有理数基础练习题及答案

合集下载

有理数练习题及答案

有理数练习题及答案

有理数练习题及答案有理数是数学中的一种数,它包括整数和分数。

在学习有理数的过程中,练习题是必不可少的一部分。

通过解答练习题,可以巩固对有理数的理解和运算技巧。

下面,我将为大家提供一些有理数练习题及其答案,希望对大家的学习有所帮助。

1. 计算:(-3/4) + (-1/2) = ?答案:(-3/4) + (-1/2) = -6/8 - 4/8 = -10/8 = -5/42. 计算:(-5/6) - (1/3) = ?答案:(-5/6) - (1/3) = -10/12 - 4/12 = -14/12 = -7/63. 计算:(-2/3) × (-3/4) = ?答案:(-2/3) × (-3/4) = 6/12 = 1/24. 计算:(2/5) ÷ (3/4) = ?答案:(2/5) ÷ (3/4) = 8/15 ÷ 3/4 = 8/15 × 4/3 = 32/455. 计算:(-3/4) + 2/3 - 1/2 = ?答案:(-3/4) + 2/3 - 1/2 = -6/8 + 16/24 - 12/24 = -6/8 + 4/24 = -24/32 +4/32 = -20/32 = -5/86. 计算:(-2/5) - 1/3 + 1/4 = ?答案:(-2/5) - 1/3 + 1/4 = -8/20 - 20/60 + 15/60 = -24/60 - 20/60 + 15/60 = -29/60通过以上练习题,我们可以看到有理数的运算并不复杂,只需要熟练掌握分数的加减乘除运算规则即可。

在进行加减运算时,需要找到相同的分母,然后按照分数的加减法规则进行计算。

在进行乘除运算时,直接对分子和分母进行相应的运算即可。

有理数的运算规则是数学中的基础知识,掌握好这些规则对于解决实际问题和提高数学能力都非常重要。

因此,我们需要多做一些有理数的练习题,加深对有理数的理解和运算技巧。

有理数的试题及答案

有理数的试题及答案

有理数的试题及答案一、选择题1. 下列哪个数是正数?A. -3B. 0C. 5D. -1答案:C2. 如果一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 0答案:C3. 两个负数相加的结果是什么?A. 正数B. 零C. 负数D. 无法确定答案:C二、填空题1. 有理数-7和5的和是______。

答案:-22. 一个数的相反数是-8,这个数是______。

答案:83. 如果\( a \)是负数,那么\( -a \)是______。

答案:正数三、计算题1. 计算下列表达式的值:\( (-3) + (-2) - 4 \)答案:-92. 求下列数的绝对值:\( |-5| \)答案:53. 计算下列表达式的值:\( (-2) \times (-3) \)答案:6四、解答题1. 一个数的相反数是它本身,这个数是什么?答案:这个数是0。

2. 一个数的绝对值是它本身,这个数是什么?答案:这个数是非负数,即0或正数。

3. 如果\( a \)和\( b \)是两个有理数,\( a \)的相反数是\( -a \),\( b \)的相反数是\( -b \),\( a \)和\( b \)的和的相反数是什么?答案:\( a + b \)的相反数是\( -a - b \)。

五、应用题1. 某商店在一天内卖出了5件商品,每件商品的利润是10元。

如果第二天商店卖出了3件商品,每件商品的利润是-5元(亏损),那么这两天商店的总利润是多少?答案:第一天的利润是5件 * 10元 = 50元,第二天的利润是3件 * -5元 = -15元。

两天的总利润是50元 - 15元 = 35元。

2. 某学生在一次数学竞赛中,前5题每题得2分,后5题每题得-3分(错误扣分),如果他得了10分,那么他答对了哪些题?答案:设答对的题为\( x \),则答错的题为\( 10 - x \)。

根据得分,我们有 \( 2x - 3(10 - x) = 10 \)。

《有理数》练习题2(有答案)

《有理数》练习题2(有答案)

《有理数》练习题2学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、若-3、5、a的积是一个负数,则a的值可以是()A. -15B. -2C. 0D. 15参考答案: D【思路分析】此题考查的是有理数的乘法。

仔细读题,获取题中已知条件,结合有理数的乘法相关情况,即可解答此题。

【解题过程】解:多个非零有理数相乘时积的符号取决于负因数的个数。

若-3、5、a的积是一个负数,则a>0,符合条件的只有D选项。

故选:D。

2、如图1-2-2-11,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 3参考答案: D【思路分析】数轴上数的特点。

【解题过程】解:由题图可知,点B在点A右边,距离点A 4个单位长度,所以点B表示的数是3。

故选D。

3、有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2×0.05毫米.对折2次后,厚度为2×2×0.05毫米,对折6次后,厚度为()毫米.A. 24×0.05B. 25×0.05C. 26×0.05D. 27×0.05参考答案: C【思路分析】这道题是考查应用有理数的乘方运算解决对折问题,根据对折规律,对折后的厚度成2的指数次幂变化,写出即可.【解题过程】解:对折1次后,厚度为2×0.05毫米;对折2次后,厚度为2²×0.05毫米;对折3次后,厚度为2³×0.05毫米;…对折n次后,厚度为2n×0.05毫米.当n=6时,厚度为26×0.05毫米,所以对折6次后,厚度为26×0.05毫米.故选C.4、如图1-2-4-1,数轴上的点A、B分别对应有理数a、b,下列结论正确的是()A. a>bB. |a|>|b|C. -a < bD. a+b<0参考答案: C【思路分析】实数包括有理数和无理数.其中无理数就是无限不循环小数,有理数就包括整数和分数.数学上,实数直观地定义为和数轴上的点一一对应的数。

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案一、解答题(共50题)1、定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;(3)a4是a3的差倒数,…依此类推an+1是an的差倒数,直接写出a2015.2、如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B 点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?3、一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、设,,当为何值时,与互为相反数?5、把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.-3.5,0,2,-0.5,-2 ,0.5.6、画出数轴,在数轴上标出表示下列各数的点,并按从大到小的顺序用“>”号把这些数连接起来:-|-2.5|,0,-(-),+(-1)2015,7、把下列各数在数轴上表示出来,3.5, -3.5, 0, 2, -0.5, -2, 0.5. 并按从小到大的顺序用“<”连接起来.8、春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含个病菌,已知1毫升杀菌剂可以杀死个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?9、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:10、把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.﹣5,﹣|﹣3|,﹣,0,3 ,﹣(﹣1)11、把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来:-2.5 ,0 ,+3.5 ,-12、已知与互为相反数,求的绝对值.13、在数轴上表示下列各数,并用“>”连接起来.,﹣|﹣4|,,0,﹣1,﹣(﹣1)14、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来.-2,|-1.5|,0,-(-3),,(-1)201915、把下列各数填入相应的括号内:2.5,-10%,22,0,-|- |,-20,+9.78,-0. ,-(- )整数:{……}负分数:{……}非正数:{……}非负整数:{……}16、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来. -2,|-1.5|,0,-(-3),,(-1)201917、在数轴上表示下列各数:0,-3, 2,-, 5.并将上述各数的绝对值用“<”号连接起来.18、在数轴上把下列各数表示出来,并用“ ”连接各数.+5,-3.5,,,4,019、有理数m所表示的点与-1所表示的点的距离为3个单位,a、b互为相反数且都不为0,c、d互为倒数,求的值.20、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质为450克,则抽样检测的总质量是多少?与标准质量的差值(单-5 -2 0 1 3 6 位:g)袋数 1 4 3 4 5 3 21、用4个长7厘米、宽2厘米的长方形拼成一个大长方形(如图,左下角和右上角重叠),大长方形的周长是多少厘米?图中阴影部分的面积是多少平方厘米?22、借助你的计算器分别得出,,,的循环节.23、据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,我国一年因土地沙漠化造成的经济损失为多少元(用科学记数法表示,且保留两个有效数字)?24、将下列各数在如图的数轴上表示出来,然后用“<”连接起来.,0,|﹣4|,0.5,﹣(﹣3).25、把数,表示在数轴上,并用<号把这些数连接起来.26、已知x,y为实数,且满足,求的值.27、若|a|=2, b=-3,c是最大的负整数,求a+b-c的值。

有理数试题及答案

有理数试题及答案

有理数试题及答案一、选择题1. 下列哪个数是有理数?A. πB. √2C. 0.33333...(3无限循环)D. 0.1010010001...答案:C2. 如果a是有理数,b是有理数,那么a+b一定是:A. 有理数B. 无理数C. 整数D. 实数答案:A3. 计算下列式子的结果,哪个是有理数?A. √4B. √9C. √(-1)D. √(2)答案:B二、填空题1. 有理数可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于______。

答案:02. 有理数包括所有整数和分数,但不包括______。

答案:无理数三、解答题1. 计算下列式子,并判断结果是否为有理数:(1) 3/4 + 5/6(2) √9(3) 2 - √3答案:(1) 3/4 + 5/6 = 9/12 + 10/12 = 19/12,是有理数。

(2) √9 = 3,是有理数。

(3) 2 - √3,由于√3是无理数,所以2 - √3是无理数。

2. 判断下列数是否为有理数,并说明理由:(1) √4(2) 0.12345678901234567891...答案:(1) √4 = 2,2是有理数,因为它可以表示为整数2/1。

(2) 0.12345678901234567891...是一个无限不循环小数,因此它是无理数。

四、简答题1. 请解释什么是有理数,并给出两个例子。

答案:有理数是可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于0。

例如,3/2和-5都是有理数。

语法知识—有理数的基础测试题含答案

语法知识—有理数的基础测试题含答案

一、填空题1.有理数a ,b ,c 在数轴上的对应点如图所示,化简a c cb bc a b +-++---=______.2.比较大小:-227______-3(填“>”“<”或“=”) 3. 3.5-的相反数是______,倒数是______.4.若a 5=,b 3=,且a b 0+<,那么a b -=______.5.数轴上有A 、B 两点,若点A 对应点数是2-,且A 、B 两点之间点距离为3,则点B 对应点数是______.6.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了_____元. 7.比较大小: 72-_______-3(填“>”“<”或“=”). 8.点,,A B C 在同一条数轴上,且点A 表示的数为-1,点B 表示的数为5.若2BC AC =,则点C 表示的数为____________. 二、解答题9.已知x 、y 满足x 1-+|y +1|=0,求x 2-4y 的平方根.10.某水库上周日的水位已达到警戒水位150米,本周内的水位变化情况如下:周一水位+0.4米,周二水位+1.3米,周三水位+0.5米,周四水位+1.2米,周五水位﹣0.5米,周六水位+0.4米,请问:(1)计算说明本周那一天水位最高,有多少米?(2)如果水位超过警戒水位0.6米就要放水,且放出后需保证水位在警戒水位,那么请说明本周应在哪几天放水?(注:正号表示水位比前一天上升,负号表示水位比前一天下降) 11.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是 , (2)数轴上表示x 与2的两点之间的距离可以表示为 . (3)如果|x ﹣2|=5,则x= .(4)同理|x+3|+|x ﹣1|表示数轴上有理数x 所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x ,使得|x+3|+|x ﹣1|=4,这样的整数是 . 12.已知数轴上有两点A 、B ,点A 对应的数是40,点B 对应的数是.求线段AB 的长.如图2,O 表示原点,动点P 、T 分别从B 、O 两点同时出发向左运动,同时动点Q 从点A 出发向右运动,点P 、T 、Q 的速度分别为5个单位长度秒、1个单位长度秒、2个单位长度秒,设运动时间为t.求点P、T、Q表示的数用含有t的代数式表示;在运动过程中,如果点M为线段PT的中点,点N为线段OQ的中点,试说明在运动过程中等量关系始终成立.13.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒1个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距54个单位长度?(3)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N的距离相等?14.化简求值:(1)已知a+b=6,ab=3,求(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值;(2)已知(x+2)2+|y+1|=0,求5xy2-2x2y+[3xy2-(4xy2-2x2y) 的值.a点B对应的数为b,15.已知数轴上点A和点B分别位于原点O两侧,点A对应的数为,且AB=9.b=-,直接写出a的值;(1)若6(2)若C为AB的中点,对应的数为c,且OA=2OB,求c的值.16.如图,图中数轴的单位长度为1.(1)如果点P,T表示的数互为相反数,那么点S表示的数是多少?(2)如果点R,T表示的数互为相反数,那么点S表示的数是正数,还是负数?此时图中表示的5个点中,哪一点表示的数的绝对值最大?为什么?17.如图,在数轴上A点表示数﹣2,B点示数5,C点表示数10.(1)若将数轴折叠,使得A点与C点重合,则B点与D点重合,则D点表示的数是.(2)点B、C在数轴上同时向左运动,点B的速度为每秒1个单位长度、点C的速度为每秒2个单位长度,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①对照表一,完成表二表一两点的位置关系AB的表达式点B在点A的右侧(t<7)7﹣t点B在点A的左侧(t>7)t﹣7表二两点的位置关系AC的表达式点C在点A的右侧(t<6)点C在点A的左侧(t>6)②在B、C两点运动过程中,当AC=3AB时,求t的值.三、1318.下列各式正确的是()A.0<|﹣1|B.34-=﹣34C.﹣3>﹣2D.|﹣18|<﹣(﹣10)19.下列说法正确的是()A.绝对值是它本身的数一定是正数B.任何数都不等于它的相反数C.如果a>b,那么11 a b <D.若a≠0,则总有|a|>020.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C .温度先上升6℃,再下降3℃D .无法确定21.若23(2)0x y ++-=,则2x y +的值为( ) A .7B .-7C .1D .-122.已知数a 在数轴上的位置如图所示,则a 、-a 、1a 、1a-大小关系正确的是( )A .-11a a a a <-<<B .11a a a a <<-<-C .11a a a a -<-<<D .11a a a a <<-<- 23.在-4,2,-1,3这四个数中,最小的数是() A .-4 B .2 C .-1 D .324.如图,在数轴上点A 、B 、C 、D 表示的数,其中绝对值最大的是( )A .点AB .点BC .点CD .点D 25.下列各选项中互为相反数的是( )A .-(+6)和+(-6)B .-32和32-()C .-7和-|-7|D .-(-1)和-21【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】由数轴知去绝对值符号合并同类项即可【详解】解:由数轴知故答案为:【点睛】本题考查了绝对值的性质确定绝对值符号内代数式的性质符号解析:b c -+【解析】 【分析】由数轴知,a c 0+<,c b 0+<,b c 0-<,a b 0-<,去绝对值符号合并同类项即可. 【详解】解:由数轴知,a c 0+<,c b 0+<,b c 0-<,a b 0-<.a c cb bc a b +-++--- ()()()()a c b c b c a b =-+++--+-a cbc b c a b =--++-++- b c =-+,故答案为:b c -+. 【点睛】本题考查了绝对值的性质,解题关键是确定绝对值符号内代数式的性质符号.2.<【分析】根据两个负数绝对值大的其值反而小解答即可【详解】∵|-|=>|-3|=3∴-<-3故答案为<【点睛】本题考查的是有理数的大小比较有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数解析:< 【分析】根据两个负数,绝对值大的其值反而小解答即可. 【详解】 ∵|-227|=227>|-3|=3 ∴-227<-3, 故答案为< 【点睛】本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0; ②负数都小于0; ③正数大于一切负数; ④两个负数,绝对值大的其值反而小.3.【解析】【分析】根据相反数倒数的定义进行求解即可【详解】的相反数是倒数是故答案为:【点睛】本题考查了相反数倒数的定义熟知只有符号相反的两个数互为相反数;乘积为1的两个数互为倒数是解题的关键解析:3.5 27- 【解析】 【分析】根据相反数、倒数的定义进行求解即可. 【详解】3.5-的相反数是3.5,倒数是27-.故答案为: 3.5-,27-.【点睛】本题考查了相反数、倒数的定义,熟知“只有符号相反的两个数互为相反数;乘积为1的两个数互为倒数”是解题的关键.4.或【解析】【分析】先依据绝对值的性质有理数的加法法则求得ab 的值然后代入计算即可【详解】解:又或当时;当时故答案为或【点睛】本题主要考查的是绝对值的性质熟练掌握绝对值的性质是解题的关键解析:8-或2- 【解析】 【分析】先依据绝对值的性质、有理数的加法法则求得a 、b 的值,然后代入计算即可. 【详解】 解:a 5=,b 3=,a 5∴=±,b 3=±. 又a b 0+<,a 5∴=-,b 3=或a 5=-,b 3=-.当a 5=-,b 3=时,a b 538-=--=-; 当a 5=-,b 3=-时,a b 532-=-+=-. 故答案为8-或2-. 【点睛】本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.5.-5或1【解析】【分析】则设B 对应数为x 则|x+2|=3去掉绝对值求解即可【详解】点A 对应的数为-2若AB 两点间的距离为3则设B 对应数为x 则|x -(-2)|=|x+2|=3解得:x=﹣5或1故答案为解析:-5或1 【解析】 【分析】则设B 对应数为x ,则|x +2|=3,去掉绝对值求解即可. 【详解】点A 对应的数为-2.若A ,B 两点间的距离为3,则设B 对应数为x ,则|x -(-2)|=|x +2|=3,解得:x =﹣5或1. 故答案为:﹣5或1. 【点睛】本题考查了数轴的有关问题,利用绝对值,去掉绝对值从而求得结论.6.5【解析】【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况【详解】132+(﹣125)+(﹣105)+127+(﹣87)+1365+98=132﹣125﹣105+127﹣87+136解析:5 【解析】 【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况. 【详解】132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98 =132﹣12.5﹣10.5+127﹣87+136.5+98 =132+98+127﹣87+136.5﹣12.5﹣10.5 =230+40+113.5 =383.5;答:这一周食品店的盈余了383.5元.【点睛】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.7.<【分析】根据负数的绝对值越大负数越小可得答案【详解】这是两个负数比较大小先求他们的绝对值|-|=|-3|=3∵>3∴-<-3故答案为<【点睛】本题考查了有理数大小比较利用负数的绝对值越大负数越小是解析:<【分析】根据负数的绝对值越大负数越小,可得答案.【详解】这是两个负数比较大小,先求他们的绝对值,|-72|=72,|-3|=3,∵72>3,∴-72<-3,故答案为<.【点睛】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.8.-7或1【分析】AB=6分点C在A左边和点C在线段AB上两种情况来解答【详解】AB=5-(-1)=6C在A左边时∵BC=2AC∴AB+AC=2AC∴AC=6此时点C表示的数为-1-6=-7;C在线段解析:-7或1.【分析】AB=6,分点C在A左边和点C在线段AB上两种情况来解答.【详解】AB=5-(-1)=6,C在A左边时,∵BC=2AC,∴AB+AC=2AC,∴AC=6,此时点C表示的数为-1-6=-7;C在线段AB上时,∵BC=2AC,∴AB-AC=2AC,∴AC=2,此时点C表示的数为-1+2=1,【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.二、解答题9.【解析】【分析】根据非负数的性质列出算式求出x、y的值,代入代数式计算,根据平方根的概念计算得到答案.【详解】由题意得,x-1=0,y+1=0,解得,x=1,y=-1,则x2-4y=5,5的平方根是则x2-4y的平方根是.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键,注意平方根的概念的应用.10.(1)星期四的水位最高,为153.4米;(2)本周需在星期二,星期四放水.【解析】【分析】(1)计算出周一到周六每天的水位,得出周四最高,把前几个数相加再加上150米即可;(2)计算每一天的水位,然后再确定.【详解】解:(1)星期一水位:150+0.4=150.4米,星期二水位:150.4+1.3=151.7米,星期三水位:151.7+0.5=152.2米,星期四水位:152.2+1.2=153.4米,星期五水位:153.4﹣0.5=152.9米,星期六水位:152.9+0.4=153.3 m所以星期四的水位最高,为153.4米.(2)星期一水位150.4米,没有超过150.6米,所以不用放水,星期二水位151.7米,超过150.6米,故需要放水1.7米后变为150米.星期三水位150+0.5=150.5米,不需要放水.星期四水位150.5+1.2=151.7米,需要放水1.7米后变为150米.星期五水位150﹣0.5=149.5米,不需要放水.星期六水位149.5+0.4=149.9米,不需要放水.所以本周需在星期二,星期四放水.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.(1)7;(2)|x-2|;(3)7或-3;(4)-3、-2、-1、0、1;【解析】【分析】(1)根据数轴上两点之间的距离的表示方法即可得到结论;(2)根据数轴上两点之间的距离的表示方法即可得到结论;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;【详解】(1)数轴上表示5与-2两点之间的距离是|5-(-2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x-2|,故答案为:|x-2|;(3)∵|x-2|=5,∴x-2=5或x-2=-5,解得:x=7或x=-3,故答案为:7或-3;(4)∵|x+3|+|x-1|表示数轴上有理数x所对应的点到-3和1所对应的点的距离之和,|x+3|+|x-1|=4,∴这样的整数有-3、-2、-1、0、1,故答案为:-3、-2、-1、0、1;【点睛】考查了数轴与绝对值的关系,解题关键是理解取绝对值的方法,取绝对值在数轴上的运用,其中去绝对的关键是确定绝对值里面的数的正负性.12.(1)120;(2)①点P表示的数为:;点T表示的数为:;点Q表示的数是;②见解析.【解析】【分析】根据点A对应的数是40,点B对应的数是,即可得到AB的长度;根据题意即可得到结论;根据题意得到,,,根据线段中点的定义得到,,于是得到结论.【详解】解:线段AB的长;点P表示的数为:;点T表示的数为:;点Q表示的数是;,,,点M为线段PT的中点,点N为线段OQ的中点,,,,,,,即在运动过程中等量关系始终成立.【点睛】本题考查了两点间的距离,数轴上的动点问题,主要利用了线段中点的定义,以及数形转化的思想.13.(1)14;(2)5秒;(3)13秒或3.5秒或203秒.【分析】(1)根据两点间的距离公式即可求出A、B两点的距离;(2)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(3)首先求出点M与点N相遇的时间为14÷(6﹣2)=3.5秒,此时N点对应的数是﹣8+6×3.5=13,再设从开始运动后,相遇前经过t秒点P到点M、N的距离相等,或相遇后经过t秒点P到点M、N的距离相等,根据PM=PN列出方程,进而求解即可.【详解】解:(1)∵数轴上两点A、B对应的数分别是6,﹣8,∴A、B两点的距离为6﹣(﹣8)=14.故答案为14;(2)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.答:经过5秒点M与点N相距54个单位;(3)点M与点N相遇的时间为14÷(6﹣2)=3.5秒,此时N点对应的数是﹣8+6×3.5=13.设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:t﹣(﹣8+6t)=6+2t﹣t,解得t=13,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(2t+6)﹣t=t﹣[13﹣6(t﹣3.5)],解得t=203.答:从开始运动后,经过13秒或3.5秒或203秒点P到点M、N的距离相等.【点睛】此题主要考查了一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.14.(1)54;(2)-8.【解析】【分析】(1)先化简,然后将a+b与ab代入原式即可求出答案.(2)先根据非负数的性质求得x,y的值,再根据去括号、合并同类项法则对原代数式进行化简,然后把x,y的值代入计算即可.【详解】(1)原式=5ab+4a+7b+6a-3ab-4ab+3b=-2ab+10(a+b)当a+b=6,ab=3时,原式=-6+60=54(2)∵|x+2|+|y+1|=0,∴x+2=0,y+1=0,解得x=-2,y=-1,原式=5xy2-2x2y+3xy2-4xy2+2x2y=4xy2=4×(-2)×1=-8.【点睛】本题考查整式的运算和非负数的性质,解题的关键是熟练掌握相关知识是解题的关键.15.(1)3(2)1.5或-1.5【分析】(1)由AB的值和b的值可分析计算a的值(2)分两种情况讨论:A在原点左侧,B在原点右侧;A在原点右侧,B在原点左侧【详解】(1)∵AB=9∴|a|+|b|=9∵b=-6,点A和点B分别位于原点O两侧∴a=3(2)当A在原点左侧,B在原点右侧,a=-6,b=3时,c=-1.5;当A在原点右侧,B在原点左侧,a=6,b=-3时,c=1.5;【点睛】数轴上对应点的数值是本题的考点,分类讨论是解题的关键.16.(1)0 (2)负数,点Q,因为点Q离原点的距离最远【分析】(1)根据互为相反数的两数表示的点关于原点对称可知PT的中点即为原点,据此即可得出答案;(2)根据互为相反数的两数表示的点关于原点对称可知RT的中点即为原点,据此即可得【详解】解:(1)如图所示:S表示的数是0;(2)如图所示:R为-3,T为3,S表示-1是负数,Q点表示的数的绝对值最大,绝对值是7.【点睛】此题考查数轴,利用相反数的意义确定出原点的位置是解决问题的关键.17.(1)3;(2)①12﹣2t;2t﹣12②6.6或9.【解析】【分析】(1)根据对称性可求;(2)①根据路程=速度×时间,以及两点间的距离公式即可求解;②分t<6,6≤t≤7,t>7三种情况,根据AC=3AB列出方程求解即可.【详解】(1)∵将数轴折叠,使得A点与C点重合,B点与D点重合,∴(A+C)÷2=(﹣2+10)÷2=4,∴D点表示的数是3.故答案为3;(2)①填表如下:两点的位置关系AC的表达式点C在点A的右侧(t<6)12﹣2t点C在点A的左侧(t>6)2t﹣12②t<6时,12﹣2t=3(7﹣t),解得t=9(舍去);6≤t≤7时,2t﹣12=3(7﹣t),解得t=6.6;t>7时,2t﹣12=3(t﹣7),解得t=9.综上所述,t的值为6.6或9.【点睛】本题考查一元一次方程的应用、数轴,利用数轴让学生体会“数”与“形”的结合是本题的关键.三、1318.A【解析】【分析】根据有理数大小比较的方法逐一进行比较即可得.【详解】A、0<|﹣1|=1,正确;B、34=34,错误;C、﹣3<﹣2,错误;D、|﹣18|>﹣(﹣10),错误,故选A.【点睛】本题考查有理数的大小比较,熟练掌握有理数大小比较的方法是解题的关键.19.D解析:D【解析】【分析】根据绝对值的性质、有理数的分类、相反数的定义、有理数比较大小的方法判断即可.【详解】A.绝对值是它本身的数一定是非负数;故本选项错误.B.0等于它的相反数;故本选项错误.C.如果a>0>b,那么11a b<;故本选项错误.D.若a≠0,则总有|a|>0;故本选项正确.故选D.【点睛】本题考查了绝对值、有理数、相反数、有理数大小的比较,掌握相关知识是解题的关键.20.C解析:C【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.【详解】温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点睛】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.21.C【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【详解】∵|x+3|+(y-2)2=0,∴x+3=0,y-2=0,解得:x=-3,y=2,故x+2y=-3+4=1.故选C.【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x,y的值是解题关键.22.D解析:D【解析】【分析】观察数轴可得,1a01-<<<,由此即可解答.【详解】观察数轴可得,1a01-<<<,∴11a aa a <<-<-.故选D.【点睛】本题考查了利用数轴比较有理数的大小,熟知数轴的特点是解答本题的关键.23.A解析:A【解析】【分析】根据正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小进行比较即可.【详解】根据负数小于0,负数小于正数可知-4最小,故选A.【点睛】本题考查了有理数的大小比较,理解正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.24.A解析:A【分析】根据绝对值的性质,一个数的对值表示这个数到原点的距离,即可解题.【详解】解:由图可知A到原点的距离为3个单位长度, B为原点,C到原点的距离为1个单位长度,D 到原点的距离为2.5个单位长度,∴其中绝对值最大的是点A,故选A.【点睛】本题考查了绝对值的性质,属于简单题,熟悉绝对值的概念是解题关键.25.D解析:D【解析】【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【详解】A、-(+6)=-6,+(-6)=-6,相等,不是互为相反数,故本选项错误;B、-23=-8,(-2)3=-8,相等,不是互为相反数,故本选项错误;C、-|-7|=-7,相等,不是互为相反数,故本选项错误;D、-(-1)=1与-12=-1,是互为相反数,故本选项正确.故选D.【点睛】本题考查了相反数的定义,是基础题,熟记概念并准确化简是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明。

有理数测试题及答案

有理数测试题及答案

有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。

答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。

答案:整数3. 若一个有理数的分母为零,则该有理数是__________。

答案:未定义4. 一个有理数可以是__________或__________。

答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。

答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。

答案:有理数是可以表示为两个整数的比的数,其中分母不为零。

这包括有限小数、无限循环小数以及整数。

2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。

有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。

3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。

例如,所有整数、分数和无限循环小数都是有理数。

4. 请举例说明有理数的加法和减法。

答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。

有理数专项训练及解析答案

有理数专项训练及解析答案

有理数专项训练及解析答案一、选择题1.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.16的绝对值是( )A.﹣6 B.6 C.﹣16D.16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.4.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2,2a)可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2,2a)在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.5.在数轴上,实数a,b对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】 由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D7.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .8.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .2 【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |. 由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b <【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.11.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .14.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.15.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.2-的相反数是()A.2-B.2 C.12D.12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .18.67-的绝对值是()A.67B.76-C.67-D.76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A.【点睛】本题考查了绝对值的定义.19.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。

有理数基础测试题含答案

有理数基础测试题含答案

有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。

有理数(基础)(含答案)

有理数(基础)(含答案)

有理数(基础)一、单选题(共9道,每道10分)1.在+1,,0,-5,-0.3这几个数中,整数共有( )A.1个B.2个C.3个D.4个答案:C解题思路:整数有:+1,0,-5,故选C.试题难度:三颗星知识点:有理数的定义2.下列数中,既是分数又是正数的是( )A.+2B.C.0D.-2.3答案:B解题思路:A.+2是正整数,故A错误;B.是正分数,故B正确;C.0是整数,0既不是正数也不是负数,故C错误;D.-2.3是负分数,故D错误;故选B.试题难度:三颗星知识点:有理数的定义3.最小的正有理数是( )A.0B.1C.-1D.不存在答案:D解题思路:没有最小的正有理数,故选:D.试题难度:三颗星知识点:有理数的定义4.下列各数中:1,,,,321,,0,3.1415926,,分数有____个,非正数有_____个.( )A.2,4B.3,5C.4,4D.4,5答案:D解题思路:有限小数、无限循环小数都可以写成分数的形式,所以它们都是分数,其中,,3.1415926,是分数,共4个;非正数包括负数和0,其中,,,0,是非正数,共5个.故选D.试题难度:三颗星知识点:有理数的定义5.下列各数中:3.14,0,,40,,196,非负整数有( )个.A.1B.2C.3D.4答案:C解题思路:非负整数包括正整数和0,其中0,40,196是非负整数,共3个.故选C.试题难度:三颗星知识点:有理数的定义6.下列说法错误的是( )A.正分数和负分数统称分数B.正整数和负整数统称整数C.0既不是正数,也不是负数D.有理数包括整数和分数答案:B解题思路:选项B:正整数、负整数、0统称整数,所以B选项错误.故选B.试题难度:三颗星知识点:有理数的定义7.下列说法正确的是( )A.0是最小的有理数B.一个有理数不是正数就是负数C.分数不是有理数D.没有最大的负数答案:D解题思路:A.没有最小的有理数,故本选项错误;B.一个有理数不是正数就是负数或0,故本选项错误;C.分数是有理数,故本选项错误;D.没有最大的负数,故本选项正确;故选D.试题难度:三颗星知识点:有理数的定义8.下列结论正确的是( )A.不大于0的数一定是负数B.海拔高度是0米表示没有高度C.0是正数与负数的分界D.不是正数的数一定是负数答案:C解题思路:A.不大于0的数是负数和0,错误;B.海拔高度是0米表示该地与海平面齐平,不比海平面高,也不比海平面低,错误;C.0是正数与负数的分界,正确;D.不是正数的数是负数或0,错误;故选C.试题难度:三颗星知识点:有理数的定义9.如果a是一个有理数,那-a一定是一个( )A.正数B.负数C.0D.正数或负数或0答案:D解题思路:如果a是一个有理数,那-a可能是正数或负数或0,故选D.试题难度:三颗星知识点:有理数的定义二、填空题(共1道,每道10分)10.把下列各数填入集合内:+8.5,-2.6,0.3,0,-3.4,12,-9,.负分数集合:{____}.非正整数集合:{____}.答案:-2.6,-3.4, 0,-9解题思路:负分数集合:{-2.6,-3.4}.非正整数集合:{ 0,-9}.故答案为:-2.6,-3.4;0,-9.试题难度:知识点:有理数的定义。

初一上数学有理数基础练习(含答案和详细解析)

初一上数学有理数基础练习(含答案和详细解析)

有理数练习题一.解答题(共1小题)1.已知|a+1|+(b﹣2)2=0.求(a+b)2019+a2018(3ab﹣a)的值.二.选择题(共49小题)2.一只长满羽毛的鸭子大约重()A.50 g B.2 kg C.20 kg D.50 kg3.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个4.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个5.下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④6.在数0,2,﹣3,﹣1中,是负整数的是()A.0B.2C.﹣3D.﹣17.若|x﹣2|+|y+6|=0,则x+y的值是()A.4B.﹣4C.﹣8D.88.数轴上表示﹣5的点在()A.﹣5与﹣6之间B.﹣6与﹣7之间C.5与6之间D.6与7之间9.下列说法正确的是()A.最小的整数是零B.有理数分为整数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等10.在下面所画的数轴中,你认为正确的数轴是()A.B.C.D.11.下列各对数中,互为相反数的一对是()A.﹣23与(﹣2)3B.32与﹣23C.2a与﹣2a D.a与|a|12.下列各数中,既是分数又是正数的是()A.﹣3.8B.﹣9C.0D.13.a,b是数轴上的任意两点,且a>b,则a,b两点之间的距离不可以表示为()A.a﹣b B.b﹣a C.|a﹣b|D.|b﹣a|14.下列式子不正确的是()A.|﹣4|=4B.||=C.|0|=0D.|﹣1.5|=﹣1.5 15.|a|=4,|b|=3,则|a+b|的值是()A.7B.1C.±7,±1D.7或116.a,b两数在数轴上的位置如图,下列结论正确的是()A.a>0,b<0B.a<0,b>0C.ab>0D.以上都不对17.下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正有理数,那它一定是负有理数18.下列语句中正确的是()A.若a为有理数,则必有|a|﹣a=0B.两个有理数的差小于被减数C.两个有理数的和大于或等于每一个加数D.0减去任何数都得这个数的相反数19.下列说法正确的是()A.一个数不是正数就是负数B.一个数的绝对值一定是正数C.在有理数中,没有最大的数D.不存在相反数等于本身的数20.若1<x<3,化简|1﹣x|﹣|x﹣4|=()A.5B.﹣3C.3D.2x﹣521.已知上周五(周末不开市)股市指数以1700点报收,本周内股市的涨跌情况如下(正数表示比前一天上涨数,负数表示比前一天下跌数),则本周三股市指数是()A.120点B.100点C.1720点D.1820点22.下列各数:﹣2,0,|﹣|,﹣,3.1,是负分数的有()A.4个B.3个C.2个D.1个23.|a|=2,b=﹣1,则|a+b|的值是()A.1B.3.C.﹣1或﹣3D.1或324.下列各对数:+(﹣3)与﹣3,﹣2与|﹣2|,﹣(﹣3)与+(﹣3),﹣(+3)与+(﹣3),﹣2和﹣,2和﹣2中,互为相反数的有()A.2对B.3对C.4对D.5对25.若|x﹣1|=1﹣x,则x的值范围是()A.x≤1B.x<1C.x≥1D.x>126.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1400,﹣1200,1100,﹣800,1000,该运动员共跑路程()A.5500m B.4500m C.3700m D.1500m27.在0,1,﹣2,﹣3.5这四个数中,最小的是()A.﹣3.5B.﹣2C.1D.028.数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 29.下面关于“0”的叙述,正确的个数是()(1)0是正数与负数的分界;(2)0℃表示冰点;(3)0只表示没有;(4)一般用“0”来作为计数的基准.A.1B.2C.3D.430.下列说法中:(1)带正号的数是正数,带负号的数是负数;(2)任意一个正数,前面加上负号就是一个负数;(3)0是最小的正数;(4)大于0的数是正数;(5)字母a既是正数,又是负数.其中正确的是()A.(1)(2)B.(2)(4)C.(1)(2)(4)D.(3)(5)31.下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.332.下列说法中,不正确的是()A.数轴是一条直线B.所有的有理数都可以用数轴上的点表示C.数轴上的原点表示0D.数轴上表示﹣3.5的点,在原点左边2.5个单位33.在跳远测验中,若甲跳出4.12米记作+0.12米,乙跳出3.85米记作﹣0.15米,则跳出4米记作()A.﹣4米B.+4米C.0米D.+3米34.在①+(+1)与﹣(﹣1);②+(+1)与﹣(+1);③+(﹣1)与﹣(﹣1)中,互为相反数的是()A.①②B.②③C.①③D.①②③35.点A在数轴上距原点3个单位长度,将A点先向左移动2个单位长度,再向右移动5个单位长度,此时A点所表示的数是()A.0B.6C.0或6D.不确定36.下列说法中,正确的是()A.没有最小的正整数,也没有最大的负整数B.一个数的绝对值一定是正数C.符号相反,绝对值相等的两个数互为相反数D.﹣a表示负数37.下列说法中正确的是()A.一个数的绝对值一定是正数B.0是最小的整数C.数轴上任何一个点都可以表示有理数D.最大的负整数是﹣1,而没有最大的负分数38.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远B.表示数﹣m的点距离原点较远C.一样远D.无法比较39.下列说法正确的是()A.一个有理数,不是正数就是负数B.一个有理数,不是整数就是分数C.有理数可分为非负有理数和非正有理数D.整数和小数统称有理数40.在中,正整数和负分数共有()A.3个B.4个C.5个D.6个41.已知:|a|=2,|b|=3 则|a+b|=()A.1或﹣1B.5或﹣5或1或﹣1C.5或1D.5或﹣542.若a<b<0,则下列各式:①,②ab<1,③,④,其中正确的是()A.1个B.2个C.3个D.4个43.a是小于1的正数,把a ,,﹣a ,用“>”连接起来,结果是()A .B .C .D .44.下列说法中:①最小的自然数是1;②最大的负数是﹣1;③没有最小的负数;④最小的整数是0.其中错误的个数有()A.1个B.2个C.3个D.4个45.某食品包装袋上标有“净含量:385g±5g”,这包食品的合格净含量的范围是()A.385g~395g B.385g~390g C.380g~390g D.380g~385g 46.在有理数﹣3,﹣(﹣3),|﹣3|,﹣32,(﹣3)2,(﹣3)5,﹣35中,负数有()A.2个B.3个C.4个D.5个47.一只大象的体重约为2吨,它体重的百万分之一相当于()的质量.A.青蛙B.蚂蚁C.白鹅D.蜜蜂48.珠穆朗玛峰是世界第一高峰,它的海拔高度是8848米,请你估计一下,它的百万分之一最接近于()A.一本书厚B.一人高C.一层楼高D.三层楼高49.下表是家禽孵化期统计表孵化期最短的天数及动物分别是()A.30,鸭B.30,鹅C.21,鸡D.16,鸽子50.如图,在数轴上有6个点,且AB=BC=CD=DE=EF,则与点D所表示的数最接近的整数是()A.﹣2B.﹣1C.0D.12019年09月03日183****3967的初中数学组卷参考答案与试题解析一.解答题(共1小题)1.已知|a+1|+(b﹣2)2=0.求(a+b)2019+a2018(3ab﹣a)的值.【分析】根据非负数的性质以及整式的运算法则即可求出答案.【解答】解:由题意可知:a+1=0,b﹣2=0,∴a=﹣1,b=2,∴a+b=﹣1+2=1,∴3ab﹣a=a(3b﹣1)=﹣1×5=﹣5,∴原式=12019+(﹣1)2018×(﹣5)=1+1×(﹣5)=﹣4【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.二.选择题(共49小题)2.一只长满羽毛的鸭子大约重()A.50 g B.2 kg C.20 kg D.50 kg【分析】根据常识即可判断.【解答】解:一只鸡蛋约重50g,一只长满羽毛的鸭子约重:2kg,故选:B.【点评】本题考查数学常识,属于基础题型.3.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个【分析】根据数轴上点的位置得出a,b的范围,即可做出判断.【解答】解:根据题意得:a<0,b>0,|a|>|b|,则①a+b<0,是负数;②a﹣b<0,是负数;③﹣a+b>0,是正数;④﹣a﹣b>0,是正数;⑤ab<0,是负数;⑥<0,是负数;⑦>0,是正数;⑧a3b3<0,是负数;⑨b3﹣a3>0,是正数.则结果为负数的个数是5个.故选:B.【点评】此题考查了有理数的混合运算,以及数轴,弄清数轴上点的位置是解本题的关键.4.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个【分析】有理数的分类:有理数,依此即可作出判断.【解答】解:①没有最小的整数,故错误;②有理数包括正数、0和负数,故错误;③正整数、负整数、0、正分数、负分数统称为有理数,故错误;④非负数就是正数和0,故错误;⑤是无理数,故错误;⑥是无限循环小数,所以是有理数,故错误;⑦无限小数不都是有理数是正确的;⑧正数中没有最小的数,负数中没有最大的数是正确的.故其中错误的说法的个数为6个.故选:B.【点评】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.5.下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④【分析】根据负数的意义,前面有“﹣”号,小于0的数是负数,据此解答即可.【解答】解:下列四组数:①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0中,三个数都不是负数的是①、③组.故选:B.【点评】此题考查的知识点是正数和负数,关键是要知道小于0的数是负数.6.在数0,2,﹣3,﹣1中,是负整数的是()A.0B.2C.﹣3D.﹣1【分析】按照负整数的概念即可选取答案.【解答】解:负整数有:﹣3故选:C.【点评】本题考查有理数的分类,属于基础题型7.若|x﹣2|+|y+6|=0,则x+y的值是()A.4B.﹣4C.﹣8D.8【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【解答】解:∵|x﹣2|+|y+6|=0,∴x﹣2=0,y+6=0,解得x=2,y=﹣6,则x+y=2﹣6=﹣4.故选:B.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.8.数轴上表示﹣5的点在()A.﹣5与﹣6之间B.﹣6与﹣7之间C.5与6之间D.6与7之间【分析】由数轴可知:﹣6<﹣5<﹣5,由此得出表示﹣5的点在﹣5与﹣6之间.【解答】解:∵﹣6<﹣5<﹣5,∴﹣5的点在﹣5与﹣6之间.故选:A.【点评】此题考查数轴,理解数轴上点的表示方法与有理数的大小比较是解决问题的关键.9.下列说法正确的是()A.最小的整数是零B.有理数分为整数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.【点评】本题考查有理数,解答本题的关键是熟练掌握有理数的意义与分类.10.在下面所画的数轴中,你认为正确的数轴是()A.B.C.D.【分析】在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大;方向向右.逐个分析,即可得解.【解答】解:A、缺少单位长度和正负数值;B、﹣1和﹣2位置颠倒;C、是正确的数轴;D、方向错误.故选:C.【点评】考查了数轴的认识.解答此题要明确:首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,方向向右.11.下列各对数中,互为相反数的一对是()A.﹣23与(﹣2)3B.32与﹣23C.2a与﹣2a D.a与|a|【分析】根据只有符号不同的两数叫做互为相反数对各选项分析判断利用排除法求解.【解答】解:A、﹣23=﹣8,(﹣2)3=﹣8,不是互为相反数,故本选项错误;B、32=9,﹣23=﹣8,不是互为相反数,故本选项错误;C、2a与﹣2a是互为相反数,故本选项正确;D、只有a是非正数时,a与|a|互为相反数,故本选项错误.故选:C.【点评】本题考查了相反数的定义,有理数的乘方,基础题,熟记概念是解题的关键.12.下列各数中,既是分数又是正数的是()A.﹣3.8B.﹣9C.0D.【分析】根据大于零的分数是正分数,可得答案.【解答】解:A、是负分数,故A错误;B、是负整数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点评】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.13.a,b是数轴上的任意两点,且a>b,则a,b两点之间的距离不可以表示为()A.a﹣b B.b﹣a C.|a﹣b|D.|b﹣a|【分析】根据两点间的距离公式判定即可.【解答】解:由a,b两点之间的距离一定是正数可得b﹣a不正确.故选:B.【点评】本题考查了数轴,数轴上两点间的距离,用大数减小数,或用绝对值来表示.14.下列式子不正确的是()A.|﹣4|=4B.||=C.|0|=0D.|﹣1.5|=﹣1.5【分析】利用绝对值的定义求解即可.【解答】解:由绝对值的定义可得|﹣1.5|=1.5≠﹣1.5.故选:D.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.15.|a|=4,|b|=3,则|a+b|的值是()A.7B.1C.±7,±1D.7或1【分析】先求出a,b的值,再分四种情况计算即可.【解答】解:∵|a|=4,|b|=3,∴a=±4,b=±3,∴当a=4,b=3时,|a+b|=7,当a=4,b=﹣3时,|a+b|=1,当a=﹣4,b=﹣3时,|a+b|=7,当a=﹣4,b=3时,|a+b|=1,故选:D.【点评】本题主要考查了绝对值的定义,解题的关键是分四情况计算.16.a,b两数在数轴上的位置如图,下列结论正确的是()A.a>0,b<0B.a<0,b>0C.ab>0D.以上都不对【分析】根据数轴上原点右边的点表示的数大于零,左边的点表示的数小于零,可判断A、B,根据两数相乘,同号得正,异号得负,可判断C.【解答】解:A、数轴上原点右边的点表示的数大于零,左边的表示的数点小于零,得a >0,b<0,故A正确;B、数轴上原点右边的点表示的大于零,左边的点表示的数小于零,得a>0,b<0,故B错误;C、两数相乘同号得正,ab>0,故C正确;故选:A.【点评】本题考查了有理数比较大小,正数大于零,零大于负数.17.下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正有理数,那它一定是负有理数【分析】根据有理数的分类,可得答案.【解答】解:有理数包括正有理数、负有理数和零,故D不正确,故选:D.【点评】本题考查了有理数,利用了有理数的分类.18.下列语句中正确的是()A.若a为有理数,则必有|a|﹣a=0B.两个有理数的差小于被减数C.两个有理数的和大于或等于每一个加数D.0减去任何数都得这个数的相反数【分析】利用有理数的运算性质分别判断得出即可.【解答】解:A、若a为有理数,则必有|a|﹣a=0,当a为负数不成立,故此选项错误;B、两个有理数的差不一定小于被减数,故此选项错误;C、两个有理数的和不一定大于或等于每一个加数,故此选项错误;D、0减去任何数都得这个数的相反数,正确.故选:D.【点评】此题主要考查了有理数的有关运算性质,正确把握其性质是解题关键.19.下列说法正确的是()A.一个数不是正数就是负数B.一个数的绝对值一定是正数C.在有理数中,没有最大的数D.不存在相反数等于本身的数【分析】根据有理数的分类、绝对值的计算以及相反数的求法进行选择即可.【解答】解:A、有理数可分为:正数、0和负数,故A错误;B、0的绝对值是0,故B错误;C、没有最大的有理数,故C正确;D、0的相反数还是0,故C错误;故选:C.【点评】本题考查了有理数,以及分类,认真掌握有理数的分类:正有理数、负有理数、0.注意0既不是正数,也不是负数.20.若1<x<3,化简|1﹣x|﹣|x﹣4|=()A.5B.﹣3C.3D.2x﹣5【分析】运用绝对值的定义求解即可.【解答】解:∵1<x<3,∴|1﹣x|﹣|x﹣4|=x﹣1﹣(4﹣x)=2x﹣5.故选:D.【点评】本题主要考查了绝对值,解题的关键是判定绝对值内数的正负号.21.已知上周五(周末不开市)股市指数以1700点报收,本周内股市的涨跌情况如下(正数表示比前一天上涨数,负数表示比前一天下跌数),则本周三股市指数是()A.120点B.100点C.1720点D.1820点【分析】根据有理数的加法运算,可得答案.【解答】解:1700+50﹣30+100=1820(点)故选:D.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.22.下列各数:﹣2,0,|﹣|,﹣,3.1,是负分数的有()A.4个B.3个C.2个D.1个【分析】根据小于零的分数是负分数,可得答案.【解答】解:﹣是负分数,故选:D.【点评】本题考查了有理数,利用了负分数的意义.23.|a|=2,b=﹣1,则|a+b|的值是()A.1B.3.C.﹣1或﹣3D.1或3【分析】跟绝对值实数轴上的点到原点,可得a的值,再根据绝对值的意义,可得答案.【解答】解;|a|=2,a=2或a=﹣2,|a+b|=|2﹣1|=1或|a+b|=|﹣2﹣1|=3,故选:D.【点评】本题考查了绝对值,注意绝对值相等的数有两个,以防漏掉.24.下列各对数:+(﹣3)与﹣3,﹣2与|﹣2|,﹣(﹣3)与+(﹣3),﹣(+3)与+(﹣3),﹣2和﹣,2和﹣2中,互为相反数的有()A.2对B.3对C.4对D.5对【分析】根据只有符号不同的两数叫做互为相反数,绝对值的性质分别判断即可得解.【解答】解:+(﹣3)=﹣3与﹣3相等,不是互为相反数,﹣2与|﹣2|=2,是互为相反数,﹣(﹣3)=3与+(﹣3)=﹣3,是互为相反数,﹣(+3)=﹣3与+(﹣3)=﹣3,相等,不是互为相反数,﹣2和﹣是互为倒数,不是互为相反数,2和﹣2是互为相反数,综上所述,互为相反数的有3对.故选:B.【点评】本题考查了相反数的定义,绝对值的性质,熟记概念并准确化简是解题的关键.25.若|x﹣1|=1﹣x,则x的值范围是()A.x≤1B.x<1C.x≥1D.x>1【分析】根据绝对值的意义由|x﹣1|=1﹣x得出x﹣1≤0,然后求解即可.【解答】解:∵|x﹣1|=1﹣x,∴x﹣1≤0,∴x≤1,故选:A.【点评】本题考查了绝对值:,掌握若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a是本题的关键,是一道基础题.26.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1400,﹣1200,1100,﹣800,1000,该运动员共跑路程()A.5500m B.4500m C.3700m D.1500m【分析】求出运动情况中记录的各个数的绝对值的和即可.【解答】解:各个数的绝对值的和:|1400|+|﹣1200|+|1100|+|﹣800|+|1000|=5500(千米),则该运动员共跑的路程为5500米.故选:A.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.在0,1,﹣2,﹣3.5这四个数中,最小的是()A.﹣3.5B.﹣2C.1D.0【分析】根据正数大于一切负数,负数相比较,绝对值大的反而小解答.【解答】解:0,1,﹣2,﹣3.5这四个数中,最小的是﹣3.5.故选:A.【点评】本题考查了有理数的大小比较,正数大于一切负数,0大于负数,小于正数,负数相比较,绝对值大的反而小.28.数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0【分析】根据数轴的特点进行解答即可.【解答】解:∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选:D.【点评】本题考查的是数轴的特点,即数轴上右边点表示的数的数总比左边的大.29.下面关于“0”的叙述,正确的个数是()(1)0是正数与负数的分界;(2)0℃表示冰点;(3)0只表示没有;(4)一般用“0”来作为计数的基准.A.1B.2C.3D.4【分析】根据0不是正数也不是负数,是自然数,是整数,是有理数的知识点找到正确选项即可.【解答】解:(1)0是正数与负数的分界,正确;(2)0℃表示冰点,正确;(3)在有理数中,0的意义不仅表示没有,在进行运算时,0还有表示占位的意义,0还表示正整数与负整数的分界等,故错误;(4)一般用“0”来作为计数的基准,正确.正确的有3个.故选:C.【点评】考查0的意义;掌握0的相关知识点是解决本题的关键.30.下列说法中:(1)带正号的数是正数,带负号的数是负数;(2)任意一个正数,前面加上负号就是一个负数;(3)0是最小的正数;(4)大于0的数是正数;(5)字母a既是正数,又是负数.其中正确的是()A.(1)(2)B.(2)(4)C.(1)(2)(4)D.(3)(5)【分析】根据字母a可表示正数,也可表示为负数可对(1)、(5)进行判断;根据负数的定义对(2)进行判断;根据0小于正数,大于负数可对(3)、(4)进行判断.【解答】解:带正号的数不一定是正数,带负号的数不一定是负数,所以(1)错误;任意一个正数,前面加上负号就是一个负数,所以②正确;0不是正数,也补是负数,所以(3)错误;大于0的数是正数,所以(4)正确;字母a可表示正数,也可表示为负数,所以(5)错误.故选:B.【点评】本题考查了正数与负数:像0.1、1、2、3…这样的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.31.下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【解答】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点评】此题考查了有理数,弄清0的意义是解本题的关键.32.下列说法中,不正确的是()A.数轴是一条直线B.所有的有理数都可以用数轴上的点表示C.数轴上的原点表示0D.数轴上表示﹣3.5的点,在原点左边2.5个单位【分析】根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)可得答案.【解答】解:A、数轴是﹣条直线,说法正确;B、所有的有理数都可以用数轴上的点表示,说法正确;C、数轴上的原点表示0,说法正确;D、数轴上表示﹣3.5的点,在原点左边2.5个单位,说法错误,应是在原点左边3.5个单位,故选:D.【点评】此题主要考查了数轴,关键是掌握数轴的概念.33.在跳远测验中,若甲跳出4.12米记作+0.12米,乙跳出3.85米记作﹣0.15米,则跳出4米记作()A.﹣4米B.+4米C.0米D.+3米【分析】明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中超过标准的一个为正,则另一个不到标准的就用负表示,即可解决.【解答】解:“正”和“负”相对,∵甲跳出4.12米记作+0.12米,乙跳出3.85米记作﹣0.15米,∴标准为4米,则跳出4米记作0米.故选:C.【点评】用正数表示其中一种意义的量,另一种量用负数表示.特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.34.在①+(+1)与﹣(﹣1);②+(+1)与﹣(+1);③+(﹣1)与﹣(﹣1)中,互为相反数的是()A.①②B.②③C.①③D.①②③【分析】根据相反数的定义对各小题分别化简即可得解.【解答】解:①+(+1)=1,﹣(﹣1)=1,不是互为相反数;②+(+1)=1,﹣(+1)=﹣1,是互为相反数;③+(﹣1)=﹣1,﹣(﹣1)=1,是互为相反数.所以,是互为相反数的是②③.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是并准确化简是解题的关键.35.点A在数轴上距原点3个单位长度,将A点先向左移动2个单位长度,再向右移动5个单位长度,此时A点所表示的数是()A.0B.6C.0或6D.不确定【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动5个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【解答】解:∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+5=0;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+5=6;综上所述,移动后点A所表示的数是:0或6.故选:C.【点评】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.36.下列说法中,正确的是()A.没有最小的正整数,也没有最大的负整数B.一个数的绝对值一定是正数C.符号相反,绝对值相等的两个数互为相反数D.﹣a表示负数【分析】根据整数的定义及分类判断A;根据绝对值的定义判断B;根据绝对值与相反数的定义判断C;根据有理数的定义及分类判断D.【解答】解:A、最小的正整数是1,最大的负整数是﹣1,故本选项错误;B、0的绝对值是0,所以当这个数是0时,0的绝对值是不是正数,故本选项错误;C、符号相反,绝对值相等的两个数互为相反数,故本选项正确;D、a为0时,﹣a也是0不是负数,故本选项错误.故选:C.【点评】本题考查了有理数的定义及分类,绝对值与相反数的定义,是基础知识,比较简单.37.下列说法中正确的是()A.一个数的绝对值一定是正数B.0是最小的整数C.数轴上任何一个点都可以表示有理数D.最大的负整数是﹣1,而没有最大的负分数【分析】根据0的绝对值为0对A进行判断;根据0是绝对值最小的整数对B进行判断;根据数轴上的点与实数一一对应对C进行判断;根据有理数的分类对D进行判断.【解答】解:A、0的绝对值为0,所以A选项错误;B、0是绝对值最小的整数,所以B选项错误;C、数轴上的点与实数一一对应,所以C选项错误;D、最大的负整数是﹣1,而没有最大的负分数,所以D选项正确.故选:D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了有理数与数轴.38.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远B.表示数﹣m的点距离原点较远C.一样远D.无法比较【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.。

有理数专项练习(含答案)

有理数专项练习(含答案)

初三复习有理数专项练习1.6-的相反数是2.135-的相反数是________.3.如果收入200元记作+200元,则-500元表示_______________________. 4.如果盈利20元记作+20元,那么亏损30元记作 元. 5.把向南走8米记作+8米,那么向北走5米可表示为 米. 6.如果上升3米记作+3米,那么下降3米记作 米 .7.我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于公元前500年的春秋战国时期可表示为 年.8.某商店搞促销活动,店内衣服一律按标价的六折出售,现小明花300元购得一件上衣,则该上衣的标价为 元.9.甲、乙、丙三地的海拔高度分别为20米、-5米、和-10米,那么最高的地方比最低的地方高 米.10.某天温度最高是12℃,最低是-7℃,这一天温差是 ℃.11.已知,线段AB 在数轴上且它的长度为5,点A 在数轴上对应的数为2-,则点B 在数轴上对应的数为 . 12.比较大小: 3____2-- 13.比较大小:23-_____45-. 14.22-( )=(-2)3.15.化简︱3.14-π∣= .16.一个数的相反数等于它本身,这个数是_________。

17.倒数等于它本身的数是______________.18.绝对值等于4的所有整数是 .19.我市永丰林生态园区生产的草莓包装纸箱上标明草莓的质量为03.003.05+-千克,如果这箱草莓重4.98千克,那么这箱草莓质量 标准.(填“符合”或“不符合”)20.台湾是我国最大的岛屿,总面积约为36000平方千米,这个数据用科学记数法可以表 示为 平方千米.21.载有239名乘客的MH370飞机失联后,其行踪一度成为世人关注的焦点.小明在百度中搜索“马航最新消息”,找到相关结果约32 800 000个.其中数32 800 000用科学记数法表示为 .22.2010年上海世博会的园区规划用地面积约为5 280 0002m ,将5 280 000用科学记数法表示为 .23.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为 元.24.有一种病毒的直径为0.000068米,用科学记数法可表示为 米. 25.用四舍五入法,对0.0070991取近似值,若要求保留三个有效数字,•并用科学记数法表示,则该数的近似值为 .用科学记数法表示: .26.科学家测得肥皂泡的厚度约为0.0000007米,用科学记数法表示为27.近似数51.46010⨯精确到 位,有效数字是 . 28.圆周率π=3.1415926…,取近似值3.142,是精确到__________位。

有理数练习题及答案

有理数练习题及答案

有理数练习题及答案一、选择题(每题2分,共20分)1. 有理数-3,-2,0,1,2中,最大的数是()A. -3B. -2C. 0D. 22. 下列各数中,不是有理数的是()A. πB. √2C. 0D. 1/33. 有理数-2与-1的和是()A. -3B. -1C. 1D. 34. 有理数-1除以2的结果为()A. -0.5B. -2C. 0.5D. 25. 若a是有理数,且a<0,则-a()A. 一定大于0B. 一定小于0C. 可能为0D. 无法确定6. 有理数-4与-3的差是()A. -7B. 1C. -1D. 77. 有理数-3与-2的积是()A. 6B. -6C. 1D. -18. 有理数-2的绝对值是()A. -2B. 2C. 0D. 49. 若a是有理数,且|a|=5,则a的值是()A. 5B. -5C. 5或-5D. 010. 有理数-2的倒数是()A. 1/2B. -1/2C. 2D. -2二、填空题(每题2分,共20分)11. 若有理数a=-3,b=-2,则a+b=______。

12. 若有理数a=-3,b=-2,则a-b=______。

13. 若有理数a=-3,b=-2,则a×b=______。

14. 若有理数a=-3,b=-2,则a÷b=______。

15. 若有理数a=-3,b=-2,则|a|-|b|=______。

16. 有理数-5的相反数是______。

17. 有理数-5的绝对值是______。

18. 有理数-5的倒数是______。

19. 若有理数a=-3,b=-2,则a的相反数是______。

20. 若有理数a=-3,b=-2,则a的倒数是______。

三、计算题(每题5分,共30分)21. 计算下列有理数的和:-3,-2,1,2。

22. 计算下列有理数的积:-4,-5,3。

23. 计算下列有理数的差:-7,-3。

24. 计算下列有理数的商:-2,-4。

语法知识—有理数的基础测试题含答案

语法知识—有理数的基础测试题含答案

一、填空题1. 如果 a-2 +9 + 1)2 =0,那么"=c-a + c-h + a+b =「~L5. 点A.B 在数轴的位置如图所示,其对应的数分别是a 和b,对于以下结论:®b - a<0(g)lal<lbl(§)a+b>0® - >0其中正确是 ____ ・a-- 1 --- * ------- 1 ----------- 1—• »-3 a 0 3 b6. 已知J < X < y/S r 贝I ]丨 X —31 + I X —1 1= ・7. 有理数abc 在数轴上的位置如图所示,化简\a\ + \a-h\ + \e-a\的值为a b8. ________________________________________________________________ 数轴上点O 表示原点,点A 表示数-4,点P 表示数X,当PA=PO 时,1x1= ___________________ .二、解答题9. 已知数轴上,点。

为原点,点A 对应的数为9,点B 对应的数为”,点C 在点B 右侧, 长度为2个单位的线段BC 在数轴上務动.□ B~C 才(1) 如图,当线段BC 在0、A 两点之间移动到某一位置时,恰好满足线段AC^OB,求 此时b 的值; ⑵当线段肚在数轴上沿射线方向移动的过程中,若存在AC"4/9,求此时 满足条件的b 的值: ⑶当线段肚在数轴上移动时,满足关系式皿5冷展皿则此卄的取值 范困是10. 数轴上点A 对应的数为d ,点B 对应的数为b ,且多项式x'y-2A>' + 5的二次项系数为常数项为b.(1) 直接写出:a = _________ . b= _________ .(2) 数轴上点A. B 之间有一动点P,若点P 对应的数为X,试化简 2%+4+2x — 5 — 6 — X .(3)若点M 从点A 出发,以毎秒「个单位长度的速度沿数轴向右移动:同时点N 从 点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达4点后立即返回并向右2. 3. 4. 已知4一2y 匀X + 3互为相反数,则.F 的值是_ 已知W=3, r=4,且x<y,那么x+y 的值是 _________有理数a 、b 、c 在数轴上的位置如图所示,且a= \b\.化简继续移动,经过I 秒后,M • N 两点相距1个单位长度,求I 的值.11. 化简求值:(1〉如图,已知实数a. b 在数抽上的位置如图所示,试化简lb-小+J(a + b)2・(1) 初= _____ ♦ h= (2) 点A 以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度 也沿着数轴的正方向运动.当点B 到达D 点处立刻返回,返回时,点A 与点B 在数轴的某 点处相遇,求这个点对应的数.(3) 如果A 、C 两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动, 同时,点B 从图上的位苣出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC= -AD 时,点A 对应的数是多少?13. 画出数轴并在数轴上表示出下而的有理数,然后把它们用“v"连接起来. -2, I-L5I, 0,・(・3) , 2—, (-1)纳9214. 点A 、0、B 、C 从左向右依次在数轴上的位置如图所示,点0在原点,点A 、B 、C 表示的数分别是a 、b 、c.⑴若a=-2, b=4. c=8, D 为AB 中点,F 为BC 中点,求DF 的长.(2) 若点A 到原点的距离为3, B 为AC 的中点. ① 用b 的代数式表示C :② 数轴上B 、C 两点之间有一动点M,点M 表示的数为X,无论点M 运动到何处,代数式 lx - cl - 5仪-al+bx+cx ffj 值都不变,求b 的值.15. 小明练习跳绳,以1分钟跳165个为目标,并把20次1分钟跳绳的数记录如表(超过 165个的部分记为—X 少于165个的部分记为“一‘)(1) 小明在这20次跳绳练习中,1分钟最多跳个?ab + b' [a--2ah + h-~ a--b\ 12.如图,在数轴上每相邻两点间的距离为一个单位长度.点是"、b 、e 、J,且 〃-3"=20・B 3 C(2)已知a =近,h = \.求代数式a b F T 的低 h-\B 、C 、D 对应的数分別c=(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多个?(3)小明在这20次跳绳练习中,累计跳绳多少个?16. 如图所示,点A, B. C 是数轴上的三个点,其中AB = 12,且A, B 两点表示的数互 为相反数・(1) 请在数轴上标出原点0,并写出点A 表示的数:(2) 如果点Q 以每秒2个单位的速度从点B 出发向左运动,那么经过_秒时,点C 恰好 是BQ的中点:(3) 如果点P 以每秒1个单位的速度从点A 出发向右运动,那么经过多少秒时PC = 2PB.17. 如图,已知在纸而上有一条数轴操作一:折叠数轴,使表示1的点与表示-1的点重合,则表示-5的点与表示 的点重合. 操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示-2的点与表 示_的点重合;②若数轴上A.B 两点的距离为7(A 在B 的左侧),且折叠后A.B 两点重合,则点A 表示的数 为—点B 表示的数为 二 1318. 如图,数轴上三个点所对应的数分别为a 、b 、c ・则下列结论正确的是()•-5・4・3 ・219.已知 X =3,1 1 I I I>-1 a 0 lbA- aV-aVbV-b B ・-b<a< - a<b C.22.下列说法:①一('<0:②I 一“1=01:③相反数大于它本身的数一!>k 是负数:④绝对值等于它本身的数一泄是正数.其中正确的序号为()A. ①® B ・@@ C.①®A. a+b>0B ・ a-b>0 C. aoO D. lal>lcl A. ±720・G b 在数轴位置如图所示,则皿与Ibl 关系是(B ・±5C ・±1D.a-1 0 bA. I"l>lblB ・ SIMIblC. 21. a 、b 两数在数轴上位置如图所示,将a 、b 、 SiWibl■a 、-b 用“V'>连接,其中正确的是SIVIblD. -a<b< - b<a D. - b<a<b< - aa 、Z?互为倒数戶、"互为相反数,则代数式8(w + /i )-|afe 的值是()加 H0 f-4 4 -2 *1 0 *1 ~~2 3 4〉A. CB ・ n【参考答案]*卄试卷处理标记,请不要删除1 • a=2b=-1 [分析]根据绝对值及平方的非负性即即可求解[详解】根据题意Y 「. •••故答案为:2 [ 点睛】本题主要考查了一个数的绝对值及平方的非负性根据非负性解题时解决此类问题的关犍解析:a =2 b = -l 【分析】根据绝对值及平方的非负性即i“-2ino,(b+i )->0即可求解. 【详解】 根据题意.k/-2l>0, 3 + 1)2 >0,a-2 = 0a = 2b = -l故答案为:2, 一1・ 【点睛]本题主要考査了一个数的绝对值及平方的非负性,根据非负性解题时解决此类问题的关键.2. 9【分析】根据相反数之和为0列出算式再111非负数的性质求得xy 的值从而 将xy 的值代入计算即可【详解】因为l4-2yl 与lx+31互为相反数所以l4-2yl+lx+3l=0 所以4・2y=0x+3=0所以解析:9 【分析】23. A.24.3 9-- B ・ ---2 43 C.— 2 9 D. 一4 A. 201B ・0C ・-2D. -----202025.已知有理数mnc.f 在数轴上的对应点的位置如图所示,则这四个数中,绝对值最小的是C. mD. f根据相反数之和为0列出算式,再由非负数的性质求得X、y的值,从而将X、y的值代入计算即可.【详解】因为|4-2y;与lx+3互为相反数,所以|4-2y| + |x+3 =0,所以4-2y=0, x+3=0,所以y=2, s=-3,所以疋=(_3)2=9.故答案为:9.【点睛]考査了相反数的概念、绝对值的非负数性质,解题关键是利用了相反数之和为0和有限个非负数的和为零,则每一个加数也必为零.3.-1或-5【分析】利用绝对值和乘方的知识确定刃的值然后计算即可解答【详解】解:T HI=3y2 = 4・・・x=±3y=±2Tx<y・・・x= - 3y=±2当x= - 3y=2 时x+y= - 1 当x= - 3y= - 2 时x+解析:-1或-5【分析】利用绝对值和乘方的知识确定X、y的值,然后计算即可解答.【详解】解:VW=3. r=4,-*-x=±3, y=±2,•\x= - 3. y=±2,当X =-3, y=2 时,・K+y=・l.当X = -3, y= -2 时,x+y= -5.所以,x+y的值是-1或-5.故答案为:-1或-5.【点睛】本题主要考査了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定X、y 的值.4・b-a [分析】由数轴可知:b > C > Oa < Oa+b=O再根据有理数的加减运算法则判断出绝对值里的代数式的正负性最后根据绝对值的性质化简【详解】解:由数轴得b > c>Oa < 0又|a| = |b|.\ c-a >Oc解析:b-a.【分析】由数轴可知:b>c>0, a<0, a+b=O.再根据有理数的加减运算法则,判断出绝对值里的代数式的正负性,最后根据绝对值的性质化简.【详解】解:由数轴,得b>c>0, a<0, Xlahlbb.*.c-a>0, c-b<0, a+b=O./. c-a + c-b + a+b =c-a+b-c+O=b-a.故答案是:b-a.【点睛]此题考查了数轴,以及绝对值化简,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是旷进行化简汁算.5.②③【分析】根据图示可得:-3<a<0b>3据此逐个结论判断即可【详解】•••-3 < a V Ob > 3 /. b-a > 0 二故①错误;T -3 V a < Ob > 3 /. a+b > 0 ・••故③正确;7-3<a<0b>3/. laKlb解析:②®【分析】根据图示,可得:-3<aV0, b>3,据此逐个结论判断即可.【详解】7-3<a<0, b>3,.•.b-a>0>二故①错误:V-3<a<0, b>3,,a+b>Ot二故③正确:V-3<a<f), b>3,,KIbl,二选项②正确;V0<a<3, b<-3,b・・• 一VO,a二选项④不正确.故答案为:②③.【点睛]此题主要考査了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:当数轴方向朝右时,右边的数总比左边的数大.6.2【分析】山已知条件确定X的范根据绝对值性质去绝对值符号即可【详解】•••・•・・•・;故填2【点睛】本题主要考査绝对值性质:正数绝对值等于本身0 的绝对值是0负数绝对值等于其相反数解析:2【分析】由已知条件确立X的范阳,根据绝对值性质去绝对值符号即可【详解】& < X < 1 < X < 3 ' Lv — 31 +1X — 11= 3-x+x-l=2 ;故填2.【点睛]本题主要考査绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.7 .-羽+b+c【分析】根据数轴可以判断abc的正负以及绝对值的大小从而可以化简【详解】解:由^5$由可得a < b < 0 < c|a| > |c| > |b|.'. a-b < Oc-a > 0.*. =-a+ ( b- a ) + ( c-a ) =-a+解析:-3a+b+c【分析】根据数轴可以判断a、b、c的正负以及绝对值的大小,从而可以化简l"l + l“一Z)l + lc-“l.【详解】解:由数轴可得,aVbVOVc, lal>lcl>lbl,/-a-b<0. c-a>Or16/1 +1— I +1 c —a I =-a+ (b-a) + (c・a)=-a+b-a+c-a=・3a+b+c故答案为:-3a+b十c.【点睛】本题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.8.2【分析】根据中点坐标公式计算可得点P表示的数再根据绝对值的性质求解即可【详解】解:T数轴上点0表示原点点A表示数-4点P表示数xPA= PO・••点P是OA的中点.••点P表示的数是-2/. !X|=2故答案为解析:2【分析】根据中点坐标公式计算可得点P表示的数,再根据绝对值的性质求解即可.【详解】解:T数轴上点O表示原点,点A表示数-4,点P表示数X, PA=PO.二点P是OA的中点,二点P 表示的数是-2,.-.1x1=2.故答案为:2. 【点睛]考査了实数与数轴,绝对值,关键是求出点P 表示的数.二、解答题129. (1) 35 (2) M 或・ 12: (3) h<-2 或空9 或 〃=3・5【分析】(1)由题意可知B 点表示的数比点C •对应的数少2,进一步用”表示岀AU OB Z 间的距离,联立方程求得b 的数值即可:⑵分别用〃表示映、皿进-步利用AC 5=严建立方程求得答案即 可:(3)分别用丿,表示出OB 、AB. OC,进一步利用lAC - OBI= lAB - OO 建立方程求得答案即可• 【详解】解:{1)由题意得:9- (b+2) =b.解得:/>=3.5.答:线段AC=OB ,此时b 的值是3.5・(2)由题意得: ®9-解得:(h+2) +b=- (9-h),3h= - 12I12答,若AC-QB^-AB.满足条件的b 值是=或-12.3 5 (3)①当空9时,AC=b+2-9, OB=b, AB=b ・9, OC=b+2. 7WC-OBI=—WB-OO,11g).解得:lfo+2-9-6l=7,7 7—lAB-0O=—xll=7, II 11二恒成立:②7动V9时,L4C-0BI=—IAB-0O,117 lb+2・9-bl=—19-b- 3+2) I,11解得b= -2 (舍去)或b=9 (舍去):③0动<7时,7L4C-OBI=—WB-0O,11719 - (b+2) 71=—19-b- (b+2〉I,117解得b= — =3.5-2④-2切VO时,19 - (b+2) +/?!=—19-h- (/>+2) I,11解得h=-2或b=9 (舍去);⑤当-2时,19 - (b+2) +〃|=令9-歼3+2) I恒成立,综上,b的取值范围是/疋-2或绘9或X3.5.故答案为:硬-2或绘9或/>=3.5.【点睛3本题考查了数轴上的动点问题及一元一次方程的应用,需要注意的是要分情况讨论.810.(1) -2: 5:(2) X+8: (3) t的取值为2 或一或6 或&3【分析】(1)根据多项式中二次项系数的左义和常数项的楚义即可求出a、b的值;(2)根据题意,先判断2X +4,A--5,6-%的符号,然后根据绝对值的性质去绝对值化简即可:(3)设经过!秒M , N两点相距一个单位长度,根据M、N的相对位置分类讨论,然后分别列出方程即可.【详解】解:{1) •/多项式x^y-2xy + 5的二次项系数为.常数项为b ,/. a —~2» b = 5 •(2)依题意,得-2<x<5,7:• 2x + 4>0,x-5< 0,6 — x> 0则|2% + 4| + 2|x—5| —16 —x| = 2x + 4 + 2(5 —%)—(6 —X)=2x+4 +10—2% — 6 + X=x+8(3) AB=5- (-2) =7设经过f秒M , N两点相距一个单位长度.①M,N第一次相距一个单位长度时,如下图所示M N根据数轴可得:f + l + 2z=7,解得r = 2.②M, N第二次相距一个单位长度时,如下图所示N 二____________________根据数轴可得:7 +力=7 + 1.Q解得/ = -:③当M. N第三次相距一个单位长度时,如下图所示根据数轴可得:2t + \-t = 7.解得f = 6:④当M,N第四次相距一个单位长度时,如下图所示根据数轴可得:2r-l-f=7, 解得28.Q综合得:I的取值为:2或5或6或8.【点睛】此题考查的是数轴上的动点问题,掌握绝对值的性质、行程问题中的等量关系、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.ah —11.(1) -2a,(2) ------ , -2-V2.a_b【分析】(1)首先根摇实数a、b数轴上位置判断出b-a和《+方的符号,然后进行化简,即可得到答案:(2)先把分式进行化简,得到最简代数式,然后把a、b的值代入计算,即可得到答案.【详解】解:(1)根据数轴可知,b-a>Q. rt+b<0,• • IZ? - a I +J(a + b)2=b — a — (a + h)_ {a-b}{a + h} («/? + /?")(«-/?) ab {a 一 /?)' {a + b} {a 一 /?)'(« + h} h -1 a--Ir -irb + b' ah («-/?)" (a+ /?) b-\{a + h}(a-h)(\-h) (a-b)~(a + h)_ ah a-h当a =迈,"=1时, 原式二一茫xl = _2 一妊V2-1【点睛]本题考查了分式的混合运算,分式的化简求值,二次根式的性质,以及化简绝对值,解题 的关键是利用数轴判断是指的符号,以及熟练掌握分式混合运算的运算法则进行汁算.4 12. (1) -6, -8, -3:(2)人、B 相遇时,这个点对应的数为一 :(3〉点4对应的 332数是一一或・12・【分析】 (1) 由数轴可知d=a+8,结合d-3a=20 nJ 求a 的值,进而可求出b 、c 的值:(2〉先求出BD=10, B 点运动到D 点需要时间为2・5秒.此时A 点运动到-6+2x3.5=l>町 得AB 距离小求出AB 相遇时间为一蔦秒,即可求相遇沁(3) 设运动时间为1秒.A 点运动I 秒后对应的数为-6-21, C 点运动I 秒后对应的数为・3・ 3t. B 点运动I 秒后对应的数为・8+1,由AB+AO ㊁AD,町得l2-3tl+ll-31=14+11,分三种情况22去掉绝对值分别求解:当Osts-时,2-3t+3-t=4+t.当一ts3时,3l-2+t-3=4+t,当1>3时. 3 33t-2+3-t=4+t,求出I 的值即可求A 表示的数.【详解】 (1) 由数轴可知,〃=“+8,7J-3a=20,.*a/+8 - 3“=20,it — • 6»= —2a : /(2) ab + h- [a--2ah + h-~ a--b- J b-\a-hah ab:・b= - & e= - 3.故答案为-6, - 8, - 3;(2)•••“= -6.•••d=2.•••BD=10,B点运动到D点需要时间为2.5秒,此时A点运动到-6+2x3.5= 1. •■•AB距离为1.二相遇时间为一=評,1 4此时A点位置为兀x2=y 二4、B相遇时的点对应的数为土.3(3)设运动时间为F秒,M点运动£秒后对应的数为-6-2/, C点运动/秒后对应的数为-3-引,B点运动/秒后对应的数为-8+f,- 6 - 2/+8 - /1=12 - 3爪AC=I - 6 - 2z+3+3zl=lz - 31, 4D=l2+6+2H=l8+2儿•••12- 3/1+1 一31=14+儿2①当B仃A相遇时,(珈2,解得匸亍•••当0<r<-时,32 - 3/+3 - z=4+z,5②当A与C相遇时, 312=3.解得1=3,2•••当一03 时,33t - 2+t - 3=4+人③当/>3 时,3t - 2+3 - z=4+z,/J=3,32•••A点表示的数是-¥或-12・【点睛3本题考查了数轴上的动点问题,一元一次方程的应用,以及分类讨论的数学思想:熟练掌握数轴的性质,根据题意列出方程是解答本题的关键.b数轴见解析宀< (小叫。

有理数计算题100道及答案过程

有理数计算题100道及答案过程

有理数计算题100道及答案过程1. 计算2/3 + 1/4的和:答案:2/3+1/4=7/122. 计算3/5 - 2/7的差:答案:3/5-2/7=17/353. 计算5/6 * 2/3的积:答案:5/6*2/3=10/184. 计算1/2 ÷ 3/8的商:答案:1/2÷3/8=2/35. 计算2/3 剩余 4/9 的差:答案:2/3 剩余 4/9 = 2/96. 计算1/4 + 6/7的和:答案:1/4+6/7=25/287. 计算5/9 - 4/7的差:答案:5/9-4/7=-3/638. 计算3/4 * 5/6的积:答案:3/4*5/6=5/89. 计算1/2 ÷ 4/5的商:答案:1/2÷4/5=5/810. 计算3/5 剩余 8/15 的差:答案:3/5 剩余 8/15 = -2/1511. 计算7/8 + 4/9的和:答案:7/8+4/9=73/7212. 计算31/45 - 9/10的差:答案:31/45-9/10=-18/4513. 计算2/3 * 4/5的积:答案:2/3*4/5=8/1514. 计算3/4 ÷ 1/2的商:答案:3/4÷1/2=6/415. 计算5/6 剩余 9/10 的差:答案:5/6 剩余 9/10 = -1/6016. 计算4/5 + 8/9的和:答案:4/5+8/9=76/4517. 计算12/15 - 7/8的差:答案:12/15-7/8=-3/4018. 计算3/4 * 2/3的积:答案:3/4*2/3=1/219. 计算3/5 ÷ 3/4的商:答案:3/5÷3/4=4/520. 计算4/9 剩余 3/4 的差:答案:4/9 剩余 3/4 = -5/36 21. 计算5/6 + 3/5的和:答案:5/6+3/5=31/3022. 计算7/8 - 4/9的差:答案:7/8-4/9=11/7223. 计算4/5 * 6/7的积:答案:4/5*6/7=24/3524. 计算9/10 ÷ 5/8的商:答案:9/10÷5/8=45/4025. 计算2/3 剩余 7/8 的差:答案:2/3 剩余 7/8 = -1/2426. 计算3/4 + 9/10的和:答案:3/4+9/10=33/4027. 计算15/20 - 4/7的差:答案:15/20-4/7=-7/7028. 计算4/5 * 2/3的积:答案:4/5*2/3=8/1529. 计算3/4 ÷ 1/3的商:答案:3/4÷1/3=9/430. 计算2/7 剩余 1/6 的差:答案:2/7 剩余 1/6 = -1/4231. 计算4/5 + 4/9的和:答案:4/5+4/9=32/4532. 计算3/4 - 5/8的差:答案:3/4-5/8=-1/833. 计算2/3 * 1/4的积:答案:2/3*1/4=2/1234. 计算1/2 ÷ 6/7的商:答案:1/2÷6/7=7/1235. 计算8/9 剩余 6/7 的差:答案:8/9 剩余 6/7 = -2/6336. 计算3/4 + 4/5的和:答案:3/4+4/5=17/2037. 计算13/15 - 9/10的差:答案:13/15-9/10=-3/3038. 计算2/3 * 3/4的积:答案:2/3*3/4=1/239. 计算7/8 ÷ 1/2的商:答案:7/8÷1/2=14/840. 计算5/6 剩余 3/4 的差:答案:5/6 剩余 3/4 = -1/12 41. 计算4/5 + 3/7的和:答案:4/5+3/7=31/3542. 计算8/9 - 5/6的差:答案:8/9-5/6=-1/1843. 计算6/7 * 1/2的积:答案:6/7*1/2=3/1444. 计算4/5 ÷ 2/3的商:答案:4/5÷2/3=3/245. 计算2/3 剩余 9/10 的差:答案:2/3 剩余 9/10 = -7/3046. 计算3/4 + 5/6的和:答案:3/4+5/6=19/1247. 计算11/15 - 8/9的差:答案:11/15-8/9=-1/4548. 计算7/8 * 1/2的积:答案:7/8*1/2=7/1649. 计算1/2 ÷ 4/5的商:答案:1/2÷4/5=5/850. 计算4/9 剩余 5/6 的差:答案:4/9 剩余 5/6 = -25/5451. 计算3/4 + 6/7的和:答案:3/4+6/7=27/2852. 计算13/20 - 7/8的差:答案:13/20-7/8=-17/8053. 计算4/5 * 5/6的积:答案:4/5*5/6=4/654. 计算3/4 ÷ 1/4的商:答案:3/4÷1/4=12/455. 计算1/2 剩余 3/4 的差:答案:1/2 剩余 3/4 = -1/456. 计算2/3 + 1/5的和:答案:2/3+1/5=11/1557. 计算11/12 - 2/3的差:答案:11/12-2/3=7/3658. 计算3/4 * 8/9的积:答案:3/4*8/9=24/3659. 计算5/6 ÷ 3/5的商:答案:5/6÷3/5=10/960. 计算7/8 剩余 4/5 的差:答案:7/8 剩余 4/5 = -3/4061. 计算1/2 + 4/9的和:答案:1/2+4/9=23/1862. 计算15/16 - 5/6的差:答案:15/16-5/6=5/2463. 计算4/5 * 1/4的积:答案:4/5*1/4=4/2064. 计算3/4 ÷ 2/3的商:答案:3/4÷2/3=9/865. 计算2/3 剩余 1/4 的差:答案:2/3 剩余 1/4 = -5/1266. 计算3/4 + 1/2的和:答案:3/4+1/2=5/467. 计算17/20 - 8/9的差:答案:17/20-8/9=-1/4568. 计算5/6 * 4/5的积:答案:5/6*4/5=4/369. 计算2/3 ÷ 6/7的商:答案:2/3÷6/7=7/670. 计算4/9 剩余 2/3 的差:答案:4/9 剩余 2/3 = -2/2771. 计算1/2 + 8/9的和:答案:1/2+8/9=17/1872. 计算13/15 - 3/4的差:答案:13/15-3/4=-1/2073. 计算5/6 * 1/2的积:答案:5/6*1/2=5/1274. 计算3/4 ÷ 1/5的商:答案:3/4÷1/5=15/475. 计算2/3 剩余 4/5 的差:答案:2/3 剩余 4/5 = -2/1576. 计算3/4 + 7/8的和:答案:3/4+7/8=31/3277. 计算19/20 - 5/6的差:答案:19/20-5/6=1/578. 计算2/3 * 7/8的积:答案:2/3*7/8=7/1279. 计算4/5 ÷ 3/4的商:答案:4/5÷3/4=16/1580. 计算1/2 剩余 7/8 的差:答案:1/2 剩余 7/8 = -7/1681. 计算6/7 + 1/2的和:答案:6/7+1/2=13/1482. 计算17/20 - 6/7的差:答案:17/20-6/7=-3/7083. 计算3/4 * 9/10的积:答案:3/4*9/10=27/4084. 计算4/5 ÷ 1/3的商:答案:4/5÷1/3=15/485. 计算7/8 剩余 3/4 的差:答案:7/8 剩余 3/4 = -9/3286. 计算1/2 + 5/6的和:答案:1/2+5/6=11/1287. 计算13/14 - 4/5的差:答案:13/14-4/5=-1/1088. 计算2/3 * 3/4的积:答案:2/3*3/4=1/289. 计算3/4 ÷ 6/7的商:答案:3/4÷6/7=7/990. 计算4/9 剩余 1/2 的差:答案:4/9 剩余 1/2 = -5/1891. 计算1/2 + 3/4的和:答案:1/2+3/4=5/492. 计算11/12 - 7/8的差:答案:11/12-7/8=-1/2493. 计算5/6 * 3/4的积:答案:5/6*3/4=15/2494. 计算2/3 ÷ 3/5的商:答案:2/3÷3/5=10/995. 计算1/2 剩余 5/6 的差:答案:1/2 剩余 5/6 = -5/1296. 计算4/5 + 3/4的和:答案:4/5+3/4=19/2097. 计算17/18 - 2/3的差:答案:17/18-2/3=11/5498. 计算3/4 * 2/3的积:答案:3/4*2/3=2/399. 计算5/6 ÷ 8/9的商:答案:5/6÷8/9=5/8100. 计算7/8 剩余 1/2 的差:答案:7/8 剩余 1/2 = -3/16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础达标:一、选择题:1.a为有理数,下列说法正确的是()A.为正数 B. +的值不小于C. 为负数D. 为正数2.一个数的奇次幂是负数,那么这个数是()A.正数B.负数C.0 D.不能确定3.最小的正有理数是()A.1 B.0.0001 C.0 D.不存在4.如果|a|=2,那么a-1的值是()A.-3 B.1 C.-3或1 D.3或-15.下面说法中正确的是()A.非负数一定是正数。

B.有最小的正整数,有最小的正有理数。

C.-a一定是负数D.正整数和正分数统称正有理数。

二、填空题:1.计算:(-72)+(+28)=_________;0-(-1)=_________;|-3-2|×|+2|=_________;2=_________。

2.-[-(-0.25))的相反数是_________;倒数是_________;绝对值是_________。

3.绝对值小于3.7的所有非负整数有_________;在数轴上表示出来_________。

4.把-3,,,-0.5,-1,0,π“<”222=_________。

6.用四舍五入法得到2.14581精确到千分位的近似值是_________;这时它的有效数字有________个;如果保留三个有效数字,它的近似值是_________。

7.如果数轴上B表示-5,那么在数轴上与B点距离3个长度单位的点所表示的是_________。

8.平方得1的数有_________;_________的立方得-27。

9.最大的负整数是_________,最小的非负有理数是_________;绝对值最小的整数是_________。

10.第一个奇数为3,则第n个奇数为_______;第一个偶数为2,则第m个偶数为_______。

三、计算题:1.2.3.4.5.答案解析:一、1、D 2、B 3、D 4、C 5、D二、1、-44 ; 1 ;10 ;;-0.25 2、0.25 ;-4 ;0.25 3、0,1,2 ,3;略4、5、427.7 ;0.042776、2.146 ;4;2.157、-8或-28、±1 ;-39、-1,0,0 10、2n+1,2m三、1、2、3、4、5、22能力提升:一、选择题:1.下面说法正确的有( ).(1)正整数和负整数统称有理数;(2)0既不是正数,又不是负数;(3)0表示没有; (4)正数和负数统称有理数.(A)4个(B)3个(C)2个(D)1个2.如果两数之积小于零,那么这两个数( ).(A)均为正数(B)均为负数(C) 符号相同(D)一个是正数一个是负数3.下列说法中正确的是( ).(A) -a一定是负数(B) |a|一定是正数(C) |a|一定不是负数(D) |a|一定是负数。

4.下列各数:-|-2|, -(-2), (-2)2, (-2)3,-23中,负数的个数为().(A)一个(B)两个(C)三个(D)四个5.(2011湖南娄底)2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为×109×109×108×1010人6.下列各组数中,大小关系判断正确的一组是( ).A.B.C.D.7.如果a表示有理数,那么下列说法中正确的是( ).(A)+a和-(-a)互为相反数(B)+a和-a一定不相等(C)-a一定是负数(D)-(+a)和+(-a)一定相等8.若|x|=-|x|,则x一定是().(A)零(B)负数(C)正数(D)负数或零9.已知a<b<c, a+b+c=0 , 在a、b、c、a+b、b+c中,能确定值的符号的代数式有()个.(A)1个(B)2个(C)3个(D)4个10.|a +b|=|a|+|b|成立的条件是().(A)ab>0 (B)ab>1 (C)ab0 (D)ab 1二、填空题:1.在有理数:,,,,,中,负数为_______,非负整数为______,分数为_________。

2.(2011常州)计算:________;________;________;________。

3.已知P是数轴上的一点,把P点向左移动3个单位长度后再向右移1个单位长度,这时它表示的数是-4,那么P点表示的数是_________。

4.有理数中最大的负整数是_________,绝对值最小的数是_________。

5.若则a=_________,b=_________。

6.如果a2=16,那么a=_________,如果a3=-27,那么a=_________;7.立方等于本身的数是_________,倒数等于本身的数是_________。

8.比较大小:__________________9.若,则a_________0,,则a_________0。

10.若,,则ac_________0;若,,则________0。

三、计算题:1.(-250)+(-34)+165+(-65)2.7-15-4+7-31-63.4.5.6.答案解析:一、1 D 2 D 3 C 4 C 5 B 6 C 7 D 8 A 9 D 10 C×中的4是近似数字,也就是这个数近似到十万位。

所以这个数的准确值范围是大于或等于1350000,小于1450000。

答案选D 第6题:采用排除法即可。

因为,,,所以选C 第9题:由a<b<c, a+b+c=0可知:若,则,,这与a+b+c=0矛盾,所以a<0;若c≤0,则a<b<0,a+b+c<0,这与a+b+c=0矛盾,所以c>0;由a<0和a+b+c=0可得b+c>0,由c>0和a+b+c=0可得:a+b<0;所以,本题中能确定值的符号的代数式有4个,答案选D二、1、,,;,0;,,2、1/2,1/2,1,-23、-24、-1,05、2,-16、±4,-37、0,±1;±18、>>9、><10、<<解析:第3题:采用逆向思维法。

点P最后在-4,把它向左移1个单位长度,再向右移3个单位长度,就可以得到点P的开始位置。

所以-4-1+3=-2,点P表示的数是-2 第9题:由可得:且分母a≠0,所以a>0三、1、-1842、-423、4、5、6、有理数综合复习基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-21 +65-127+209-3011+4213-5615+7217能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓展训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。

拓展训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。

(用“<”号连接) 拓展训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。

例4:已知5<a ,比较a 与4的大小拓展训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。

例5: 有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -拓展训练:1、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

2、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 。

① ② ③ ④3、已知有理数c b a ,,在数轴上的对应的位置如下图:则b a c a c -+-+-1化简后的结果是( )A .1-bB .12--b aC .c b a 221--+D .b c +-21 三、提高练习1、已知是有理数,且()()012122=++-y x ,那以y x +的值是( )A .21 B .23 C .21或23- D .1-或23 2、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( ) A.7B.3C.3-D.2-3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点4、数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的5、不相等的有理数c b a ,,在数轴上对应点分别为A ,B ,C ,若c a c b b a -=-+-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能 6、设11++-=x x y ,则下面四个结论中正确的是( )A .y 没有最小值B .只一个x 使y 取最小值C .有限个x (不止一个)使y 取最小值D .有无穷多个x 使y 取最小值7、在数轴上,点A ,B 分别表示31-和51,则线段AB 的中点所表示的数是 。

相关文档
最新文档