北京市海淀区2018高三第一学期期末试卷数学(理科)-带答案

合集下载

2017-2018年北京市海淀区高三上学期期末数学试卷(理科)和答案

2017-2018年北京市海淀区高三上学期期末数学试卷(理科)和答案

14. (5 分)对任意实数 k,定义集合

①若集合 Dk 表示的平面区域是一个三角形,则实数 k 的取值范围是


②当 k=0 时,若对任意的(x,y)∈Dk,有 y≥a(x+3)﹣1 恒成立,且存在(x, y)∈Dk,使得 x﹣y≤a 成立,则实数 a 的取值范围为 .
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15 . ( 13 分 ) 如 图 , 在 △ ABC 中 , 点 D 在 AC 边 上 , 且 AD=3BC , AB= (Ⅰ)求 DC 的值; (Ⅱ)求 tan∠ABC 的值. .
18. (13 分)已知椭圆 C:x2+2y2=9,点 P(2,0) (Ⅰ)求椭圆 C 的短轴长和离心率; (Ⅱ)过(1,0)的直线 l 与椭圆 C 相交于两点 M,N,设 MN 的中点为 T,判 断|TP|与|TM|的大小,并证明你的结论. 19. (14 分)已知函数 f(x)=2ex﹣ax2﹣2x﹣2. (Ⅰ)求曲线 y=f(x)在点(0,f(0) )处的切线方程; (Ⅱ)当 a≤0 时,求证:函数 f(x)有且仅有一个零点;
7. (5 分)某三棱锥的三视图如图所示,则下列说法中: ①三棱锥的体积为 ②三棱锥的四个面全是直角三角形 ③三棱锥的四个面的面积最大的是 所有正确的说法是( )
A.① B.①②
C.②③
D.①③
8. (5 分)已知点 F 为抛物线 C:y2=2px(p>0)的焦点,点 K 为点 F 关于原点 的对称点,点 M 在抛物线 C 上,则下列说法错误的是( A.使得△MFK 为等腰三角形的点 M 有且仅有 4 个 B.使得△MFK 为直角三角形的点 M 有且仅有 4 个 C.使得 D.使得 的点 M 有且仅有 4 个 的点 M 有且仅有 4 个 )

2018届上学期北京市海淀区高三期中考试理科数学试卷(附解析)

2018届上学期北京市海淀区高三期中考试理科数学试卷(附解析)

2018届上学期北京市海淀区高三期中考试理科数学试卷(附解析)第Ⅰ卷一、选择题(本题共8小题,每小题5分,共40分,只有一个选项正确,请把答案写在答题........卷上..) 1.若集合{}02<-=x x A ,集合{}12>=xx B ,则A B =I ( )A .RB .()2,∞-C .()2,0D .()+∞,22.下列函数中,既是偶函数又在区间()0,+∞上单调递增的是( ) A .()ln f x x =B .()2xf x -=C .()3f x x =D .()2f x x =-3.已知向量()1,0=a ,()1,1=-b ,则( ) A .∥a bB .⊥a bC .()-∥a b bD .()+⊥a b a4.已知数列{}n a 满足12322(1,2,3,)n a a a a a n ++++==L L ,则( ) A .01<aB .01>aC .21a a ≠D .02=a5.将sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位,则所得图象的函数解析式为( )A .sin 2y x =B .cos 2y x =C .sin 23y x π⎛⎫=+ ⎪⎝⎭D .sin 26y x π⎛⎫=- ⎪⎝⎭6.设α∈R ,则“α是第一象限角”是“sin cos 1αα+>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.设()sin sin e e x xf x x -=+∈R .,则下列说法不正确的是( )A .()f x 为R 上偶函数B .π为()f x 的一个周期C .π为()f x 的一个极小值点D .()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减8.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5,6A B =U ,A B =∅I ;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .10B .12C .14D .16第Ⅱ卷二、填空题(本题共6小题,每小题5分,共30分,请把答案写在答题卷上..........) 9.定积分131dx x -⎰的值等于 .10.设在海拔x 单位:m .处的大气压强y 单位:kPa ,y 与x 的函数关系可近似表示为100e ax y =,已知在海拔1000m 处的大气压强为90kPa ,则根据函数关系式,在海拔2000m 处的大气压强为 kPa .11.能够说明“设x 是实数.若1x >,则131x x +>-”是假命题的一个实数x 的值为 .12.已知ABC △是边长为2的正三角形,O ,D 分别为边AB ,BC 的中点,则①AD AC ⋅=uuu v uu u v;②若OC xAB yAD =+u u u v u u u v u u u v,则x y += . 13.已知函数()()()10sin f x x ωωϕ=>+,2φπ<的部分图象如图所示,则ω= ,ϕ= .14.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x ax a =-+,其中a ∈R .①()1f -= ;②若()f x 的值域是R ,则a 的取值范围是 .三、解答题(本题共6个小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤,.......................请把答案写在答题卷上..........)15.(13分)已知函数()sin 14f x x x π⎛⎫=+- ⎪⎝⎭.(1)求4f π⎛⎫⎪⎝⎭的值; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(13分)已知{}n a 是等比数列,满足26a =,318a =-,数列{}n b 满足12b =,且{}2n n b a +是公差为2的等差数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.17.(13分)已知函数()()1ln af x x a x x=-+-,其中0a >. (1)当2a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求()f x 在区间[]1,e 上的最小值.其中e 是自然对数的底数.18.(13分)如图,在四边形ACBD 中,1cos 7CAD ∠=-,且ABC △为正三角形. (1)求cos BAD ∠的值;(2)若4CD =,BD =,求AB 和AD 的长.19.(14分)已知函数()sin xf x x =,0x <<π,()()()1lng x x x m m =-+∈R .(1)求()f x 的单调区间;(2)求证:1是()g x 的唯一极小值点;(3)若存在a ,()0,b ∈π,满足()()f a g b =,求m 的取值范围.只需写出结论.20.(14分)若数列A :1a ,2a ,K ,n a ,3n ≥.中*i a ∈N ,1i n ≤≤.且对任意的21k n ≤≤-,112k k k a a a +-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,x ,y ,7为“U -数列”,写出所有可能的x ,y ;(2)若“U -数列”A :1a ,2a ,K ,n a 中,11a =,2017n a =,求n 的最大值; (3)设0n 为给定的偶数,对所有可能的“U -数列”A :1a ,2a ,…,0n a ,记{}012max ,,...,n M a a a =,其中{}12max ,,...,s x x x 表示1x ,2x ,K ,s x 这s 个数中最大的数,求M 的最小值.理 科 数 学 答 案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写在答.......题卷上...) 1-4:CADD5-8:BCDA第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........) 9.010.81 11.2 12.(1)3;(2)1213.2,3π-14.(1)1-;(2)(][),04,-∞+∞U三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题卷上)15.解:(1)∵sin 11114422f πππ⎛⎫=-=-= ⎪⎝⎭;(2)()sin 11422f x x x x x x ⎛⎫π⎛⎫=+-=⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1sin 2cos 2x x x x x =+-=+24x π⎛⎫=+ ⎪⎝⎭,∵02x π≤≤,∴52444x πππ≤+≤∴sin 214x π⎛⎫≤+≤ ⎪⎝⎭,故124x π⎛⎫-≤+≤ ⎪⎝⎭当242x ππ+=,即8x π=时,()f x 当52,44x ππ+=即2x π=时,()f x 有最小值1-.16.解:(1)设数列{}n a 的公比为q ,则21231618a a q a a q ==⎧⎨==-⎩, 解得12a =-,3q =-,∴12(3)n n a -=-⨯-令2n n n c b a =+,则11122c b a =+=,()2122n c n n =+-⨯=,()132n n n n c a b n --==+-, (2)(1)1(3)24nn n n S +--=+. 17.解:(1)当2a =时,()23ln f x x x x =--,()2(1)(2)x x f x x --'=,此时()11f =-,()'10f =,故曲线()y f x =在点(1,(1))f 处的切线方程为1y =-. (2)()()1ln af x x a x x=-+-的定义域为()0,+∞, ()221(1)()'1a a x x a f x x x x +--=-+=,令()'0f x =得,x a =或1x =,①当01a <≤时,对任意的1e x <<,()'0f x >,()f x 在[]1,e 上单调递增()()11f x f a ==-最小②当1e a <<时,()()()11ln f x f a a a a ==--+⋅最小,③当e a ≥时,对任意的1e a <<,()'0f x <,()f x 在[]1,e 上单调递减()()()e e 1eaf x f a ==-+-最小,由①、②、③可知,()()()1,0111ln ,1e e 1,ee a a g a a a a a a a a ⎧⎪-<≤⎪=--+⋅<<⎨⎪⎪-+-≥⎩.18.解:(1)∵1cos 7CAD ∠=-,()0,CAD ∠∈π,∴sin CAD ∠=∴cos cos cos cos sin sin 333BAD CAD CAD CAD πππ⎛⎫∠=∠-=∠+∠ ⎪⎝⎭11117214=-⋅=;(2)设AB AC BC x ===,AD y =,在ACD △和ABD △中由余弦定理得2222222cos 2cos AC AD AC AD CAD CDAB AD AB AD BAD BD ⎧+-⋅∠=⎪⎨+-⋅∠=⎪⎩, 代入得222221671137x y xy x y xy ⎧++=⎪⎪⎨⎪+-=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩即AB,AD =19.解:(1)∵())'e sin e cos 2e sin 4x x xf x x x x π⎛⎫=+=+ ⎪⎝⎭,令()'0f x =,得sin 04x π⎛⎫+= ⎪⎝⎭,∵0x <<π,∴34x =π,当x 变化时,()'f x ,()f x 的变化情况如下:故()f x 的单调递增区间为30,4⎛⎫π ⎪⎝⎭,()f x 的单调递减区间为3,4⎛⎫ππ ⎪⎝⎭;(2)证明:∵K ,∴()1ln 1g x x x'=-+,0x >.,设()()1ln 1h x g x x x '==-+,则()'2110h x x x=+>,故()g x '在()0,+∞是单调递增函数,又∵()'10g =,故方程()0g x '=只有唯一实根1x =, 当x 变化时,()g x ',()g x 的变化情况如下:故()g x 在1x =时取得极小值()1g m =,即1是()g x 的唯一极小值点. (3)34e m π≤.20.解:(1)12x y =⎧⎨=⎩,13x y =⎧⎨=⎩或24x y =⎧⎨=⎩;(2)n 的最大值为65,理由如下一方面,注意到:11112k k k k k k k a a a a a a a +-+-+>⇔->-对任意的11i n ≤≤-,令1i i i b a a +=-,则i b ∈Z ,且1k k b b ->,21k n ≤≤-, 故11k k b b -≥+对任意的21k n ≤≤-恒成立.★.当11a =,2017n a =时,注意到121110b a a =-≥-=,得()()()1122111i i i i i b b b b b b b b i ---=-+-+⋅⋅⋅+-+≥-,21i n ≤≤-. 此时112110122(1)(2)2n n a a b b b n n n --=++⋅⋅⋅+≥+++⋅⋅⋅+-=-- 即1(1)(2)201712n n --≤-,解得6265n -≤≤,故65n ≤ 另一方面,取1i b i =-,164i ≤≤.则对任意的264k ≤≤,1k k b b ->,故数列{}n a 为“U -数列”, 此时651012632017a =++++⋅⋅⋅+=,即65n =符合题意. 综上,n 的最大值为65.(3)M 的最小值为200288n n -+,证明如下:当02n m =,2m ≥,*m ∈N .时, 一方面:由★.式,11k k b b +-≥,()()()1121m k k m k m k m k m k k k b b b b b b b b m +++-+-+-+-=-+-+⋅⋅⋅+-≥.此时有:1211221121()()()()m m m m m m m a a a a b b b b b b +++--+-+=++⋅⋅⋅+-++⋅⋅⋅+1122211()()()(1)m m m m b b b b b b m m m m m ++--=-+-+⋅⋅⋅+-≥++⋅⋅⋅+=-,故2212100(1)2822228m m m a a a a m m n n m m M ++++--+-+≥≥≥=, 另一方面,当11b m =-,22b m =-,K ,11m b -=-,0m b =,11m b +=,K ,211m b m -=-时,111112()()10k k k k k k k k k a a a a a a a b b +-+--+-=---=-=> 取1m a =,则11m a +=,123m a a a a >>>⋅⋅⋅>,122m m m a a a ++⋅⋅⋅<<<, 且11211()(1)12m m a a b b b m m -=-++⋅⋅⋅+=-+,2112211()(1)12m m m m m a a b b b m m +++-=+++⋅⋅⋅+=-+, 此时20012128(1)128m n n M a a m m -+===-+=. 综上,M 的最小值为200288n n -+.。

高三数学-2018海淀区高三第一学期期末统考数学试卷 精

高三数学-2018海淀区高三第一学期期末统考数学试卷 精

2018--2018海淀区高三第一学期期末统考数学试卷2018.1一、选择题:本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若πα713=,则( ) A .sin α>0且cos α>0 B .sin α>0且cos α<0 C .sin α<0且cos α>0 D .sin α<0且cos α<02.已知直线02)1(:1=-++y x a l 与直线01)22(:2=+++y a ax l 互相垂直,则实数a 的值为( )A .-1或2B .-1或-2C .1或2D .1或-2 3.已知m ,l 是异面直线,那么①必存在平面α,过m 且与l 平行; ②必存在平面β,过m 且与l 垂直;③必存在平面γ,与m ,l 都垂直; ④必存在平面π,与m ,l 的距离都相等。

其中正确的结论是( )A .①②B .①③C .②③D .①④4.(理)要得到函数y=sin2x 的图象,可以把函数)42sin(π-=x y 的图象( )A .向左平移8π个单位 B .向右平移8π个单位 C .向左平移4π个单位 D .向右平移4π个单位(文)要得到函数)42sin(π-=x y 的图象,可以把函数y=sin2x 的图象( )A .向左平移8π个单位B .向右平移8π个单位C .向左平移4π个单位D .向右平移4π个单位5.设圆锥的母线与其底面成30°角,若圆锥的轴截面的面积为S ,则圆锥的侧面积等于( )A .S π21B .πSC .2πSD .4πS6.已知点A (-2,0)及点B (0,2),C 是圆122=+y x 上一个动点,则△ABC 的面积的最小值为( )A .22-B .22+C .2D .222- 7.(理)从8盆不同的鲜花中选出4盆摆成一排,其中甲、乙两盆不同时展出的摆法种数为( )A .1320B .960C .600D .360(文)从8盆不同的鲜花中选出4盆摆成一排,其中甲、乙两盆有且仅有一盆展出的不同摆法种数为( )A .1320B .960C .600D .3608.设函数f(x)的定义域是[-4,4],其图象如图。

2018年高三最新 北京市海淀区2018学年度高三年级第一

2018年高三最新 北京市海淀区2018学年度高三年级第一

北京市海淀区高三年级第一学期期末练习数学(文科)2018.01学校 班级 姓名一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(( ((A ) (B ) (C ) (D )(4)已知向量1(1sin ,1),(,1sin ),2θθ=-=+a b 且//a b ,则锐角θ等于 ( )(A) 30︒(B) 45︒(C)60︒ (D) 75︒(5)设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是( )(A) ①④ (B) ②③ (C) ②④ (D) ①③ (6)在等差数列{}n a 中,若1781212a a a a +++=,则此数列的前13项之和为( )(A )39 (B )52(C )78(D ) 118(7)已知点()0,A b ,B 为椭圆22x a +22y b=1()0a b >>的左准线与x 轴的交点,若线段AB 的中点C 在椭圆上,则该椭圆的离心率为 ( ) (A(B )2 (C)3 (D)4(8)已知函数12||4)(-+=x x f 的定义域是[]b a ,(,)a b ∈Z ,值域是[]1,0,那么满足条件的整数数对),(b a 共有 ( ) (A )2个 (B )3个 (C ) 5个 (D )无数个二、填空题:本大题共6小题,每小题5分,共30分.请把答案填在题中横线上.(9)双曲线22194x y -=的一个焦点到一条渐近线的距离是 . (10)把函数sin 2y x =的图象按向量(,0)6π-a =平移得到的函数图象的解析式为 . (11)在正方体1111ABCD A BC D -中,若M 为的棱1BB 的中点,则异面直线1B D 与AM 所成角的余弦值是______________.(12)已知函数2|1|(0),()1(0),x x f x x x -+⎧=⎨->⎩≤ 那么不等式()0f x <的解集为 .(13)设不等式组||203022x y x y -⎧⎪-⎨⎪-⎩≤≤≤所表示的平面区域为S ,则S 的面积为 ;若A ,B 为S 内的两个点,则||AB 的最大值为 .(14)平面α内有四个点,平面β内有五个点.从这九个点中,任取三点最多可确定 个平面;任取四点最多可确定 个四面体. (用数字作答)三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.(15)(本小题共13分)已知函数22()cos cos sin f x x x x x =+- (I )求()f x 的最小正周期和值域;(II )在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若()22A f =且2a bc =,试判断ABC ∆的形状.(16)(本小题共13分)设数列}{n a 的前n 项和为n S ,11=a ,且数列}{n S 是以2为公比的等比数列. (I )求数列}{n a 的通项公式; (II )求1321n a a a ++++.(17)(本小题共14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点, AN SC ⊥,且交SC 于点N .(I ) 求证: //SB 平面ACM ; (II )求二面角D AC M --的大小; (III )求证:平面SAC ⊥平面AMN .(18)(本小题共12分)某城市有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和BSNMDCBA报,从该城市中任取4个家庭.(Ⅰ)求这4个家庭中恰好有3个家庭订阅了A 报的概率; (Ⅱ)求这4个家庭中至多有3个家庭订阅了B 报的概率;(Ⅲ)求这4个家庭中恰好有2个家庭A,B 报都没有订阅的概率.(19)(本小题共14分)已知抛物线S 的顶点在坐标原点,焦点在x 轴上,ABC ∆的三个顶点都在抛物线上,且ABC ∆的重心为抛物线的焦点,若BC 所在直线l 的方程为4200.x y +-=(I )求抛物线S 的方程;(II )若O 是坐标原点,P ,Q 是抛物线S 上的两动点,且满足PO OQ ⊥.试说明动直线PQ 是否过定点.(20)(本小题共14分)已知二次函数2()f x ax bx =+的图象过点(4,0)n -,()f x '是()f x 的导函数,且(0)2,f n '=()n ∈*N .(I )求a 的值; (II )若数列{}n a 满足111()n nf a a +'=,且14a =,求数列{}n a 的通项公式; (III )对于(II )中的数列{}n a ,求证:1235k a a a a ++++<(1,2,3)k =.北京市海淀区高三年级第一学期期末练习 数学(文科) 参考答案及评分标准一. 选择题(本大题共8小题,每小题5分,共40分)二. 填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9) 2 (10)sin(2)3y x π=+(12) (,1)(1,1)-∞--(13) (14) 72,120 三.解答题 (本大题共6小题,共80分) (15) (共13分)解:﹙Ⅰ﹚22()cos cos sin f x x x x x =+-2cos2x x =+ 4分 2sin(2)6x π=+5分∴,()[2,2]T f x π=∈- 7分 ﹙Ⅱ﹚由()22Af =,有()2sin()226A f A π=+=, 8分∴sin() 1.6A π+=∵0A π<<,∴62A ππ+=,即3A π=. 10分由余弦定理2222cos a b c bc A =+-及2a bc =,∴2()0bc -=. 12分 ∴,b c = ∴3B C π==.∴ABC ∆为等边三角形. 13分(16) (共13分)解:(I )∵111==a S ,且数列}{n S 是以2为公比的等比数列,∴12n n S -=. 2分 又当2n ≥时,2212(21)2.n n n n n a S S ---=-=-=. 5分∴21 (1),2 (2).n n n a n -=⎧=⎨⎩≥ 7分(II ) 3521,,,n a a a + 是以2为首项,以4为公比的等比数列, 9分∴35212(14)2(41)(14)3n n n a a a +--+++==-. 11分 ∴2113212(41)211+33n n n a a a ++-++++== 13分(17) (共14分)方法一:(Ⅰ)证明:连结BD 交AC 于E ,连结ME . 1分ABCD 是正方形,∴ E 是BD 的中点.∵M 是SD 的中点,∴ME 是DSB ∆的中位线.∴//ME SB . 2分又∵ME ⊂平面ACM , 3分 又SB ⊄平面ACM ,∴SB //平面ACM . 4分 (Ⅱ)解:取AD 中点F ,则MF //SA .作FQ AC ⊥于Q ,连结MQ . 5分 ∵SA ⊥底面ABCD ,∴MF ⊥底面ABCD . ∴FQ 为MQ 在平面ABCD 内的射影.∵FQ AC ⊥,∴MQ ⊥AC . ∴FQM ∠为二面角D AC M --的平面角. 7分设SA AB a ==,在Rt MFQ ∆中,11,2224a MF SA FQ DE ====,∴tan aFQM ==.∴ 二面角D AC M --的大小为 9分 (III )证明:由条件有,,DC SA DC DA ⊥⊥∴ DC ⊥平面SAD ,∴.AM DC ⊥ 10分 又∵ ,SA AD M =是SD 的中点,∴.AM SD ⊥∴AM ⊥平面.SDC 11分 ∴.SC AM ⊥由已知,SC MN ⊥ ∴SC ⊥平面.AMN又SC ⊂平面,SAC ∴平面SAC ⊥平面.AMN 14分 方法二:解:(II )如图,以A 为坐标原点,建立空间直角坐标系O xyz -, 5分 由SA AB =故设1AB AD AS ===,则11(0,0,0),(0,1,0),(1,1,0),(1,0,0),(0,0,1),(,0,)22A B C D S M .SA ⊥底面ABCD ,∴AS 是平面ABCD 的法向量,AS (0,0,1)=. 设平面ACM 的法向量为(,,)x y z =n ,11(1,1,0),(,0,)22AC AM ==, 7分则0,0.AC AM ⎧⋅=⎪⎨⋅=⎪⎩n n 即00,1100.22x y x z ++=⎧⎪⎨++=⎪⎩ ∴ ,.y x z x =-⎧⎨=-⎩ 令1x =,则(1,1,1)=--n . 8分∴cos ,||||AS AS AS ⋅<>===⋅n n n , ∴二面角D AC M --的大小为9分 (III )11,0,22AM ⎛⎫= ⎪⎝⎭, ()1,1,1CS =--, 10分11022AM CS ∴⋅=-+=AM CS ∴⊥ 12分又SC AN ⊥且AN AM A =SC AMN ∴⊥平面. 又SC ⊂平面,SAC∴平面SAC ⊥平面AMN . 14分(18)(共12分)解:(Ⅰ)设“这4个家庭中恰好有3个家庭订阅了A 报”的事件为A , 1分334()(0.3)(0.7)0.0756P A C == 4分答:这4个家庭中恰好有3个家庭订阅了A 报的概率为0.0756.(Ⅱ)设“这4个家庭中至多有3个家庭订阅了B 报”的事件为B , 5分8704.01296.01)6.0(1)(4=-=-=B P 8分答:这4个家庭中至多有3个家庭订阅了B 报的概率为0.8704.(III ) 设“这4个家庭中恰好有2个家庭A ,B 报都没有订阅”的事件为C , 9分 因为有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报.所以两份报纸都没有订阅的家庭有30﹪.所以()()2224()0.30.70.2646P C C == 12分答:这4个家庭中恰好有2个家庭A ,B 报都没有订阅的概率为0.2646. 注:第三问若写出两份报纸都没有订阅的家庭有30﹪,后面计算有误,给到10分.(19)(共14分)解:(I) 设抛物线S 的方程为22.y px = 显然0,0.k b ≠≠ 1分 由24200,2,x y y px +-=⎧⎨=⎩ 可得22200.y py p +-= 3分 由0∆>,有0p >,或160.p <-设1122(,),(,),B x y C x y 则12,2p y y +=-121212(5)(5)1010.4448y y y y px x +∴+=-+-=-=+设33(,)A x y ,由ABC ∆的重心为(,0),2pF 则123123,0323x x x y y y p ++++==, 331110,.82p p x y ∴=-=∵点A 在抛物线S 上,∴2112(10),28p p p ⎛⎫=- ⎪⎝⎭∴8.p = 6分∴抛物线S 的方程为216.y x = 7分 (II )当动直线PQ 的斜率存在时,设动直线PQ 方程为y kx b =+,显然0,0.k b ≠≠ 9分设(,)(,)P P Q Q P x y Q x y ,∵PO OQ ⊥,∴ 1.OP OQ k k ⋅=- ∴1,QP P Qy y x x ⋅=- ∴0.P Q P Q x x y y += 10分 将y kx b =+代入抛物线方程,得216160,ky y b -+=∴16.P Q by y k= 从而22222,16P Q P Q y y b x x k⋅==∴22160.b b k k += ∵0,0k b ≠≠,∴16,b k =-∴动直线方程为16(16)y kx k k x =-=-,此时动直线PQ 过定点(16,0). 12分 当直线PQ 的斜率不存在时,显然PQ x ⊥轴,又PO OQ ⊥, ∴POQ 为等腰直角三角形.由216,,y x y x ⎧=⎨=⎩ 216,,y x y x ⎧=⎨=-⎩得到(16,16),(16,16)P Q -,此时直线PQ 亦过点(16,0). 13分 综上所述,动直线PQ 过定点(16,0)M . 14分(20)(共14分)解:(I )由已知,可得()2f x ax b '=+, 1分∴ 22,1640.b n n a nb =⎧⎨-=⎩解之得12a =. 3分(II )∵1112n n n a a +=+,∴1112n n n a a +-=.由211121a a -=⨯ 321122a a -=⨯ 431123a a -=⨯()11121n n n a a --=- ,累加得2114n n n a -=- (2,3)n =. 6分∴211(1)44(21)n n n a n -==-+(2,3)n =. 当 12414(21)n a n ===-时,7分∴24(21)n a n =-(1,2,3)n =. 8分(III )当1k =时,由已知145a =<显然成立; 9分当2k …时,1111(1)1(1)4k a k k k kk k =<=----+(2k …) 11分则1231111114[(1)()()]552231k a a a a k k k++++<+-+-++-=-<- 13分 综上,1235k a a a a ++++<(1,2,3)k =成立. 14分说明:其他正确解法按相应步骤给分.。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

2018北京市海淀区高三数学(理科)(上)期末(K12教育文档)

2018北京市海淀区高三数学(理科)(上)期末(K12教育文档)

2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)的全部内容。

2018北京市海淀区高三数学(理科)(上)期末 2018. 1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12+=ii(A )2-i (B )2+i(C )2--i(D)2-+i (2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为(A )(B)(C )(D )(3)执行如图所示的程序框图,输出的k 值为(A ) 4 (B) 5 (C) 6 (D ) 7(4)设m 是不为零的实数,则“0m >"是“方程221x y m m-=表示双曲线”的(A )充分而不必要条件 (B )必要而不充分条件(C)充分必要条件 (D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m的值为(A(B(C或(或 (6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为(A )15(B )25(C )35(D)45(7)某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形 ③所有正确的说法是(A)①(B)①②(C )②③ (D )①③(8)已知点F 为抛物线C :()220y px p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则下列说法错误..的是 (A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个(C)使得4MKF π∠=的点M 有且仅有4个 (D)使得6MKF π∠=的点M 有且仅有4个主视图左视图俯视图二、填空题共6小题,每小题5分,共30分。

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

海淀区高三年级第一学期期末练习数 学(理科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B )()0 (C ) (,)-10 (D )(,)-40 (2)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则,a b 的夹角大小为 (A )π6 (B )π4 (C )π3 (D )5π12(3)已知等差数列{}n a 满足12a =,公差d ≠0,且125,,a a a 成等比数列,则d = (A )1 (B )2 (C )3 (D )4(4)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0 (B )12±(C )1± (D )2(5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为 (A )6 (B )7 (C )8 (D )12 (6)已知函数()ln af x x x=+ ,则“a <0”是“函数()f x 在区间(,)+∞1 上存在零点”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)已知函数()sin cos ,()f x x x g x =-是()f x 的导函数,则下列结论中错误的是 (A )函数()f x 的值域与()g x 的值域相同(B )若0x 是函数()f x 的极值点,则0x 是函数g()x 的零点(C )把函数()f x 的图象向右平移π2个单位,就可以得到函数()g x 的图象 (D )函数()f x 和g()x 在区间ππ(,)44-上都是增函数(8)已知集合{(,)|150,150,,}A s t s t s t =≤≤≤≤∈∈N N . 若B A ⊆,且对任意的(,),(,)a b B x y B ∈∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为(A )25 (B )49 (C )75 (D )99第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市海淀区2018届高三上学期期末考试数学理试题 含答案

北京市海淀区2018届高三上学期期末考试数学理试题 含答案

海淀区高三年级第一学期期末练习数学(理科) 2018.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =-+B.12y x =C.2y x =D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC(Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计: 第一周 第二周 第三周 第四周第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95% 96% (Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望; (Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.ABCD1图O DCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2018.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b ===, 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A == 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P1327321532932 171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七: 结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅= ,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则 110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z ==,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅ 法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-+=⎪⎩令1x =,则1y z =,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>==⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+ 因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+, 即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根,因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- , 故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾;若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。

2018届北京市海淀区高三上学期期末考试理科数学试题及答案

2018届北京市海淀区高三上学期期末考试理科数学试题及答案

海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2018.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案DDABACBD二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k ≠-∈Z .因为,cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分9. 2 10.4511. (0,1);4 12.2313.214.43;①②③cos sin x x =+π2sin()4x =+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分所以24sin 1cos 5A A =-=,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分(Ⅱ)由(Ⅰ)可得π()2sin()4f x x =+,所以()f x 的最小正周期2πT =.-----------------------------------10分 因为函数sin y x=的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X的取值为:0,1,2,3.----------------------------------5分 事件“Xk=”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分即X 的分布列为X123P16496427642764所以X的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O = ,所以O为,AC BD中点.-------------------------------------1分 又因为,PA PC PB PD ==,所以,PO AC PO BD⊥⊥,---------------------------------------3分 所以PO ⊥底面ABCD.----------------------------------------4分(Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,6PB PD ==,可得3,3PO OB OD ===.所以(1,0,0),(1,0,0),(0,3,0),(0,0,3)A C B P -.---------------------------------------5分所以(1,0,3)CP = ,(1,0,3)AP =-.由已知可得133(,0,)444OF OA AP =+=-----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即30,330.44y x z ⎧=⎪⎨+=⎪⎩ 令1x =,则3z =-,所以(1,0,3)=-n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分PAFB CDOx yz所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30 . -----------------------------------------10分(Ⅲ)设BM BPλ=(01)λ≤≤,则(1,3(1),3)CM CB BM CB BP λλλ=+=+=-.---------------------------------11分若使CM ∥平面BDF ,需且仅需0CM ⋅=n 且CM ⊄平面BDF ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BM BP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R.------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:x(,2)-∞ 2 (2,)+∞'()f x -0 +()f x↘ 极小值↗所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分(Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(1)10F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10e aF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2)(1)0F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分x(,2)-∞ 2 (2,)+∞'()f x -0 +()f x↘ 极小值↗x(,2)-∞2 (2,)+∞ '()f x+0 -()f x↗ 极大值↘所以此时函数()F x 总存在零点. --------------------------------------------13分综上所述,所求实数a 的取值范围是2e 0a -<<.19.(本小题共14分)解:(Ⅰ)由题意得1c =, ---------------------------------------1分 由12c a =可得2a =, ------------------------------------------2分所以2223b a c =-=, -------------------------------------------3分所以椭圆的方程为22143x y +=.---------------------------------------------4分(Ⅱ)由题意可得点3(2,0),(1,)2A M -,------------------------------------------6分所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()21x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列,2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数, 所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列.*,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++, 所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列.由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1=++,k g g d所以*,d b∀∈N,数列{()}+++成g g g g g g dg n中总存在三项(1),[(1)1],[2(1)(1)1]等比数列.所以*∀∈N,函数(),d bg x dx b=+都是等比源函数.-------------------------------------------13分。

2018届北京市海淀区高三上学期期末考试数学(理)试题 Word版含解析

2018届北京市海淀区高三上学期期末考试数学(理)试题 Word版含解析

北京市海淀区2018届高三第一学期期末数学试题(理科)1. 复数A. B. C. D.【答案】A【解析】由,故选A.2. 在极坐标系中,方程表示的圆为A. B. C. D.【答案】D【解析】由题意得,方程表示以,半径为的圆,故选D.3. 执行如图所示的程序框图,输出的值为()A. 4B. 5C. 6D. 7【答案】B【解析】执行程序框图,可知:第一次循环:;第二次循环:;第三次循环:;第四次循环:,此时满足判断条件,终止循环,输出,故选B.4. 设是不为零的实数,则“”是“方程表示的曲线为双曲线”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】由题意得,方程表示双曲线,则或,所以“”是方程“表示双曲线”的充分不必要条件,故选A.5. 已知直线与圆相交于两点,且为正三角形,则实数的值为()A. B. C. 或 D. 或【答案】D【解析】由题意得,圆的圆心坐标为,半径.因为为正三角形,则圆心到直线的距离为,即,解得或,故选D.6. 从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A. B. C. D.【答案】C【解析】从编号为的六个大小完全相同的小球中,随机取出三个小球,共有种不同的取法,恰好有两个小球编号相邻的有:,共有种,所以概率为,故选C.7. 某三棱锥的三视图如图所示,则下列说法中:①三棱锥的体积为②三棱锥的四个面全是直角三角形③三棱锥的四个面的面积最大的是所有正确的说法是A. ①B. ①②C. ②③D. ①③【答案】D【解析】由题意得,根据给定的三视图可知,该几何体表示底面是腰长为的等腰直角三角形,高为的三棱锥,即平面,则三棱锥的体积为,故①是正确的;其中为边长为的等边三角形,所以②不正确;其中为面积最大的面,其面积为,所以③是正确的,故选D.8. 已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是()A. 使得为等腰三角形的点有且仅有4个B. 使得为直角三角形的点有且仅有4个C. 使得的点有且仅有4个D. 使得的点有且仅有4个【答案】C【解析】由为等腰三角形,若,则有两个点,若,则不存在,若,则有两个点,使得为等腰三角形,的点有四个点;由中,为直角的点有两个点,为直角的点不存在;为直角的点有两个,则使得为等腰三角形,的点有且仅有四个点;若的在第一象限,可得直线,代入抛物线的方程可得,解得,由对称性可得在第四象限只有一个,则满足的只有两个;使得的点在第一象限,可得直线,代入抛物线的方程,可得,可得点有两个,若点在第四象限,由对称性可得也有两个,则使得的点有且仅有四个,故选选C.点睛:本题主要考查了抛物线的标准方程及其简单的几何性质,以及直线与抛物线的位置关系的应用问题,此类问题的解答通常是把直线的方程代入曲线的方程,转化为一元二次方程,利用根于系数的关系和韦达定理求解是解答的关键,同时考查了分类讨论思想和数形结合思想的应用.9. 点到双曲线的渐近线的距离是___________.【答案】【解析】由双曲线的方程,可得双曲线的一条渐近线的方程为,级,所以点到渐近线的距离为.10. 已知公差为1的等差数列中,,,成等比数列,则的前100项和为__________.【答案】5050【解析】由题意得,构成等比数列,所以,即,解得,所以数列的前项的和为.11. 设抛物线的顶点为,经过抛物线的焦点且垂直于轴的直线和抛物线交于两点,则________.【答案】2【解析】由抛物线的焦点为,经过抛物线的焦点且垂直与的直线和抛物线交于两点,则,所以.12. 已知的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则_____.【答案】6【解析】由题意得,令,可得展开式中各项的系数和为,由展开式中各项的二项式系数的和为,则.13. 已知正方体的棱长为,点是棱的中点,点在底面内,点在线段上,若,则长度的最小值为_____.【答案】【解析】由题意得,过点作平面,垂足为,在点在线段上,分别连接,在直角中,,在平面内过点作,则,即到直线的最短距离为,又,当时,此时,所以的最小值为.14. 对任意实数,定义集合.①若集合表示的平面区域是一个三角形,则实数的取值范围是______;②当时,若对任意的,有恒成立,且存在,使得成立,则实数的取值范围为_______.【答案】(1). (2).【解析】作出不等式组所表示的平面区域,如图所示,若不等式组表示的平面区域是一个三角形,观察图形可得只要满足时,满足题设条件,对于任意,有恒成立,则恒成立,因为表示与定点的斜率,当过点时,此时有最小值,最小值为,即,存在,使得成立,则,平移目标函数,当直线和重合时,此时最小,最小值为,则,综上所述的取值范围是.点睛:本题主要考查了简单的线性规划的应用,利用图象分析目标函数的取值范围是解得关键,其中线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用.15. 如图,在中,点在边上,且.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ).(Ⅱ)【解析】试题分析:(Ⅰ)由题意得,设,则,,在在中,由余弦定理列出方程,即可求解的长;(Ⅱ)在中,由正弦定理,求得进而的值,进而得到,即可求解的值;或在中,由余弦定理,求解的值,得,求出,从而得到结论.试题解析:(Ⅰ)如图所示,,故,设,则,.在中,由余弦定理即,解得,即.(Ⅱ)方法一.在中,由,得,故在中,由正弦定理得:即,故,由,得,方法二. 在中,由余弦定理由,故,故16. 据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。

2018北京市海淀区高三数学一模理科试题及答案

2018北京市海淀区高三数学一模理科试题及答案

资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除海淀区高三年级第二学期期中练习()参考答案与评分标准理数学2018.48540 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

小题,每小题分,共一、选择题共121432 分。

注:第题第一空均为、分,第二空均为680 分。

解答题应写出解答步骤。

三、解答题共小题,共15. 13 分)(本题满分????2?2coscos1??f()23sin(Ⅰ)66662??133?23???2??1???? 222???2·3 ····················································································分f(x)?3sin2x?cos2x(Ⅱ)?)?2sin(2x?6??????x?siny?,2k2?k k?Z,因为函数)的单调递增区间为(??22????????k?2?2x2k??k?Z,令)(226??????kk?x?k?Z,()解得63??)x(f??]?,k[k?Z?k 1 3····························分()故的单调递增区间为6313 16.分)(本题满分只供学习与交流.请联系网站删除资料收集于网络,如有侵权A112有利于病毒繁殖和传月平均相对湿度:从上表个月,该月甲地空气个月中,随机取出(Ⅰ)设事件A i.月,则用表示事件抽取的月份为第播i},A,A,AAA,A,A,A,,A??{A,A,A,12 个基本事件,共1970468151213},A,A,AA?{A,A,A 6 个基本事件,共196218016?(A)?P. ·4···································································分所以,2126空气月平均相对湿度都有利于病毒繁殖和传播的月(Ⅱ)在第一季度和第二季度的个月中,甲、乙两地02X126. ,所有可能的取值为月,故份只有,月和2121CCCC18262424???0)?2)?P(XP(X?1)??P(X??,,22215CC15C155666X的分布列为随机变量21X182P1515558%54%M.3 ·······1··········································,最小值为分的最大值为(Ⅲ)17.14 分)(本题满分1 :(Ⅰ)方法PA OCB ACOBOPO. 由题意的中点为,设,连接AO?BO?CO?11PO?,,2PC?PA?PB??PACPA?PCOAC的中点因为中,在为,PO?AC,所以?POBOB?11PO?,中,在因为,2PB?OB?PO所以AC,OB?OACOB?ABC平面因为,PO?ABC平面所以PO?PAC4·································································平面分因为PACABC?平面平面所以只供学习与交流.请联系网站删除资料收集于网络,如有侵权2:方法PA OCBPOBOACO . ,,连接设的中点为ACO?PACPA?PC的中点中,,因为为在AC?PO,所以CO?PCAO?BOPA?PB?POPO?PO?,,因为POC??POB?POA≌≌所以??90POB??POC?POA??所以OBPO?所以?,OBACOOB?ACABC平面,因为ABCPO?平面所以PAC?PO·4 ································································平面分因为ABCPAC?平面所以平面3:方法PAOQCB ACOPO?PACPA?PC,的中点为,因为在,连接中,设PO?AC所以QPQOQ OB AB. 及,的中点,连接设QOB?OABOA?AB的中点因为为在,中,OQ?AB. 所以Q AB?PB?PABPA的中点中,在,为因为PQ?AB. 所以PQOQ?QPQ,OQ?OPQ平面因为,OPQ?AB 平面所以OPQ?OP平面因为只供学习与交流.请联系网站删除资料收集于网络,如有侵权BAOP?所以?ACAB,A?ABAC ABC平面因为,ABC?PO平面所以PACPO?··4 ·······························································平面分因为ABCPAC?平面平面所以ACABCOB?PO?,如图建立空间直角坐标系,则,平面(Ⅱ)由zP(0,0,1)?1,0,0)P(1,0,0)B(0,1,0)A(O(0,0,0)C,,,,APCOB?APC(0,1,0)OB?的法向量为平面由,故平面1)(1,0,?(1,?1,0)PC?BC?,由PBC),z?(x,yn,则设平面的法向量为0y?x???0n?BC??得:由?0PC?n?0?x?z??1?y1x?(1,1,1)?n1z?,即,得,令n?OB13??cos?n,OB??3||OBn|?|13?A?PC?B是锐二面角,由二面角3B?A?PC············································9 分所以二面角的余弦值为3?10???BPBN?,则(Ⅲ)设,????)1,,?(?1,0,1)?(1?BM?BC?CM?BC?CP?(1,?1,0)?????),??1,1)(1,1BN?AB?BP?(1,1,0)??(0,?ANAB?令0AN?BM????????)?01)?(11)??(??(1得?1???1?μλ的单调递增函数,是关于即,???11?只供学习与交流.资料收集于网络,如有侵权请联系网站删除1212??]?][,?[,,时,当53342BN1][,?·4 ······1·································································分所以5BP418. 13分)(本题满分xln?)(xf0a?时,(Ⅰ)当x1xln?x?xln1?故x??f'(x)0?f'(x)e?0?x,得22xx令)ex)(0,f(·4·······················································分故的单调递增区间为ax?ax??ln?lnx1 1 xx:(Ⅱ)方法?)?f'(x22)?a)a(x(x?ax??x)1?lng(令xax?a10??????g'(x)则22xxx1aa1a?0??(?1)?g(e)?1?(1?a?0g(e)?a)?,由0?(x)g0x)?g()x,??xx?(0,x)?(时,时,故当;当00 1?1?aa eee1?a0?(x)g)e?(e,x,故存在00)(0,x),??(xxx000?)xf'(0?)(xf↗↘极大值1?)f(x故02ea?0??lnx1??02?xe?x??0013···················································??,解得故分xln12ea????0??2e a?x?0a2.e的值为故只供学习与交流.资料收集于网络,如有侵权请联系网站删除1lnx1x?(0,??f(x))x?(0,??)?2,的最大值为,(Ⅱ)方法且存在:的充要条件为对任意的0x?(0,??))??x?(0,2xlnxa?e?的意价于对任得使,,且存在使得,等22e x?a e lnx10?20x?a e02lnx??e xa,00a2xlnx?)g(x?e.的最大值为等价于2e g'(x)??1,x g'(x)?02e?x.,得令)g(x↗↘极大值g(x)222222ee?elne?g(e)?ea?. ·13 ··························,即的最大值为故分1914 分)((本小题)41???1?22ba??222a?b?c?,(Ⅰ)由题意?c3???e?a2?6?c,,解得:2b??22a22yx C??1·5 ···················································分的标准方程为故椭圆821(x?2)y?1?l1)PTPTQQ(2,的方程为-则点或,点的坐标为直线(Ⅱ)假设直线或,的斜率不存在,21xy??2. 即222?yx??1??822?04?4?x?x,联立方程,得1?x?y?2??2 lC. 相切,不合题意此时,直线与椭圆只供学习与交流.资料收集于网络,如有侵权请联系网站删除TPTQ. 的斜率存在故直线和1 :方法),y)Q(xP(x,y,则设,22111y?12)x:y?1??(TP,直线2x?11y?22)y?1?x?(TQ:直线2x?22??x2x21?2ON?|OM|2?|?|,故1?1yy?2111t?y?xxPQ:?OT:y0?t)由直线,设直线(2222?yx1????28220??tx?2t?x4?2?联立方程,1?t?xy??2?2t2??x?x4?2tx?x?0??,当时,21212x?x?221)(??4?|OM||?|ON1y?y?1212?xx?221)(??4?111?x?t1tx??21221)??4(t2)(x?x)(xx?t?2112?4?1121)t?x)?(?xx?(t?1)(x22112421)t?t)?4(4?(t?2)(?22t???411221)(t?(?2t)?1)(2t?4)?(t??24?4.4 (1)分只供学习与交流.资料收集于网络,如有侵权请联系网站删除2 :方法TQ)yx,,y)Q(P(xkk TP和和,直线设的斜率分别为,21122111xPQ:y?x?tOT:y?t?0)由,设直线(2222?yx??1??8222?4?0tx?2?xt?2?联立方程,1?x??ty??22x?x??2tx?x?2t?40??,当时,2121y?1y?121??k?k21x?2x?22111x?t?1x?t?1 2122??x?2x?221xx?(t?2)(x?x)?4(t?1)2211?(x?2)(x?2)212?4?(t?2)(?2t)?2t4(t?1)?(x?2)(x?2)21?0TQ TP的斜率和为零故直线和直线?TMN??TNM故TM?TN故MNMNT2的中点横坐标为在线段故的中垂线上,即|OM|?|ON|?4·14·····································································故分20. 13 分)(本题满分N?N?N?BA”.3 ”“·“···········3 ”“·············数表数表,值分,其(Ⅰ)不是是为aa N?A”“,的值和均是数表(Ⅱ)假设ji,'',ji a?max{a,a,...,a}?max{a,a,...,a}?a'?ii;若,则①'i,j',1',ii,1',2i,2jni,ii',ni a?min{a,a,...,a}?min{a,a,...,a}?a'jj?;若②,则'jj1,''i2,ji,j'1,j',2,jnn,j,j j?j''i?i,则一方面,③若a?max{a,a,...,a}?a?min{a,a,...,a}?a,'ji',''ji,ni,1i,2i,ji,'j1,'2,j,nj另一方面只供学习与交流.资料收集于网络,如有侵权请联系网站删除a?max{a,a,...,a}?a?min{a,a,...,a}?a;j1,i',2jii',n',1j2,ji',j',ij',n,i N?N?A”““. ·····8 . ”··················是唯一的值,则其即若数表数表分是矛盾1 :(Ⅲ)方法A?(a)1931936121.…列的数表行,组成的对任意的由,,,1919i,j?jj)bB?(iiBA列,即如下,将数表的第的第定义数表列的元素写在数表行,第行,第19j,i19?b?a1?j?1919i?1?),(其中jij,i,显然有:31919361B21…列的数表,组成的,①,数表行是由,jjAB列的元素数表行的元素,即为数表②的第的第iiAB 行的元素③列的元素,即为数表数表的第的第j a i A列中的最小值④是第若数表行中的最大值,也是第中,ji,j b i B. 行中的最小值则数表是第中,列中的最大值,也是第ij,C?(c)B362 ,即定义数表如下,其与数表对应位置的元素的和为19?,i19j c?362?b1?j?19191?i?),(其中ii,jj,显然有31919361C21…列的数表数表,是由,①,行,组成的j b i B列中的最小值中,若数表列中的最大值,也是第②是第ij,j c i C列中的最大值中,列中的最小值,也是第是第则数表ij,A?(a)1919336121…列的数表行,,特别地,对由,,组成的1919i,j?31919361C21…列的数表,组成的,,①,数表行是由j a i A列中的最小值②是第若数表行中的最大值,也是第中,ji,j c i C 列中的最大值是第则数表列中的最小值,也是第中,ij,a1?j?19C??A??N??N191?i?””““值,其),则,且其即对任意的值,为(其中ji,1919c?362?b?362?a.为jj,i,iij,C?T(A)T(C)?AC?T(A)N?362A“”,的,即数表值记,则与数表之和为?N?362“”,值中的数表两两配对,使得每对数表的之和为故可按照上述方式对19E(X)?181X. ·3 ·1 ·························································的数学期望故分2 :方法19,20,21,...,341,342,343X.所有可能的取值为只供学习与交流.资料收集于网络,如有侵权请联系网站删除k?19,20,21,...,341,342,343n?kX?A,则中使得的数表,记的个数记作k19181822?C?C?[(18n?19)!].k?k361k?1218182n?19?C?C?[(18)!]?n,则则k?361?k?k1k362343343343????(362?nnk?kn)?k k362k?k19??k?19k19k?)??(EX,???(362?nk)n?k kk19?k19k?E(X)?181362)(2EX???. ·············343343343???nnn kkk19k?19?k?19k343343···13 分故,343343??nn kk19k19?k?只供学习与交流.。

2019年1月2018-2019学年度北京市海淀区高三上学期期末理科数学试题

2019年1月2018-2019学年度北京市海淀区高三上学期期末理科数学试题

1/22/2019 2:31 PM理科第1页,共4页海淀区高三年级第一学期期末练习数学(理科)2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线xy 22122的左焦点的坐标为(A)(,)20(B)(,)20(C) (,)10(D)(,)40(2)已知向量(,),(,)t 201a b,且||a b a ,则,a b 的夹角大小为(A)π6(B)π4(C)π3(D)5π12(3)已知等差数列{}n a 满足12a ,公差d 0,且125,,a a a 成等比数列,则d (A)1(B)2(C)3(D)4(4)直线y kx 1被圆xy 222截得的弦长为2,则k 的值为(A)0(B)12(C)1(D)22(5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为(A)6(B)7(C)8(D)12(6)已知函数()ln a f x xx,则“a0”是“函数()f x 在区间(,)1上存在零点”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)已知函数()sin cos ,()f x xx g x 是()f x 的导函数,则下列结论中错误的是(A)函数()f x 的值域与()g x 的值域相同(B)若0x 是函数()f x 的极值点,则0x 是函数g()x 的零点(C)把函数()f x 的图象向右平移π2个单位,就可以得到函数()g x 的图象(D)函数()f x 和g()x 在区间ππ(,)44上都是增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区2018高三第一学期期末试卷数学(理科)-带答案海淀区高三年级第一学期期末练习数学(理科)2018. 1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12+=ii(A)2-i(B)2+i(C)2--i(D)2-+i(2)在极坐标系Ox中,方程2sinρθ=表示的圆为(A)(B)(C)(D)(3)执行如图所示的程序框图,输出的Array k值为(A)4 (B)5 (C) 6(D)7(4)设m 是不为零的实数,则“0m >”是“方程221x y m m-=表示双曲线”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221xy +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m 的值为(A (B (C 或 (D(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为(A )15 (B )25 (C )35(D )45(7)某三棱锥的三视图如图所示,则下列说法中: ① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形③ 三棱锥四个面的面积中所有正确的说法是 (A )① (B )①② (C )②③ (D )①③(8)已知点F 为抛物线C :()220ypx p =>的焦点,点K 为点F关于原点的对称点,点M 在抛物线C 上,则下列说法错.误.的是 (A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个 (C )使得4MKF π∠=的点M 有且仅有4个主视图左视图俯视图(D )使得6MKF π∠=的点M 有且仅有4个第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

(9)点(2,0)到双曲线2214x y -=的渐近线的距离是______________ .(10)已知公差为1的等差数列{}na 中,1a ,2a ,4a 成等比数列,则{}na 的前100项的和为 .(11)设抛物线C :24yx=的顶点为O ,经过抛物线C 的焦点且垂直于x 轴的直线和抛物线C 交于A ,B 两点,则OA OB +=u u u r u u u r .(12)已知()51nx -展开式中,各项系数的和与各项二项式系数的和之比为64:1,则=n .(13)已知正方体1111ABCD A B C D -的棱长为,M 是棱BC 的中点,点P 在底面ABCD内,点Q 在线段11A C 上.若1PM =,则PQ 长度的最小值为 .(14)对任意实数k ,定义集合20(,)20,,0k x y D x y x y x y kx y ⎧⎫-+≥⎧⎪⎪⎪=+-≤∈⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭R .① 若集合kD 表示的平面区域是一个三角形,则实数k 的取值范围是 ;② 当0k =时,若对任意的0(,)x y D ∈,有()31y a x ≥+-恒成立,且存在0(,)x y D ∈,使得x y a -≤成立,则实数a 的取值范围为 .三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分)如图,在∆ABC 中,点D 在AC 边上,且3AD DC =,AB =3ADB π∠=,=6C π∠. (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值.(16)(本小题13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越...小.,速度越快....,单位是MIPS )A(Ⅰ)从品牌A 的12次测试结果中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)在12次测试中,随机抽取三次,记X 为品牌A 的测试结果大于品牌B 的测试结果的次数,求X 的分布列和数学期望()E X ;(Ⅲ)经过了解,前6次测试是打开含有文字与表格的文件,后6次测试是打开含有文字与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.(17)(本小题14分)如图1,梯形ABCD 中,//AD BC ,CD BC ⊥,1BC CD ==,2AD =,E为AD 中点.将ABE ∆沿BE 翻折到1A BE ∆的位置, 使11A E A D =如图2.(Ⅰ)求证:平面1A ED ⊥平面BCDE ;(Ⅱ)求1A B 与平面1ACD 所成角的正弦值;(Ⅲ)设M 、N 分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.AEDBCD图1 图2 (18)(本小题13分) 已知椭圆C :2229xy +=,点(2,0)P .(Ⅰ)求椭圆C 的短轴长与离心率;(Ⅱ)过(1,0)的直线l 与椭圆C 相交于M 、N 两点,设MN的中点为T ,判断||TP 与||TM 的大小,并证明你的结论.(19)(本小题14分) 已知函数2()222xf x ax x =---e(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a ≤时,求证:函数()f x 有且只有一个零点; (Ⅲ)当0a >时,写出函数()f x 的零点的个数.(只需写出结论)(20)(本小题13分)无穷数列{}na 满足:1a 为正整数,且对任意正整数n ,1n a +为前n 项12,,,na a a L 中等于na 的项的个数.(Ⅰ)若12a=,请写出数列{}na 的前7项;(Ⅱ)求证:对于任意正整数M ,必存在k *∈N ,使得kaM>;(Ⅲ)求证:“11a=”是“存在m *∈N ,当n m ≥时,恒有2n naa +≥成立”的充要条件.海淀区高三年级第一学期期末练习参考答案 2018.1数 学(理科)阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.(有两空的小题第一空3分) (9 (10)5050 (11)2(12)6 (13 (14)①(1,1)- ②1[2,]5-三、解答题: 本大题共6小题,共80分.15. (本小题13分)解:(Ⅰ)如图所示,366DBC ADB C πππ∠=∠-∠=-=,…………………….1分故DBC C∠=∠,DB DC = ……………………….2分设DC x =,则DB x =,3DA x =. 在ADB ∆中,由余弦定理2222cos AB DA DB DA DB ADB=+-⋅⋅∠ ……………………….3分即22217(3)2372x x x x x =+-⋅⋅⋅=, ……………………….4分 解得1x =,即1DC =. ……………………….5分 (Ⅱ)方法一. 在ADB ∆中,由AD AB >,得60ABD ADB ∠>∠=︒,故362ABC ABD DBC πππ∠=∠+∠>+= (7)分在ABC ∆中,由正弦定理sin sin AC ABABC ACB =∠∠A即41sin 2ABC=∠,故sin ABC ∠=, ……………………….10分 由(,)2ABC ππ∠∈,得cos ABC ∠= ……………………….11分tan ABC ∠== ………………………13分方法二. 在ADB ∆中,由余弦定理222cos 2AB BD AD ABD AB BD +-∠===⋅ ……………………….8分由(0,)ABD π∠∈,故sin ABD ∠=故tan ABD ∠=- ……………………….11分故tan tan6tan tan()61tan tan 6ABD ABC ABD ABD πππ-∠+∠=∠+===-∠⋅………………………13分 方法三:2222cos 3BCBD CD BD CD BDC =+-⋅⋅∠=,BC =222cos2BA BC AC ABC BA BC +-∠==⋅…………………………8分因为(0,)ABC π∠∈,所以sinABC ∠=……………………11分所以tanABC ∠==分16. (本小题13分)(Ⅰ)从品牌A 的12次测试中,测试结果打开速度小于7的文件有:测试1、2、5、6、9、10、11,共7次 设该测试结果打开速度小于7为事件A ,因此7()12P A =……………………….3分(Ⅱ)12次测试中,品牌A 的测试结果大于品牌B 的测试结果的次数有:测试1、3、4、5、7、8,共6次 随机变量X 所有可能的取值为:0,1,2,330663121(0)11C C P X C ===21663129(1)22C C P X C ===12663129(2)22C C P X C ===03663121(3)11C C P X C ===……………………….7分随机变量X 的分布列为……………………….8分19913()0123112222112E X =⨯+⨯+⨯+⨯= ……………………….10分(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分;结合已有数据,能够运用以下8个标准中的任何一个陈述得出该结论的理由,2分.…………………13分.标准1: 会用前6次测试品牌A、品牌B的测试结果的平均值与后6次测试品牌A、品牌B的测试结果的平均值进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的平均值均小于打开含有文字和图片的文件的测试结果平均值;这两种品牌的处理器打开含有文字与表格的文件的平均速度均快于打开含有文字和图片的文件的平均速度)标准2: 会用前6次测试品牌A、品牌B的测试结果的方差与后6次测试品牌A、品牌B的测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件速度的波动均小于打开含有文字和图片的文件速度的波动)标准3:会用品牌A前6次测试结果的平均值、后6次测试结果的平均值与品牌B前6次测试结果的平均值、后6次测试结果的平均值进行阐述(品牌A前6次测试结果的平均值大于品牌B前6次测试结果的平均值,品牌A后6次测试结果的平均值小于品牌B后6次测试结果的平均值,品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图形的文件的速度快于品牌B)标准4:会用品牌A前6次测试结果的方差、后6次测试结果的方差与品牌B前6次测试结果的方差、后6次测试结果的方差进行阐述(品牌A前6次测试结果的方差大于品牌B前6次测试结果的方差,品牌A后6次测试结果的方差小于品牌B后6次测试结果的方差,品牌A打开含有文字和表格的文件的速度波动大于品牌B,品牌A打开含有文字和图形的文件的速度波动小于品牌B)标准5:会用品牌A这12次测试结果的平均值与品牌B这12次测试结果的平均值进行阐述(品牌A 这12次测试结果的平均值小于品牌B这12次测试结果的平均值,品牌A打开文件的平均速度快于B)标准6:会用品牌A这12次测试结果的方差与品牌B这12次测试结果的方差进行阐述(品牌A这12次测试结果的方差小于品牌B这12次测试结果的方差,品牌A打开文件速度的波动小于B)标准7:会用前6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数、后6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(前6次测试结果中,品牌A小于品牌B的有2次,占1/3. 后6次测试中,品牌A小于品牌B的有4次,占2/3. 故品牌A打开含有文字和表格的文件的速度慢于B,品牌A打开含有文字和图片的文件的速度快于B)标准8:会用这12次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(这12次测试结果中,品牌A小于品牌B的有6次,占1/2. 故品牌A 和品牌B 打开文件的速度相当)参考数据17. (本小题14分)(Ⅰ)证明:由图1,梯形ABCD 中,//AD BC ,CD BC ⊥,1BC =,2AD =,E为AD 中点,BE AD ⊥故图2,1BE A E ⊥,BE DE ⊥ ……………..1分 因为1A E DE E=I,1A E ,DE ⊂平面1A DE……………..2分所以BE ⊥平面1A DE (3)分 因为BE ⊂平面BCDE,所以平面1A DE⊥平面BCDE……………..4分(Ⅱ) 解一:取DE 中点O ,连接1OA ,ON .因为在1A DE∆中,111A E A D DE ===,O 为DE 中点所以1AO DE ⊥因为平面1A DE ⊥平面BCDE平面1A DE I 平面BCDE DE =1AO ⊂平面1A DE所以1A O ⊥平面BCDE因为在正方形BCDE 中,O 、N 分别为DE 、BC 的中点, 所以ON DE ⊥ 建系如图. 则1(0,0,)2A ,1(1,,0)2B -,1(1,,0)2C ,1(0,,0)2D ,1(0,,0)2E -.……………..5分11(1,,2A B =-uuu rxy11(0,,22A D =-uuu r ,(1,0,0)DC =u u u r, 设平面1A CD 的法向量为(,,)n x y z =r,则10n A D n DC ⎧⋅=⎪⎨⋅=⎪⎩r uuu r r uuu r,即1020y z x ⎧=⎪⎨⎪=⎩,令1z =得,y =所以n =r是平面1A CD的一个方向量. ……………..7分111cos ,4||||A B n A B n A B n ⋅<>===-⋅uuu r ruuu r r uuu r r ……………..9分 所以1A B与平面1ACD 所成角的正弦值为4……………..10分(Ⅱ) 解二:在平面1A DE 内作EF ED⊥,由BE ⊥平面1A DE ,建系如图.则11(0,2A ,(1,0,0)B ,(1,1,0)C ,(0,1,0)D ,(0,0,0)E . ……………..5分11(1,,2A B =-uuu r11(0,,2A D =uuu r ,(1,0,0)DC =u u u r, 设平面1A CD 的法向量为(,,)n x y z =r,则xy10n A D n DC ⎧⋅=⎪⎨⋅=⎪⎩r uuu r r uuu r,即1020y z x ⎧=⎪⎨⎪=⎩,令1z =得,y =所以n =r是平面1A CD的一个方向量. ……………..7分111cos ,4||||A B n A B n A B n ⋅<>===-⋅uuu r ruuu r r uuu r r ……………..9分 所以1A B与平面1ACD 所成角的正弦值为4……………..10分(Ⅲ)解:三棱锥1M ACD -和三棱锥1N A CD -的体积相等. 理由如下:方法一:由1(0,4M ,1(1,,0)2N,知1(1,,4MN =uuu r ,则MN n ⋅=uuu r r……………..11分因为MN ⊂平面1A CD , ……………..12分 所以//MN 平面1A CD . ……………..13分故点M 、N 到平面1A CD 的距离相等,有三棱锥1M ACD -和1N A CD-同底等高,所以体积相等.……………..14分方法二:如图,取DE 中点P ,连接MP ,NP ,MN .因为在1A DE ∆中,M ,P 分别是1A E ,DE 的中点,所以1//MP A D因为在正方形BCDE 中,N ,P 分别是BC ,DE 的中点,所以//NP CD 因为MP NP P=I,MP ,NP ⊂平面MNP ,1A D ,CD ⊂平面1A CD所以平面MNP //平面1A CD ……………..11分因为MN ⊂平面MNP , ……………..12分所以//MN 平面1A CD……………..13分故点M 、N 到平面1A CD 的距离相等,有三棱锥1M ACD -和1N A CD-同底等高,所以体积相等.……………..14分DD法二法三方法三:如图,取1A D 中点Q ,连接MN ,MQ ,CQ .因为在1A DE ∆中,M ,Q 分别是1A E ,1A D 的中点,所以//MQ ED且12MQ ED = 因为在正方形BCDE 中,N 是BC 的中点,所以//NC ED 且12NC ED = 所以//MQ NC 且MQ NC =,故四边形MNCQ 是平行四边形,故//MN CQ ……………..11分因为CQ ⊂平面1A CD ,MN ⊂平面1A CD , ……………..12分所以//MN 平面1A CD . ……………..13分故点M 、N 到平面1A CD 的距离相等,有三棱锥1M ACD -和1N A CD-同底等高,所以体积相等.……………..14分18. (本小题13分) 解:(Ⅰ)C :221992x y +=,故29a=,292b=,292c=,有3a =,b c ==..2分椭圆C 的短轴长为2b = ……………..3分离心率为2c e a==.……………..5分(Ⅱ)方法1:结论是:||||TP TM <.当直线l 斜率不存在时,:1l x =,||0||2TP TM =<= ……………..7分当直线l 斜率存在时,设直线l :(1)y k x =-,11(,)M x y ,22(,)N x y2229(1)x y y k x ⎧+=⎨=-⎩,整理得:2222(21)4290k x k x k +-+-= ……………..8分 22222(4)4(21)(29)64360k k k k ∆=-+-=+>故2122421k x x k +=+,21222921k x x k -=+ ……………..9分PM PN⋅uuu r uuu r1212(2)(2)x x y y =--+21212(2)(2)(1)(1)x x k x x =--+-- 2221212(1)(2)()4k x x k x x k =+-++++ 2222222294(1)(2)42121k k k k k k k -=+⋅-+⋅++++226521k k +=-+<……………..13分故90MPN ∠>︒,即点P 在以MN 为直径的圆内,故||||TP TM <(Ⅱ)方法2:结论是:||||TP TM <.当直线l 斜率不存在时,:1l x =,||0||2TP TM =<= ……………..7分当直线l 斜率存在时,设直线l :(1)y k x =-,11(,)M x y ,22(,)N x y ,(,)TTT x y2229(1)x y y k x ⎧+=⎨=-⎩,整理得:2222(21)4290k x k x k +-+-= ……………..8分 22222(4)4(21)(29)64360k k k k ∆=-+-=+>故2122421k x x k +=+,21222921k x x k -=+ ……………..9分212212()221T k x x x k =+=+,2(1)21TT k yk x k =-=-+……………..10分222242222222222222(22)494||(2)(2)()2121(21)(21)T Tk k k k k k TP x y k k k k ++++=-+=-+-==++++ (11)分22222212121222224222222222111||(||)(1)()(1)()42441429(1)(169)16259(1)[()4]42121(21)(21)TM MN k x x k x x x x k k k k k k k k k k k ⎡⎤==+-=++-⎣⎦-++++=+-⋅==++++……………..12分此时,424242222222221625949412165||||0(21)(21)(21)k k k k k k TM TP k k k ++++++-=-=>+++……………..13分故||||TM TP > 19. (本小题14分) (Ⅰ)因为函数2()222xf x ax x =---e所以'()222x f x ax =--e ……………..2分故(0)0f =,'(0)0f = ……………..4分曲线()y f x =在x =处的切线方程为y = ……………..5分(Ⅱ)当0a ≤时,令()'()222xg x f x ax ==--e ,则'()220xg x a =->e……………..6分故()g x 是R上的增函数. ……………..7分由(0)0g =, (8)分故当0x <时,()0g x <,当0x >时,()0g x >. 即当0x <时,'()0f x <,当0x >时,'()0f x >. 故()f x 在(,0)-∞单调递减,在(0,)+∞单调递增. ……………..10分函数()f x 的最小值为(0)f由(0)0f =,…………….11分故()f x 有且仅有一个零点.(Ⅲ)当01a <<时,()f x 有两个零点. ……………..12分当1a =时,()f x 有一个零点; ……………..13分当1a >时,()f x 有两个零点.……………..14分20. (本小题13分) (Ⅰ)若12a=,则数列{}na 的前7项为2,1,1,2,2,3,1 ……………………3分 (Ⅱ)证法一假设存在正整数M ,使得对任意的*k ∈N ,kaM≤.由题意,{1,2,3,...,}kaM ∈,故数列{}na 多有M 个不同的取值………………5分 考虑数列{}na 的前21M+项:1a ,2a ,3a ,…,21M a +其中至少有1M +项的取值相同,不妨设121M i i i a a a +==⋅⋅⋅=此时有:111M i aM M++=+>,矛盾.故对于任意的正整数M,必存在*k ∈N ,使得k a M>. …………………8分 (Ⅱ)证法二假设存在正整数M ,使得对任意的*k ∈N ,kaM≤.由题意,{1,2,3,...,}kaM ∈,故数列{}na 多有M 个不同的取值………………5分对任意的正整数m ,数列{}na 中至多有M 项的值为m,事实上若数列{}na 中至少有1M +项的值为m ,其1M +项为12311,,,,,,M MM i i i i i i a a a a a a -+⋅⋅⋅此时有:111M i aM M++=+>,矛盾.故数列{}na 至多有2M 项,这与数列{}na 有无穷多项矛盾。

相关文档
最新文档