故选D.10. 【答案】B 【解析】根据一元二次方程的根与系数的关系可知:方程的两根x 1+x 2=-2(m -1)>0,可得m <1.x 1x 2=m 2>0,可得m ≠0.又因为Δ=4(m -1)2-4m 2≥0,即m ≤.所以m ≤且m ≠0.故选B. 11. 【答案】k ≤4且k ≠0 12. 【答案】 13. 【答案】-114. 【答案】(1)-10;30 (2)x 2-2nx -3n 2=015. 【答案】x 2-5x +6=0(答案不唯一) 16. 【答案】①② 17. 【答案】818.(1) 【答案】(3x +8+2x -3)(3x +8-2x +3)=5(x +1)(x +11)=0,∴x +1=0或x +11=0,∴x 1=-1,x 2=-11.(2) 【答案】∵a =2,b =-6,c =3,∴b 2-4ac =36-24=12.∴x =,∴x 1=,x 2=.19.(1) 【答案】证明:证法一:因为方程的判别式为∆=[-(k +2)]2-4×1×2k =(k -2)2≥0, ∴无论k 取任何实数值,方程总有实数根.证法二:方程可以因式分解为,方程的两根为2,k ,所以命题得证.(2) 【答案】解法一:①当b =c 时,∆=(k -2)2=0,∴k =2,∴b +c =k +2=2+2=4,又b =c ,∴b =c =2,∵2,2,1符合三角形的三边关系,∴△ABC 的周长=4+1=5;②当b ,c 中有一个与a相等时,不妨设b =a =1,∵1是方程x 2-(k +2)x +2k =0的一个根,∴12-(k +2)×1+2k =0,解得k =1,∴b +c =k +2=1+2=3,∴c =3-b =3-1=2,∵2,1,1不符合三角形的三边关系,∴a 不能为△ABC的腰长.综上所述,△ABC 的周长为5.解法二:由题意得另两边长分别为2,k ,因为为一个等腰三角形,所以k =1,或k =2,但k =1时构不成三角形,所以k =2.此时三角形的周长为1+2+2=5.20.(1) 【答案】∵x 2-(a +b )x +ab -1=0有两个实数根,∴Δ= [-(2k +1)]2-4(k 2+2k )≥0,整理得1-4k ≥0,解得k ≤. 故当k ≤时,原方程有两个实数根.(2) 【答案】假设存在实数k 使得x 1·x 2-≥0成立. ∵x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2, ∴x 1+x 2=2k +1,x 1·x 2=k 2+2k. ∵x 1·x 2-≥0,即3x 1·x 2-(x 1+x 2)2≥0, ∴3(k 2+2k )-(2k +1)2≥0,整理得-(k -1)2≥0, ∴只有当k =1时,上式才能成立. 又由第1问知k ≤,故不存在实数k 使得x 1·x 2-≥0成立.。

人教版九年级上 册 21.2 解一元二次方程 同步练习(含答案)

人教版九年级上 册 21.2 解一元二次方程   同步练习(含答案)

解一元二次方程同步练习姓名:__________ 班级:__________考号:__________一、选择题(共12题)1、一元二次方程x(x﹣2)=x的根是()A.0 B.2 C.3或0 D.0或﹣3 2、方程x2=9的解是()A.x1=x2=3 B.x1=x2=9 C.x1=3,x2=﹣3 D.x1=9,x2=﹣93、用配方法解一元二次方程x2﹣6x+4=0,下列变形正确的是()A.(x﹣3)2=13 B.(x﹣3)2=5 C.(x﹣6)2=13 D.(x﹣6)2=5 4、方程x2﹣4x﹣12=0的解为()A.x1=2,x2=6 B.x1=2,x2=﹣6C.x1=﹣2,x2=6 D.x1=﹣2,x2=﹣65、下列一元二次方程有两个相等的实数根的是()A.x2+2x=0 B.(x﹣1)2=0 C.x2=1 D.x2+1=06、若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1 B. C. D.7、若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠08、关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A. B. C. D.09、已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m的值为()A. 4B. 2C. 8D. -210、直角三角形两条直角边的和为7,面积是6,则斜边长是()A. B.5 C. D.711、已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.2512、三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()A.24 B.48 C.24或8 D.8二、填空题(共5题)1、若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .2、设x1,x2是一元二次方程x2-mx-6=0的两个根,且x1+x2=1,则x1=________,x2=______.3、若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是_____.4、若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.5、如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2﹣4a﹣5,那么a的取值范围是_____.三、解答题(共5题)1、已知关于x的一元二次方程x2-(k+1) x-8=0的一个根是4,求方程的另一根和k的值.2、关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.3、 已知关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.4、 已知关于 x 的方程 x 2+(2k-1)x+k 2-1=0 有两个实数根 x ,x (1)求 k 的取值范围;(2)若 x 1,x 2 满足 x 1x 2+x 1+x 2=3,求 k 的值.5、 已知关于x 的方程x 2﹣(m+2)x+(2m ﹣1)=0. (1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.参考答案一、选择题1、C.;2、C;3、B;4、C;5、B;6、A;7、D;8、A;9、B;10、B;11、C.;12、C;二、填空题1、﹣2.2、-2 33、 k>0且k≠1.4、 35、 a>﹣1且a≠﹣且a≠且a≠﹣三、解答题1、另一根-2,k=-3.2、解:(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.3、(1)∵△=[2(k﹣1)]2﹣4(k2﹣1)=4k2﹣8k+4﹣4k2+4=﹣8k+8 又∵原方程有两个不相等的实数根,∴﹣8k+8>0,解得k<1,即实数k的取值范围是k<1;(2)(6分)假设0是方程的一个根,则代入原方程得02+2(k﹣1)0+k2﹣1=0,解得k=﹣1或k=1(舍去),即当k=﹣1时,0就为原方程的一个根,此时原方程变为x2﹣4x=0,解得x1=0,x2=4,所以它的另一个根是4.4、(1)(2)5、(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.。

九年级数学上册第21章一元二次方程21.2解一元二次方程(因式分解法)课时专练新人教版(2021年

九年级数学上册第21章一元二次方程21.2解一元二次方程(因式分解法)课时专练新人教版(2021年

2018-2019学年九年级数学上册第21章一元二次方程21.2 解一元二次方程(因式分解法)课时专练(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第21章一元二次方程21.2 解一元二次方程(因式分解法)课时专练(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第21章一元二次方程21.2 解一元二次方程(因式分解法)课时专练(新版)新人教版的全部内容。

解一元二次方程(因式分解法)一.填空题(共5小题)1.已知:a2+b2=1,a+b=,且b<0,那么a:b= .2.若6x2+7xy﹣5y2=0(y≠0),则= .3.观察下面的表格,探究其中的规律并填空:一元二次方程方程的两个根二次三项式分解因式x2﹣x﹣2=0x1=﹣1,x2=2x2﹣x﹣2=(x+1)(x﹣2)x2+3x﹣4=0x1=1,x2=﹣4x2+3x﹣4=(x﹣1)(x+4)3x2+x﹣2=0x1=,x2=﹣13x2+x﹣2=4x2+9x+2=0x1=﹣,x2=﹣24x2+9x+2=4(x )(x )2x2﹣7x+3=0x1= ,x2= 2x2﹣7x+3=ax2+bx+c=0x1=m,x2=n ax2+bx+c=4.对于实数a,b,定义运算“※"如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x的值为.5.等腰三角形的腰和底边的长是方程x2﹣20x+91=0的两个根,则此三角形的周长为.二.选择题(共10小题)6.一元二次方程5x2﹣2x=0,最适当的解法是()A.因式分解法B.配方法 C.公式法 D.直接开平方法7.对于一元二次方程,我国及其他一些国家的古代数学家曾研究过其几何解法,以方程x2+2x ﹣35=0为例,公元9世纪,阿拉伯数学家阿尔•花拉子米采用的方法是:将原方程变形为(x+1)2=35+1,然后构造如图,一方面,正方形的面积为(x+1)2;另一方面,它又等于35+1,因此可得方程的一个根x=5,根据阿尔•花拉子米的思路,解方程x2﹣4x﹣21=0时构造的图形及相应正方形面积(阴影部分)S正确的是()A. S=21+4=25 B. S=21﹣4=17C. S=21+4=25 D. S=21﹣4=178.小红按某种规律写出4个方程:①x2+x+2=0;②x2+2x+3=0;③x2+3x+4=0;④x2+4x+5=0.按此规律,第五个方程的两个根为()A.﹣2、3 B.2、﹣3 C.﹣2、﹣3 D.2、39.下面方程,不能用因式分解法求解的是( )A.x2=3x B.2(x﹣2)2=3x﹣6 C.9x2+6x+1=0 D.(x+2)(3x﹣1)=510.若关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一根小于1,一根大于1,则k的取值范围是( )A.k≠1 B.k<0 C.k<﹣1 D.k>011.方程(x﹣)2+(x﹣)(x﹣)=0的较小的根为()A.﹣B.C.D.12.已知方程(x+m)(x﹣4)=0和方程x2﹣2x﹣8=0的两根分别相等,则m等于()A.1 B.﹣1 C.2 D.﹣213.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或914.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是()A.11 B.12 C.11或12 D.1515.已知关于x的方程x2﹣px+q=0的两个根是x1=1,x2=﹣2.则二次三项式x2﹣px+q可以分解为( )A.(x﹣1)(x+2)B.(x﹣1)(x﹣2)C.(x+1)(x﹣2)D.(x+1)(x+2)三.解答题(共3小题)16.用适当的方法解方程:x2﹣5x﹣14=0.17.解方程:(1)(x﹣5)2=16(直接开平方法)(2)x2+8x﹣9=0(配方法)(3)2x2﹣4x﹣5=0(公式法)(4)2x2+10x=0 (因式分解法)18.x2+ax+b分解因式的结果是(x﹣1)(x+2),则方程x2+ax+b=0的二根分别是什么?参考答案一.填空题(共5小题)1.﹣.2.,﹣.3.一元二次方程方程的两个根二次三项式分解因式x2﹣x﹣2=0x1=﹣1,x2=2x2﹣x﹣2=(x+1)(x﹣2)x2+3x﹣4=0x1=1,x2=﹣4x2+3x﹣4=(x﹣1)(x+4)3x2+x﹣2=0x1=,x2=﹣13x2+x﹣2=4x2+9x+2=0x1=﹣,x2=﹣24x2+9x+2=4(x+)(x+2)2x2﹣7x+3=0x1=,x2=32x2﹣7x+3=2(x﹣)(x﹣3)ax2+bx+c=0x1=m,x2=n ax2+bx+c=a(x﹣m)(x﹣n)4.1.5.33或27.二.选择题(共10小题)6.A.7.C.8.C.9.D.10.B.11.C.12.C.13.A.14.C.15.A.三.解答题(共3小题)16.解:x2﹣5x﹣14=0(x﹣7)(x+2)=0∴x﹣7=0,x+2=0,解得,x1=7,x2=﹣2.17.解:(1)x﹣5=±4,所以x1=1,x2=9;(2)x2+8x=9,x2+8x+16=25,(x+4)2=25,x+4=±5,所以x1=1,x2=﹣9;(3)△=(﹣4)2﹣4×2×(﹣5)=56,x=,所以x1=,x2=;(4)2x(x+5)=0,2x=0或x+5=0,所以x1=0,x2=﹣5.18.解:∵x2+ax+b=(x﹣1)(x+2),∴x2+ax+b=0可化为:(x﹣1)(x+2)=0,∴x1=l,x2=﹣2.故两个根分别是:1,﹣2.。

21.2 解一元二次方程 同步练习2 含答案

21.2 解一元二次方程  同步练习2 含答案

21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值 6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形。

21、2、2解一元二次方程——公式法(第2课时)同步练习 21-22学年人教版数学九年级上学期

21、2、2解一元二次方程——公式法(第2课时)同步练习 21-22学年人教版数学九年级上学期

初中数学人教版九年级上册——21.2.2解一元二次方程——公式法(第2课时)一、单选题1.当时,关于x的一元二次方程的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定2.方程的根是()A. B. C. D.3.关于x的一元二次方程(m-2)x2+3x-1=0有实数根,那么m的取值范围是()B. m≥ 且m≠2C. m≤ 且m≠﹣2D. m≥A. m≤ 144.用公式解方程3x﹣1﹣2x2=0的过程中,a、b、c的值分别是()A. a=3 b=﹣1 c=﹣2B. a=﹣2 b=﹣1 c=3C. a=﹣2 b=3 c=﹣1D. a=﹣1 b=3 c=﹣25.用公式法解方程3x2+4=12x,下列代入公式正确的是()A. B. xC. D.6.以x=为根的一元二次方程可能是()A. x2+bx+c=0B. x2+bx﹣c=0C. x2﹣bx+c=0D. x2﹣bx﹣c=07.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中较大的数,如max{2,4}=4,按这个规定,方程的解为( )A. 1-√2B. 2-√2C.D. 1+√2或-18.定义:如果一元二次方程满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是().A. a=cB. a=bC. b=cD. a=b=c二、填空题9.用公式法解一元二次方程,得y=,请你写出该方程________.10.若x2+3xy﹣2y2=0,那么x y=________11.小明同学用配方法推导关于x的一元二次方程ax2+bx+c=0的求根公式时,对于b2﹣4ac>0的情况,他是这样做的:小明的解法从第________ 步开始出现错误;这一步的运算依据应是________12.用公式法解方程2x2-7x+1=0,其中b2-4ac=________,x1=________,x2=________.三、计算题13.解方程:(x﹣3)(x﹣2)﹣4=0.14.解方程:15.解下列方程:(1)(2)2x2+3x+3=0四、解答题16.小明在解方程x2﹣5x=1时出现了不符合题意,解答过程如下:∵a=1,b=﹣5,c=1,(第一步)∴b2﹣4ac=(﹣5)2﹣4×1×1=21(第二步)∴(第三步)∴x1=5+√212,(第四步)(1)小明解答过程是从第________步开始出错的,其错误原因是________.(2)写出此题正确的解答过程.17.关于x的一元二次方程的一个根是0,求n的值.18.已知关于x的方程kx2+(k+3)x+2=0,求证:不论k取任何非零实数,该方程都有两个不相等的实数根.19.已知关于x的方程x2+px+q=0根的判别式的值为0,且x=1是方程的一个根,求p和q的值.20.已知关于x的一元二次方程有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程一个根吗?若是,求出它的另一个根;若不是,请说明理由.答案解析部分一、单选题1.【答案】A2.【答案】D3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】A二、填空题9.【答案】10.【答案】11.【答案】四;平方根的定义.12.【答案】41;;.三、计算题13.【答案】解:方程化为x2﹣5x+2=0∵a=1,b=﹣5,c=2,∴b2﹣4ac=(﹣5)2﹣4×1×2=17>0,则x=,,x2=故x1=5+√17214.【答案】解:.15.【答案】(1)解:∵a=1,b=3,,,(2)解:∵a=2,b=3,c=3,∴.∴原方程无实数根.四、解答题16.【答案】(1)一;原方程没有化简为一般形式(2)解:∵a=1,b=﹣5,c=﹣1,∴b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29.∴∴x1=5+√292,.17.【答案】解:将x=0代入所给的方程中得:,∴,∴,∴,∴,又∵当时,所给方程不是一元二次方程,∴.18.【答案】解:由题意可知:k≠0,∴△=(k+3)2﹣8k=k2+6k+9﹣8k=k2﹣2k+9=k2﹣2k+1+8=(k﹣1)2+8>0,所以该方程有两个不相等的实数根.19.【答案】解:由已知得:,解得:.20.【答案】(1)∵关于x的一元二次方程x2+2kx+k2-k=0有两个不相等的实数根,∴△=b2-4ac=(2k)2-4(k2-k)=4k>0,∴k>0,∴实数k的取值范围是k>0.(2)把x=0代入方程得:k2-k=0,解得:k=0,k=1,∵k>0,∴k=1,即0是方程的一个根,把k=1代入方程得:x2+2x=0,解得:x=0,x=-2,即方程的另一个根为x=-2.。

人教版-数学-九年级上册-21.2 解一元二次方程(第2课时)同步练习

人教版-数学-九年级上册-21.2 解一元二次方程(第2课时)同步练习

21.2解一元二次方程(2)一、选择题1.对于方程22340x x --=,24b ac -的值是( ).(A) 23- (B) 41 (C) 23 (D) 252.一元二次方程2450x x -+=的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根3.一元二次方程220x x --=的解是A. 121,2x x ==B. 121,2x x ==-C. 121,2x x =-=-D. 121,2x x =-=二、填空题4.一元二次方程 20(0)ax bx c a ++=≠的求根公式是 .5.直角三角形两条直角边长分别为1,3x x ++,斜边长为2x ,那么x = .6.已知关于x 的一元二次方程230x x k --=,则k 时,方程有两个不相等的实数根;k 时,方程有两个相等的实数根;k 时,方程没有实数根.三、解答题7.不解方程,判断下列方程根的情况:(1) 23250x x +-=; (2) 241290-+=x x .8.用公式法解方程:(1) 2230x x --=; (2) 23290xx --=;(3) 22y -=; (4) 212016x x -+=;9.已知关于x 的一元二次方程()()02a 2=-+++c a bx x c ,其中a 、b 、c 分别为△ABC 的三边的长. (1)如果x=-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.参考答案:1.B ; 2.D ; 3.D .4.2(40)x b ac =-≥; 5.5x =6. k <94-; 94k =-;k >94-; 7. (1) 方程有两个不等实根;(2) 方程有两个相等实根8.(1) 123,1x x ==-; (2) 121133x x +-==;(3) 122,2y y ==; (4) 12x x == 9. 【答案】解:(1)把x=-1代入方程得2a-2b=0∴a=b∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根∴△=(2b)²-4(a+c)(a-c)=0∴b ²+c ²=a ²∴△ABC 是直角三角形.(3)∵△ABC 是等边三角形∴a=b=c∴原方程变为:2ax ²+2ax=0∵a ≠0, ∴x 1=0;x 2=-1。

九年级数学上册 21.2 解一元二次方程同步练习 (新版)新人教版

九年级数学上册 21.2 解一元二次方程同步练习 (新版)新人教版

21.2 解一元二次方程一.选择题1.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<02.(2018•娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定3.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.34.(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(2018•临沂)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.7.(2018•铜仁市)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣38.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.11.(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥412.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或013.(2017•宜宾)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断14.(2017•通辽)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.15.(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣516.(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=217.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定18.(2016•威海)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣119.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.20.(2016•天津)方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3二.填空题(2018•怀化)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.21.22.(2018•淮安)一元二次方程x2﹣x=0的根是.23.(2018•南京)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .24.(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.25.(2018•德州)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= .(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.26.27.(2017•抚顺)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是.(2017•南京)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p= ,q= .28.29.(2016•青岛)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.30.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .31.(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22= .三.解答题32.(2018•成都)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.33.(2018•齐齐哈尔)解方程:2(x﹣3)=3x(x﹣3).34.(2018•梧州)解方程:2x2﹣4x﹣30=0.35.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.36.(2018•随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.37.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.38.(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.参考答案一.选择题1.A.2.A.3.B.4.D.5.B.6.C.7.C.8.D.9.D.10.A.11.A.12.B.13.B.14.A.15.D.16.C.17.B.18.A.19.B.20.D.二.填空题(共11小题)21.1.22.x1=0,x2=1.23.﹣2;3.24.﹣1.25.﹣326.1.27.m≥﹣1.28.4;3.29..30.2016.31..三.解答题(共7小题)32.解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.33.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.34.解:∵2x2﹣4x﹣30=0,∴x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x1=5,x2=﹣3.35.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=336.解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.37.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.38.解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2解一元二次方程(2)附答案
一、选择题
1.对于方程22340x x --=,24b ac -的值是( ).
(A) 23- (B) 41 (C) 23 (D) 25
2.(2014四川自贡市)一元二次方程2450x x -+=的根的情况是( )
A 、有两个不相等的实数根
B 、有两个相等的实数根
C 、只有一个实数根
D 、没有实数根
3.(2014云南省)一元二次方程220x x --=的解是
A. 121,2x x ==
B. 121,2x x ==-
C. 121,2x x =-=-
D. 121,2x x =-=
二、填空题
4.一元二次方程 20(0)ax bx c a ++=≠的求根公式是 .
5.直角三角形两条直角边长分别为1,3x x ++,斜边长为2x ,那么x = .
6.已知关于x 的一元二次方程230x x k --=,则k 时,方程有两个不相等的实数根;k
时,方程有两个相等的实数根;k 时,方程没有实数根.
三、解答题
7.不解方程,判断下列方程根的情况:
(1) 23250x x +-=; (2) 241290-+=x x .
8.用公式法解方程:
(1) 2230x x --=; (2) 23290x x --=;
(3) 22y -=; (4) 21
2016x x -+=;
9. (2014年株洲市)已知关于x 的一元二次方程()()02a 2=-+++c a bx x c ,其中a 、b 、c 分别为△ABC 的三边的长.
(1)如果x=-1是方程的根,试判断△ABC 的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;
(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.
参考答案:
1.B ; 2.D ; 3.D .
4.2(40)2b x b ac a -±=-≥;
5.5x =
6. k <9
4-; 9
4k =-;k >9
4-;
7. (1) 方程有两个不等实根;(2) 方程有两个相等实根
8.(1) 123,1x x ==-; (2) 12x x ==;
(3) 122,2y y ==; (4) 122244x x +==
9. 【答案】解:(1)把x=-1代入方程得
2a-2b=0
∴a=b
∴△ABC 是等腰三角形.
(2)∵方程有两个相等的实数根
∴△=(2b)²-4(a+c)(a-c)=0
∴b ²+c ²=a ²
∴△ABC 是直角三角形.
(3)∵△ABC 是等边三角形
∴a=b=c
∴原方程变为:2ax ²+2ax=0
∵a ≠0
∴x 1=0;x 2=-1。

相关文档
最新文档