导数大题20种主要题型总结及解题方法
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数大题20 种主要题型讲解
答案详解:本题主要考查导数在研究函数中的应用。
(1)求出比较其与的大小,得到的单调性表,于是得到的极值。
(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。
(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。
答案详解(Ⅰ),由是的极值点得,所以。
于是,定义域为,,函数在上单调递增,且。
因此,当时,;当时,。
所以,在上单调递减,在上单调递增。
(Ⅱ)当,时,,故只需要证明当时,。
当时,函数在单调递增,又,,故在有唯一实根,且。
当时,;当时,;从而当时,取得最小值。
由得:,,故。
综上:当时,。
解析:本题主要考查函数的求导和函数的单调性的判断。
(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。
(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。
例题5:函数。
(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。
答案详解(Ⅰ)的定义域为,()。
当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。
又,当满足且时,,故当时,存在唯一零点。
(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。
故在单调递减,在单调递增,所以当时,取得最小值,最小值为。
由于,所以。
故当时,。
解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。
(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。
当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。
(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。
写出的表达式,再运用均值不等式即可得出。
题型3:先构造,再赋值,证明和式或积式不等式例题:已知函数。
导数知识点各种题型归纳方法总结
导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数常考题型归纳总结
导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。
在高中数学中,导数是一个常考的内容。
为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。
一、常数函数求导常数函数的导数始终为零。
这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。
二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。
设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。
例如,对于y=x^2,求导后得到dy/dx=2x。
对于y=x^3,求导后得到dy/dx=3x^2。
这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。
三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。
即dy/dx = e^x。
这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。
四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。
根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。
这个公式对于解决对数函数的导数问题非常有用。
五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。
我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。
这些公式可以根据求导的定义进行推导,同学们需要牢记。
六、复合函数求导复合函数指的是由多个函数复合而成的函数。
对于复合函数的导数求解,我们可以利用链式法则。
链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。
通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。
导数大题题型归纳解题方法
导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
高考压轴题:导数题型及解题方法总结很全.
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
导数各种题型及解法的总结
《导数各种题型及解法总结》基础知识梳理1.常见题型2.在解题中常用的有关结论(需要熟记):3.解题方法规律总结虑判别式、对称轴、区间端点函数值的符号等因素。
2. 已知函数(含参数)在某区间上单调,求参数的取值范围,有三种方法:①子区间法;②分离参数法;③构造函数法。
3. 注意分离参数法的运用:含参数的不等式恒成立问题,含参数的不等式在某区间上有解, 含参数的方程在某区间上有实根(包括根的个数)等问题,都可以考虑用分离参数法,前 者是求函数的最值,后者是求函数的值域。
4. 关于不等式的证明:通常是构造函数,考察函数的单调性和最值。
有时要借助上一问的有关单调性或所求的最值的结论,对其中的参数或变量适当赋值就可得到所要证的不等式。
对于含有正整数n 的带省略号的不定式的证明,先观察通项,联想基本不定式(上述结论 中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关) , 再对自变量x 赋值,令x 分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。
)5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区 间端点的函数值,结合函数图象, 确立所满足的条件,再求参数或其取值范围。
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令f (x) =0得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0 )第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数y 二f(x)在区间D 上的导数为f(x), f (x)在区间D 上的导数为g(x),若在区间 D 上,(2)若对满足 m 兰2的任何一个实数 m ,函数f (x)在区间(a,b )上都为“凸函数”,求b-a 的最大值.g(x) -.0恒成立,则称函数y = f(x)在区间D 上为“凸函数”,已知实数m 是常数,(1 )若y = f (x)在区间0,3 1上为“凸函数”,求m 的取值范围; 4f(x 7 6 3 mx 3x1例2:设函数f (x) x3 2ax2 -3a2x b(0 ::: a ::: 1, b R)3(I)求函数f (x)的单调区间和极值;(n)若对任意的x引a+1,a+2],不等式flx/a恒成立,求a的取值范围. (二次函数区间最值的例子)点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成立h(x)二f (x)-g(x) • 0恒成立;从而转化为第一、二种题型3 2 3 t — 6 2例3 ;已知函数f(x^x3 ax2图象上一点P(1,b)处的切线斜率为-3 ,g(x)=x3—x-(t 1)x 3 (t 0) (I)求a,b的值;(n)当x・[-1,4]时,求f (x)的值域;(川)当[1,4]时,不等式f(x) _g(x)恒成立,求实数t的取值范围。
导数压轴大题归类 (解析版)
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
导数题型分类大全(附答案)
由题意得, 是 的两个根,解得, .
再由 可得 .∴ .
(2) ,
当 时, ;当 时, ;
当 时, ;当 时, ;
当 时, .∴函数 在区间 上是增函数;
在区间 上是减函数;在区间 上是增函数.
函数 的极大值是 ,极小值是 .
(3)函数 的图象是由 的图象向右平移 个单位,向上平移4 个单位得到的,
所以,函数 在区间 上的值域为 ( ).
而 ,∴ ,即 .
于是,函数 在区间 上的值域为 .
令 得 或 .由 的单调性知, ,即 .
综上所述, 、 应满足的条件是: ,且 .
7.已知函数 ,
(Ⅱ)设函数 ,求函数 的单调区间;
(Ⅲ)若在 上存在一点 ,使得 成立,求 的取值范围
8.设函数 .
(1)若 的图象与直线 相切,切点横坐标为2,且 在 处取极值,求实数 的值;
题型五:利用导数研究函数的图象
1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D )
(A) (B) (C) (D)
2.函数 ( A )
3.方程 ( B )
A、0 B、1 C、2 D、3
※题型六:利用单调性、极值、最值情况,求参数取值范围
1.设函数
(1)求函数 的单调区间、极值.
解得 ,又 ∴a的取值范围是
2.已知函数f(x)=x3+ax2+bx+c在x=- 与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间
(2)若对x〔-1,2〕,不等式f(x)c2恒成立,求c的取值范围。
解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b
由f( )= ,f(1)=3+2a+b=0得a= ,b=-2
高考导数大题题型总结
高考导数大题题型总结一、导数的概念导数是微积分中非常重要的一个概念,它描述的是函数在某一点上的变化率。
在高考中,导数是一道常见的题型,考查学生对导数概念的理解和运用能力。
二、常见的高考导数题型及解题思路1. 求导数求导数是高考中最常见的一种题型。
题目会给出一个函数,要求求出它的导数。
解题的关键就是掌握各种函数的求导法则,例如幂函数、指数函数、对数函数、三角函数等。
同时,也要注意使用链式法则和导数的四则运算法则。
2. 求切线方程求切线方程也是高考中较为常见的一种题型。
题目中会给出一个函数和一点,要求求出该点处的切线方程。
解题的关键是掌握求导数和切线方程的相关知识。
首先,求出函数在给定点处的导数,然后带入切点的坐标和导数的值,即可得到切线方程。
3. 求最值求最值也是高考中常见的一种题型,通常会给出一个函数的定义域,要求求出函数在该定义域内的最大值或最小值。
解决这类问题的关键是找到函数的导函数,然后求出导函数的零点,再将这些零点和边界值代入函数,比较得出最值。
4. 优化问题优化问题是高考中较为复杂的一种题型,要求在给定条件下使一个函数达到最大或最小值。
解答这类问题需要通过构建函数模型,并使用导数的相关知识进行求解。
首先,根据问题的条件建立函数模型,然后求出函数的导数,并通过求导数的零点解出最优解。
三、解题技巧和注意事项除了掌握基本的求导法则,还有一些解题技巧和注意事项值得注意。
首先,要善于化简和分解函数,将函数转化为求导更简单的形式。
例如,对于复杂的函数,可以使用对数、指数和三角函数的换元法进行化简。
其次,要注意运用求导法则的逆运算,即积分。
在一些题型中,求导是基本的方法,但是求出导数之后还需要将它们积分得到原函数。
另外,要掌握好导数与函数图像的关系。
通过分析导数的正负、增减性,可以判断函数图像的趋势和特点,进而解答一些与函数图像有关的问题。
最后,要反复练习高考真题和模拟题。
通过不断的练习,掌握各种导数题型的解题方法和技巧,提高解题的速度和准确度。
导数考试题型及答案详解
导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
导数大题方法总结
导数大题方法总结导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。
那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。
一、总论一般来说,导数的大题有两到三问。
每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
导数的大题题型及解题技巧
导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。
下面介绍一些解题技巧。
1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。
常见的函数有多项式函数、指数函数、对数函数、三角函数等。
2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。
注意求导的顺序和方法。
3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。
常见的参数方程有直角坐标系和极坐标系。
4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。
然后利用求导公式进行计算,最后求得导数。
5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。
例如,奇偶性、周期性、对称性等。
6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。
例如,物体的位移、速度和加速度。
以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。
导数常见题型与解题方法总结
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
导数大题20种题型讲解
导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。
解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。
2.常数函数求导:题目描述:求函数f(x)=c的导数。
解答步骤:常数函数的导数始终为零,即f'(x)=0。
3.指数函数求导:题目描述:求函数f(x)=e^x的导数。
解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。
4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。
解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。
5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。
解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。
6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。
解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。
7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。
解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。
对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。
8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。
解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。
对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。
9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。
解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。
10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。
解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。
导数专题的题型总结
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
导数大题20种主要题型
导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。
2. 给出函数解析式和区间,求函数在区间内的单调性。
二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。
4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。
三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。
6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。
四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。
8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。
五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。
10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。
六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。
12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。
七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。
14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。
八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。
导数大题20种题型
导数大题20种题型导数是微积分中非常重要的概念,它用于描述函数在某一点处的变化率。
在求解导数的过程中,我们会遇到各种不同的题型。
下面是导数大题的20种题型。
1. 基本函数的导数:求解常见函数(如多项式函数、指数函数、对数函数、三角函数等)在给定点处的导数。
2. 复合函数的导数:根据链式法则,求解复合函数在给定点处的导数。
3. 反函数的导数:利用反函数的性质,求解反函数在给定点处的导数。
4. 参数方程的导数:对参数方程中的x和y分别求导,得到x和y 关于另一个参数的导数。
5. 隐函数的导数:根据隐函数的定义,利用全微分的性质,求解隐函数在给定点处的导数。
6. 对数导数:利用对数函数的导数性质,求解函数的对数导数。
7. 高阶导数:求解函数的二阶、三阶或更高阶导数。
8. 反复函数的导数:对反复函数进行多次求导,得到各阶导数。
9. 参数曲线的切线与法线:利用导数的定义,求解参数曲线在给定点处的切线和法线方程。
10. 极限定义的导数:利用导数的极限定义,求解函数在给定点处的导数。
11. 极值问题:利用导数的性质,求解函数的极大值和极小值点。
12. 函数的单调性:根据导数的正负性,判断函数在给定区间上的单调性。
13. 曲线的凹凸性:根据导数的增减性,判断函数在给定区间上的凹凸性。
14. 弧长问题:利用导数的定义,求解曲线弧长。
15. 曲率问题:利用导数的定义,求解曲线在给定点处的曲率。
16. 泰勒展开:利用导数的性质,对函数进行泰勒展开。
17. 函数的积分:利用导数和积分的关系,求解函数的积分。
18. 参数方程的弧长:利用导数的定义,求解参数方程表示的曲线的弧长。
19. 高阶导数的应用:利用高阶导数的性质,求解函数的拐点、极值点等特殊点。
20. 物理问题的应用:利用导数的物理意义,求解物理问题中的速度、加速度等相关概念。
这些题型覆盖了导数的基本概念及其在不同问题中的应用。
通过解答这些题型,我们可以更好地理解导数的性质及其在数学和物理中的重要作用。
导数知识点各种题型归纳方法总结
导数知识点各种题型归纳方法总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】导数的基础知识一.导数的定义:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x y f x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①'0()C C =为常数;②1()'nn x nx -=;11()'()'n n n x nx x---==-;1()'mmn n m x x n -==③(sin )'cos x x =;④(cos )'sin x x =-⑤()'x x e e =⑥()'ln (0,1)x x a a a a a =>≠且;⑦1(ln )'x x =;⑧1(log )'(0,1)ln a x a a x a=>≠且法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号)法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2,4)1(=-'f ,则a=( )三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t =时的导数()0f t ',即有()00V f t '=。
导数大题20种主要题型讲解,建议收藏打印
导数大题20种主要题型讲解,建议收藏打印
目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。
掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。
为了帮助大家复习,今天就总结导数大题20种主要题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。
建议同学家长下载出来,方便学习!熟练掌握,需要下载word版,直接点击小编上方头像,
私信小编私信发送:“206”
即可免费领取,记得不要回复错了哦!还有更多学习方法技巧,套路模板等着同学们!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
在物理学中,速度和加速度是描述物体运动的重要概念。
速度是位移随时间的导数,而加速度是速度随时间的导数。
可以通过求导的方法求取速度和加速度。
12.利用导数求函数的斜率。
函数在某一点的斜率可以通过导数求取。
斜率表示函数在该点的变化率。
13.利用导数计算函数的平均变化率。
函数的平均变化率表示函数在某一区间内的平均变化程度。
可以
利用导数求某一区间的端点的函数值与斜率的乘积,并求和得到平均
变化率。
14.利用导数求函数的切线和法线。
函数在某一点的切线斜率是函数在该点的导数值。
可以使用切线
方程求切线,即通过给定点的坐标及切线斜率来确定切线方程。
法线
斜率是切线斜率的负倒数。
15.利用导数求函数的凸凹性。
函数的凸凹性可以通过导数的符号和二阶导数的正负性进行判定。
导数为正且二阶导数为正时,函数是凸的;导数为负且二阶导数为负时,函数是凹的。
16.利用导数计算函数的面积。
函数的面积可以通过积分求取,而积分是导数的逆运算。
可以通
过导数求取函数值并积累求和,以得到函数的面积。
17.利用导数计算函数的换元积分。
换元积分是一种通过代换变量来计算积分的方法,而导数和积分是互逆的运算。
可以通过计算函数的导数和逆函数的导数,来对原函数进行换元积分。
18.利用导数计算函数的定积分。
定积分可以通过求导来计算。
根据牛顿-莱布尼茨公式,定积分是函数的反导数在区间端点的差值。
可以通过求导计算函数的反导数,并计算区间端点的函数值。
19.利用导数解微分方程。
微分方程描述变化率与未知函数之间的关系。
可以利用导数解微分方程,即求出函数的导数,并代入微分方程进行求解。
20.利用导数计算参数方程的切线和法线。
对于参数方程,可以通过计算参数方程的导数值,并代入函数点的参数值,来确定切线斜率。
切线方程表示为参数方程的函数值加上切线斜率乘以参数的表达式,法线斜率为切线斜率的负倒数。
以上是导数的20种主要题型总结以及解题方法的介绍。
掌握这些题型和解题方法对于应用导数解决实际问题具有重要意义。