热释电红外探测器报警与成像原理的分析研究

合集下载

热释电红外防盗报警器

热释电红外防盗报警器

综述题目:热释电红外传感器防盗报警器设计与实现专业班级:姓名:学号:01热释电红外传感器1.1热释电红外传感器的基础知识热释电效应同压电效应类似,是指由于温度的变化而引起晶体表面荷电的现象。

热释电传感器是对温度敏感的传感器。

它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极,在传感器监测范围内温度有ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。

由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。

热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。

当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。

所以这种传感器检测人体或者动物的活动传感。

由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可大于7m。

1.2热释电红外线传感器的原理特性热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。

不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。

为了抑制因自身温度变化而产生的干扰,该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化,并将其转换为电信号输出。

热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。

由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式,该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换。

热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。

设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。

热释电红外传感器工作原理

热释电红外传感器工作原理

热释电红外传感器工作原理
热释电红外传感器是一种测量和检测红外辐射的设备,它利用物体发出的红外辐射来探测物体的存在。

其工作原理基于物体的热能状态。

当一个物体的温度高于绝对温度零度时,它会发出红外辐射。

这些红外辐射按照不同的波长和频率发射出去。

热释电红外传感器通过检测这些红外辐射来感知物体的存在。

热释电红外传感器通常由一个红外探测器和一个信号处理单元组成。

红外探测器通常是由热释电材料制成,如锂钽酸锂、锂铌酸锂等。

这些材料能够根据温度的变化而产生电荷。

当物体靠近红外探测器时,物体的红外辐射也会靠近传感器。

这会导致探测器吸收更多的红外辐射,从而使其温度上升。

温度的升高会导致热释电材料中的离子在晶格之间移动,并产生电荷。

这些电荷被收集并转化为电压信号。

信号处理单元会接收并处理来自红外探测器的电压信号。

它会分析信号的幅度和频率,以判断是否存在物体并确定其位置和运动。

通过与预设的阈值进行比较,传感器可以触发适当的响应,如报警、触发摄像头拍摄等。

总之,热释电红外传感器通过测量和分析物体发出的红外辐射来感知其存在。

它的工作原理基于热释电材料的特性,利用物体温度的变化产生电荷,并将其转化为电压信号。

这种传感器可以广泛应用于防盗系统、人体检测、智能家居等领域。

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用热释电红外传感器是一种常用于人体检测、安防监控以及自动化控制等领域的传感器。

其原理基于物体的红外辐射,利用热释电效应将红外辐射转化为电信号,从而实现对物体的探测与识别。

热释电效应是指在某些晶体或陶瓷材料中,当物体通过其表面或附近经过时,由于温度的变化,将会产生电荷的分离和聚集,形成电压信号。

这种效应的基本原理是,当物体辐射红外光线时,物体表面温度会产生微小的波动,使得材料内部的热释电元件发生温度变化,从而引起电荷的分离。

热释电传感器中常用的材料有钛酸锂、氧化锂锭以及掺杂锗的亚胺酯材料等。

在热释电红外传感器的设计中,一般包含了感测元件、前置电路、信号处理模块以及输出电路等组成部分。

感测元件采用特殊材料制成,可将红外辐射转化为微弱电荷信号。

前置电路用于提取和放大感测元件产生的电信号,以提供稳定和可靠的信号源。

信号处理模块可通过滤波、放大、积分等方式对输入信号进行处理,从而实现对目标物体的探测与识别。

输出电路常用于将处理后的信号转换为数字信号或模拟信号,以供其他设备使用。

热释电红外传感器具有很多应用领域。

其中最常见的应用是人体检测。

传感器可通过监测人体散发的红外辐射,实现对人体的检测与识别。

这在安防监控领域得到了广泛的应用。

传感器能够通过对室内环境中的温度变化进行感知,从而实现室内灯光、空调等设备的自动控制。

此外,热释电红外传感器还可应用于汽车行业,用于检测驾驶员和乘客的动作与位置,并通过与车载设备的连接实现自动化控制。

另外,在医疗领域,热释电红外传感器也有广泛的应用。

传感器能够通过检测身体表面的红外辐射,实现对体温的监测与测量。

这在医院、诊所等场所非常重要,可以在短时间内实现对大量人员的体温测量,为疫情防控等提供帮助。

总之,热释电红外传感器是一种基于热释电效应原理的传感器,通过将物体的红外辐射转化为电信号实现对物体的探测与识别。

其应用广泛,包括人体检测、安防监控、自动化控制以及医疗领域等。

红外探测器原理

红外探测器原理

红外探测器原理
红外探测器是一种能够感知红外辐射的传感器,其原理基于物体的热辐射特性。

红外辐射是指波长长于可见光的电磁辐射,通常处于0.75μm至1000μm的范围内。

红外探测器主要应用于红外成像、红外测温、红外遥控以及红外安防等领域。

红外探测器的原理主要有热释电、热电偶、焦平面阵列等几种。

热释电原理是基于物质在吸收红外辐射后产生温度升高,从而产生电荷变化的
现象。

热释电探测器的工作原理是通过将红外辐射转化为热能,再将热能转化为电能,最终得到电信号。

这种原理的探测器具有快速响应、高灵敏度的特点,但需要外部电源供电。

热电偶原理是利用两种不同材料的接触产生的塞贝克效应,当其中一种材料吸
收红外辐射时,产生的热量使得两种材料的接触点产生温差,从而产生电压信号。

热电偶探测器的优点是工作稳定、寿命长,但对环境温度变化敏感。

焦平面阵列是一种集成式的红外探测器,由多个微小的红外探测单元组成,每
个单元都能够独立感知红外辐射并转化为电信号。

焦平面阵列探测器具有高分辨率、高灵敏度和多功能集成的特点,广泛应用于红外成像领域。

除了以上几种原理外,红外探测器还可以根据探测方式分为主动式和被动式。

主动式红外探测器通过发射红外辐射并测量其反射回来的信号来实现探测,常用于红外遥控和红外测距。

被动式红外探测器则是通过感知周围环境中的红外辐射来实现探测,常用于红外安防和红外监测。

总的来说,红外探测器通过感知物体的红外辐射来实现探测,其原理多种多样,应用也十分广泛。

随着科技的不断进步,红外探测器的性能将会不断提升,为各种领域的应用提供更加可靠、高效的技术支持。

热释电红外传感器的工作原理

热释电红外传感器的工作原理

热释电红外传感器的工作原理热释电红外传感器是一种采用热释电效应来感测红外辐射的传感器。

该传感器能够感知物体的温度和运动状态,具有广泛的应用领域,如安防、自动化、机器人等。

一、热释电效应原理热释电效应是指在非均匀电介质中,当物理量(如温度)发生变化时,电介质中的电荷会发生移动,导致电势的变化。

这种现象叫做热释电效应。

利用这种效应可以制成红外传感器。

二、热释电红外传感器的结构热释电红外传感器由传感器芯片、滤光器、接收器、前置放大器、信号处理电路、输出电路等组成。

传感器芯片通常由热释电材料制成,如聚乙烯、锂铌酸锂等。

滤光器主要过滤掉不需要的光波,只让红外波通过。

接收器将红外波转化为电信号,然后通过前置放大器放大。

信号处理电路对信号进行滤波、增益等处理。

输出电路将处理后的信号转化为可用的电压或电流输出。

三、热释电红外传感器的工作原理1. 当有热源或物体进入传感器的感应区域时,将发射红外辐射波。

2. 经过滤光器的过滤,只有红外波通过,照射到传感器芯片上。

3. 传感器芯片产生电荷的移动,产生电势,经由接收器转化为电信号。

4. 通过前置放大器放大信号之后,通过信号处理电路进行滤波、增益等操作。

5. 处理后的信号通过输出电路转化为可用的电压或电流输出。

四、热释电红外传感器的优缺点1. 优点:响应速度快、结构简单、功耗低、灵敏度高、价格相对较低、在恶劣环境下也可以进行工作。

2. 缺点:受环境影响较大、易受其它电磁辐射的干扰、动态响应能力较差。

综上所述,热释电红外传感器是一种基于热释电效应工作的传感器,其工作原理主要是利用物体的红外辐射,产生电荷移动,最终产生电势并输出信号。

该传感器具有快速响应速度、低功耗、灵敏度高等优点,但受到环境影响较大、易受其它电磁辐射的干扰等缺点。

简述热释电红外传感器的工作原理

简述热释电红外传感器的工作原理

简述热释电红外传感器的工作原理热释电红外传感器是一种常见的红外传感器,广泛应用于人体检测、安防监控、自动化控制等领域。

它的工作原理是基于热释电效应,通过感知被测物体的红外辐射能量来实现检测和识别的功能。

热释电红外传感器的工作原理可以简单概括为以下几个步骤:1. 热释电材料的特性:热释电材料具有特殊的物理性质,当其受到外界热源的激发时,会产生电荷分布的变化。

这种特性使得热释电材料可以作为红外辐射的敏感元件。

2. 感测元件的结构:热释电红外传感器通常由热敏元件和信号处理电路两部分组成。

其中,热敏元件是关键部分,由热释电材料制成,常见的材料有硅化锂钽酸锂等。

热释电材料的电极上覆盖有吸收红外辐射能量的薄膜,使得热能可以有效地被传递给热释电材料。

3. 红外辐射的感测:当有物体靠近热释电红外传感器时,物体会发出红外辐射能量,这些红外辐射能量会被热释电材料吸收。

被吸收的红外辐射能量会导致热释电材料的温度发生变化,进而引起电荷分布的改变。

4. 电荷信号的转换和处理:热释电红外传感器的信号处理电路将热敏元件上的电荷信号转换为电压信号,然后经过放大、滤波、去噪等处理,最终输出一个与被测物体红外辐射能量强度相关的电信号。

5. 信号识别和应用:经过信号处理的电信号可以被用来识别和判断被测物体的特性,例如人体的存在、移动方向、距离等。

根据具体应用需求,可以通过设置阈值等方式进行信号的判断和处理。

总结一下,热释电红外传感器利用热释电材料的特性,感知被测物体的红外辐射能量,然后通过信号处理电路将其转换为可用的电信号。

这样的工作原理使得热释电红外传感器成为了一种有效、灵敏的红外传感器,广泛应用于各个领域。

在人体检测、安防监控、自动化控制等方面,热释电红外传感器都发挥着重要的作用,为人们的生活和工作带来了便利和安全。

热释电红外传感器原理

热释电红外传感器原理

热释电红外传感器原理热释电红外传感器是一种能够感知红外辐射的传感器,它利用了热释电效应来实现对红外辐射的探测和测量。

在现代科技应用中,热释电红外传感器被广泛应用于安防监控、自动化控制、消费电子产品等领域。

本文将介绍热释电红外传感器的工作原理及其应用。

热释电红外传感器的工作原理是基于热释电效应。

当红外辐射照射到热释电红外传感器的探测元件上时,探测元件会吸收红外辐射能量,导致探测元件温度升高。

温度升高会改变探测元件的表面电荷分布,从而在探测元件的两端产生电荷差,形成电压信号。

这一电压信号随着红外辐射的变化而变化,通过对电压信号的测量和分析,就能实现对红外辐射的探测和测量。

热释电红外传感器通常由光学系统、探测元件、信号处理电路和输出接口等部分组成。

光学系统用于聚焦红外辐射到探测元件上,探测元件负责吸收红外辐射并产生电荷差,信号处理电路则对电压信号进行放大、滤波和处理,最终通过输出接口输出探测结果。

热释电红外传感器的工作原理简单、灵敏度高,响应速度快,因此在各种应用场景中都能发挥重要作用。

在安防监控领域,热释电红外传感器常用于人体检测和移动目标跟踪。

当有人或其他热源进入监控范围时,热释电红外传感器能够及时感知到,并通过输出接口发送信号,触发相应的报警或录像设备。

在自动化控制领域,热释电红外传感器常用于智能家居、智能照明等场景,通过感知人体活动来实现自动开关灯、调节空调等功能。

在消费电子产品中,热释电红外传感器也被广泛应用于智能手机、平板电脑等设备中,用于实现手势识别、距离测量等功能。

总之,热释电红外传感器凭借其灵敏度高、响应速度快等优点,在安防监控、自动化控制、消费电子产品等领域有着广泛的应用前景。

随着科技的不断进步,相信热释电红外传感器将会在更多领域发挥重要作用,为人们的生活带来更多便利和安全保障。

热释电红外传感器原理

热释电红外传感器原理

热释电红外传感器原理
热释电红外传感器利用物体的红外辐射特性实现对目标物体的检测与监测。

它的工作原理基于热释电效应,即当物体处于不同温度时,会发射出不同强度的红外辐射。

热释电红外传感器的核心部件是由热释电材料制成的探测器。

这种材料能够感应并吸收周围环境中的红外辐射能量。

当被探测的目标物体进入传感器的检测范围内时,目标物体会通过发射红外辐射来改变周围环境的温度分布。

探测器会感知到这种变化,并将其转化为电信号输出。

热释电红外传感器通常还配备有补偿元件和信号处理电路。

补偿元件用于自动调整探测器的温度,以排除环境温度的影响。

信号处理电路则负责处理探测器输出的电信号,将其转化为可读的数字信号或控制信号。

当有人或物体进入传感器的感应范围时,热释电红外传感器会发出警报信号或触发其他相应的操作。

由于其灵敏度高、响应快,以及对环境光和声音的抵抗能力强,因此热释电红外传感器被广泛应用于安防系统、自动化控制以及简单的人体检测等领域。

人体热释电红外线传感器的原理和应用

人体热释电红外线传感器的原理和应用

人体热释电红外线传感器的原理和应用热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。

热释电红外传感器不受白天黑夜的影响,可昼夜不停地用于监测,广泛地用于防盗报警。

本文就热释电人体红外线传感器的基本原理及应用作以大致介绍:一、热释电人体红外线传感器的基本结构和原理热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。

它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。

将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。

目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本NipponCeramic公司的SCA02-1、RS02D等。

虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大图1 热释电传感器实物图部分可以彼此互换使用。

热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图1所示。

对不同的传感器来说,探测元的制造材料有所不同。

如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。

将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。

因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。

传感器中两个电容是极性相反串联的。

当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。

当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能图2 双探测元热释电红外传感器量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。

热释电人体红外传感器工作原理

热释电人体红外传感器工作原理

热释电人体红外传感器工作原理1. 什么是热释电人体红外传感器?说到热释电人体红外传感器,首先得给大家普及一下。

它其实就是一种能感应到人体热量的装置。

嘿,别小看它,这东西在生活中可真是随处可见,比如说你家里的灯、安防设备,甚至智能家居,都离不开它的“帮忙”。

你想想,当你走进一个房间,灯光自动亮起,那可是它在背后默默地工作呢!就像在你身后有个看不见的好朋友,时刻关注着你的一举一动。

1.1 热释电的秘密“热释电”这个词,听上去有点高大上,但其实它的原理非常简单。

我们知道,所有的物体都会发出热量,对吧?这就是热释电传感器的关键所在。

它能探测到周围物体发出的红外线,尤其是活体,比如人或动物。

这就像你晚上出门,发现路灯一下子亮了,哦,原来是因为你“带着热量”走过来了!1.2 热释电传感器的构造那么,这个神奇的传感器是怎么工作的呢?其实它的构造也很简单,里面有一种特殊的材料,叫热释电材料。

它会根据温度变化产生电信号,简单来说,就是你一进门,它就“感应”到了你的温度变化。

然后,这个电信号就会被传输到控制电路,最后让灯亮起或者发出警报。

真是科技感满满啊,感觉随时可以去打怪升级!2. 热释电传感器的应用2.1 家庭中的小助手在家庭生活中,热释电传感器就像一个小助手,默默无闻却功能强大。

比如说,当你晚上起来上厕所,灯光自动打开,这绝对是它的功劳。

而且,这种技术还可以用来节省电量,因为它只在有人经过时才会启动。

听起来是不是很环保?这就好比一位贴心的室友,帮你把灯光管理得妥妥的,不浪费一分一毫。

2.2 安全防范的“护卫”再说说安防方面,热释电传感器更是发挥得淋漓尽致。

它能检测到陌生人的热量,及时发出警报,简直就是你家里的“隐形保镖”。

想象一下,当你在家安心看电视,突然有陌生人接近,传感器马上警报响起,你立刻警觉,果断拨打电话,真是一举两得!这样一来,安全感立马up!你再也不怕半夜听到奇怪的声音了,心里有底,感觉像是个铁打的堡垒。

热释电红外探测器的工作原理

热释电红外探测器的工作原理

热释电红外探测器的工作原理报警电路中通常采用双探测元热释电红外传感器,其结构示意图如图所示。

该传感器将两个特性相同的热释电晶体逆向串联,用来防止其他红外光引起传感器误动作。

另外,当环境温度改变时,两个晶体的参数会同时发生变化,这样可以相互抵消,避免出现检测误差。

该传感器使用时, D端接电源正极, G端接电源负极, S端为信号输出。

被动式红外报警器的组成框图:电路原理:当红外警戒区内无移动物体时,传感器无输出信号,报警电路不工作;当有人闯入警戒区时,只要人体移动,其辐射出的红外线便会被热释电红外传感器所接收,并输出微弱的电信号。

该信号经运算放大器放大后,会输出一个较强的电信号。

再输送给双限电压比较器。

当A2输出的电压>A3的基准电压时, A3 输出高电平;当A2输出的电压<A4 的基准电压时, A4也输出高电平。

这个高电平信号经反向器7变成低电平信号,作为单稳态触发器555的触发信号。

单稳电路触发翻转后,输出高电平,驱动三极管导通报警电路发出警报。

电路中的旁路电容可以起到防止干扰的作用。

LF347Features Description• Low input bias current The LF347 is a high speed quad JFET input operational • High input impedance amplifier. This feature high input impedance, wide• Wide gain bandwidth: 4 MHz Typ.bandwidth, high slew rate, and low input offset voltage and• High slew rate: 13 V/∝ s Typ.bias current. LF347 may be used in circuits requiring highinput impedance. High slew rate and wide bandwidth, lowinput bias current.Parameter Symbol Value Unit Supply Voltage V CC± 18V Differential Input Voltage V I(DIFF)30V Input Voltage Range V I± 15V Output Short Circuit Duration-Continuous-Power Dissipation P D570mW Operating Temperature Range T OPR0 ~ + 70︒ C Storage Temperature Range T STG-65 ~ + 150︒ C74LS0074LS00从属于TTL 门系列.它是一个内部含有四个双输入的与非门芯片.其14脚接+5v 电压;7脚地;当 AB 都为高电平"1"时输出为高电平"0";当AB 都为低电平"0"时输出为高电平"1";当AB 异同时:即,一个为低电平"0"一个为高电平"1"时输出为高电平"1"555定时器它含有两个电压比较器,一个基本RS 触发器,一个放电开关T ,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使高电平比较器C1同相比较端和低电平比较器C2的反相输入端的参考电平为Vcc 32和Vcc 31。

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用随着科技的不断发展,红外技术逐渐成为了现代社会中不可或缺的一部分。

作为红外技术的重要组成部分之一,热释电红外传感器因其灵敏度高、响应速度快等特点被广泛应用于安防、智能家居、医疗等领域。

本文将介绍热释电红外传感器的原理、工作方式以及应用。

一、热释电红外传感器原理热释电红外传感器是利用材料的热释电效应来检测周围物体的红外辐射。

热释电效应是指当某种材料受到辐射时,内部温度发生变化,进而导致该材料表面产生电荷,从而形成电势差。

这种电势差被称为热释电电势。

热释电红外传感器利用这种原理来检测周围物体的红外辐射,从而实现对物体的探测。

二、热释电红外传感器工作方式热释电红外传感器主要由热释电元件、前置放大器、滤波器、放大器等组成。

当传感器受到周围物体的红外辐射时,热释电元件内部的温度会发生变化,从而导致元件表面产生电势差。

这个电势差被传送到前置放大器中,经过滤波器和放大器的处理后,最终被转化为数字信号输出。

热释电红外传感器的灵敏度和响应速度主要取决于热释电元件的材料和结构。

常用的热释电元件材料有锂钽酸盐、钛酸钡、铁酸锂等。

不同的材料具有不同的响应频率和灵敏度,可以根据具体的应用场景进行选择。

三、热释电红外传感器应用热释电红外传感器由于其灵敏度高、响应速度快等特点,在安防、智能家居、医疗等领域得到了广泛的应用。

1.安防领域热释电红外传感器可以用于室内和室外监控系统中,可以检测到人体的红外辐射,从而实现对人体的探测和跟踪。

在夜间或低照度条件下,热释电红外传感器具有更好的效果,可以有效地防止盗窃和入侵。

2.智能家居领域热释电红外传感器可以用于智能家居系统中,可以检测到人体的活动和位置,从而实现对家居设备的自动控制。

例如,当人离开房间时,系统可以自动关闭灯光和电器设备,从而实现节能和智能化管理。

3.医疗领域热释电红外传感器可以用于医疗领域中,可以检测到人体的体温变化,从而实现对病人的监测和诊断。

红外线探测器原理

红外线探测器原理

红外线探测器原理红外线探测器是一种能够探测红外辐射的传感器,它在很多领域都有着广泛的应用,比如安防领域、自动化控制领域等。

它的原理主要是利用物体发出的红外辐射来实现探测和测量。

在红外线探测器中,有几种常见的原理,包括热释电、红外光电二极管和红外线热像仪等。

热释电原理是红外线探测器中最常见的一种原理。

它利用了物体在温度变化时所产生的红外辐射。

当一个物体的温度发生变化时,它就会发出红外辐射,而热释电探测器就是利用这种辐射来进行探测。

热释电探测器内部有一种被称为热释电材料的物质,当这种材料受到红外辐射时,它的温度就会发生变化,从而产生一个微弱的电信号。

通过测量这个电信号的变化,就可以判断出外界是否存在物体。

这种原理的红外线探测器在安防领域得到了广泛的应用,比如红外感应门、红外监控摄像头等。

另一种常见的红外线探测器原理是红外光电二极管原理。

这种原理利用了半导体材料对红外光的敏感性。

当红外光照射到半导体材料上时,它会激发材料内部的电子,从而产生一个电流。

通过测量这个电流的变化,就可以实现对红外光的探测。

红外光电二极管原理的红外线探测器在遥控器、红外传感器等领域有着广泛的应用。

除了以上两种原理外,还有一种比较先进的原理是红外线热像仪原理。

这种原理是通过将物体发出的红外辐射转化成热像,再通过传感器进行捕捉和处理,最终形成红外图像。

这种原理的红外线探测器在军事、医疗等领域有着重要的应用价值。

总的来说,红外线探测器是一种能够探测红外辐射的传感器,它的原理主要包括热释电、红外光电二极管和红外线热像仪等。

不同原理的红外线探测器在不同领域有着广泛的应用,它们的出现大大提高了人们对红外辐射的探测和测量能力,为人们的生活和工作带来了便利。

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用

热释电红外传感器原理及其应用热释电红外传感器原理及其应用
热释电红外传感器(PIR)是一种新型的依赖于温度变化的红外传
感器,它具有快速、高效的特点。

热释电红外传感器可以通过检测红
外辐射发出的能量而直接感知人体移动。

它的原理是利用热释电效应,当温度变化时,物体表面会发出大量红外辐射,热释电红外传感器会
采集这些信号,然后根据这些信号来测定温度变化情况。

由于热释电红外传感器的特性,如低成本、易于安装以及不受光
照影响等,它已经被广泛地应用在安防监控、楼宇自动化、家庭能源
管理等领域中。

PIR 传感器可以有效地实现人体活动检测,从而实现
室内外安全监控,也可以用于能量管理系统中实现节省能源。

如在家
庭能源管理系统中,PIR 传感器可以根据人体活动情况,自动控制灯具、空调、电视机等电器设备的开关,实现节能减碳。

此外,PIR 传
感器还可以应用于停车场、工厂生产线等场所,监测人员的安全情况
和行为。

热释电红外传感器的运行机理是利用外界环境温度变化而引起的
热释电效应,由于它具有快速响应,准确性高,对环境易受影响等特点,因此PIR 红外传感器在多种安全监控、能源管理以及智能控制领
域中得到了广泛应用。

热释电红外传感器原理

热释电红外传感器原理
1 热释电红外传感器
(1)红外辐射的基本知识 。红外辐射的物理本质是热辐射,它 是由于物体 ( 固体、液体和气体) 内部分子的转动及振动而产生,这 类振动是由物体受热引起的。只有在绝对零度时( -273.16℃) , 一切 物体的分子才停止运动。在一般常温下,所有物体都是红外辐射的发 射源,如火焰、汽车、动植物、人体都是红外辐射源,但发射的红外 波长不同而已。红外线和所有电磁波一样,具有反射、折射、散射、 干涉和吸收等性质,但它的特点是热效应最大。实践证明,温度愈低 的物体辐射的红外线波长愈长,人体的温度在37℃左右,所发射的红 外线波长为 9  ̄ 1 0μm ( 属于远红外区) ,加热到400~700℃的物体 其发射的红外线波长为 3  ̄ 5μm ( 属于中红外区),因此,热释电红 外传感器可根据物质的表面温度不同而发出不同波段的红外光来进行 温度检测。
热释电红外传感器主要由外壳、滤光片、热释电元件、结型场效 应管、电阻等组成,其中滤光片设置在窗口处是为滤去无用的红外 线,让有用的红外线进入窗口。在防盗报警系统所采用滤光片为 6μ m的多膜干涉滤光片,该滤光片能很好地让人体辐射的红外线通过而 阻止其它射线通过,以免引起干扰。结型场效应管起到阻抗变换的作 用放置在管底部分。在防盗报警系统所采用热释电传感器为双元型红 外传感器,双元型传感器由两个有极性的敏感元件反向串联,这样由 于环境的影响而使整个晶片发生温度变化时,极性相反的敏感元件产 生的热释电信号相互抵消,可以有效的防止因太阳光等红外线及环境 温度变化而引起的误差。
(2)热释电红外传感器的工作原理和结构。人体具有约37℃的 恒定体温,所以会发出波长约10μm左右的红外线,热释电红外传感 器就是靠探测人体发射的10μm左右的红外线进行工作的。热释电红 外传感器是一种具有极化现象的热晶体或称为“铁电体”。其内部的 热电元件由高热电系数的钽酸锂(LiTaO3)、钛酸钡(BaTiO3)、锆钛 酸铅(PZT)等材料组成。这种铁电体的极化强度 (单位而积的电荷)随 温度变化而变化。当红外光照射到已经极化的铁电体薄片表面上时, 引起薄片温度升高,使其极化强度降低表面电荷减少,这相当于释放 一部分电荷,所以叫做热释电红外传感器。如果将负载电阻与铁电体 薄片相连,则负载电阻上会产生一个电信号输出。输出信号的大小取 决于薄片温度变化的快慢,从而反映出入射的红外光的强度。由此可 知,热释电红外传感器的电压响应率正比于入射红外光的变化率,当 恒定的红外光照射在热释电红外传感器上时,传感器没有电信号输 出,而只有铁电体处于变化过程中才有电信号输出。所以,必须有交 变的红外光照射,不断引起传感器的温度变化,才能导致热释电产生 并输出交变信号。

热释电红外 原理

热释电红外 原理

热释电红外原理热释电红外原理是指通过材料的温度改变引起物质内部电荷的移动而产生的红外辐射。

它是一种基于材料热响应性质的红外探测技术,利用热释电效应来探测热辐射,并将其转换为电信号,以实现红外图像的获取和目标检测。

热释电效应指的是当物质受到辐射或者温度变化时,内部原子以更高频率振动产生热能。

这种振动引起了物质内部电荷的移动,从而形成了电流。

在材料的晶体结构中,由于晶体的偶极矩的存在,当温度改变时,晶体内的正负电荷分布也会发生变化。

由于偶极矩的改变,会引起材料表面或界面的电势变化,进一步形成电流。

这种电流被称为热释电电流。

热释电红外探测器通常使用的是热释电材料,如锂钽酸锂(LiTaO3)、锂铌酸锂(LiNbO3)、焦亥石(PZT)等。

这些材料具有良好的热释电特性,能够有效转换红外辐射为电信号。

热释电红外探测器的工作原理可以简单地分为三个步骤:感应、传导和放大。

首先,当有热辐射进入探测器时,热辐射会使得热释电材料发生温度变化。

这种温度变化会引起材料内部原子的振动和电荷分布的变化。

其次,热释电效应使得材料表面的电位发生变化。

当有红外辐射进入探测器时,探测器的电极会受到改变的电位作用,从而形成热释电电流。

这个电流信号可以被测量和记录。

最后,为了增强热释电电流信号的检测和处理,通常使用电路和放大器来放大和处理电流信号。

这个过程通常包括滤波、放大和去背景噪声等步骤,以获得更准确的红外信号。

总结起来,热释电红外原理是通过材料的温度变化引起物质内部电荷的移动而产生的红外辐射。

通过利用热释电效应,并采用相应的电路和放大器,可以将热辐射转换为电信号,实现红外图像的获取和目标检测。

这种探测技术在军事、安防、消防等领域具有广泛的应用和发展前景。

热释电红外传感器的工作原理及过程

热释电红外传感器的工作原理及过程

热释电红外传感器的工作原理及过程嘿,朋友们!今天咱来聊聊热释电红外传感器这个神奇的小玩意儿。

你说它像不像一个超级敏锐的小侦探呀?热释电红外传感器呢,工作起来那叫一个厉害。

它就像是有一双特别的眼睛,能捕捉到我们人眼看不到的红外线。

这就好比我们在黑暗中啥也看不见,但它却能清楚地感知到周围的一切变化。

你想想看啊,它时刻都在警惕着,只要有物体发出红外线,它就能立刻察觉到。

这感觉就像是一个随时准备行动的小卫士,一点儿风吹草动都逃不过它的“法眼”。

它的工作原理呢,其实也不难理解。

就好像我们人能分辨不同的声音一样,热释电红外传感器能分辨不同的红外线信号。

当有物体的温度发生变化时,它就能感受到这种变化,然后迅速做出反应。

比如说,晚上你走进一个房间,在你还没开灯的时候,热释电红外传感器就已经察觉到你的到来啦!它是不是很厉害呢?它就像是一个默默守护的小精灵,虽然不声不响,但却发挥着巨大的作用。

而且哦,热释电红外传感器的应用那可太广泛啦!在我们的日常生活中,到处都能看到它的身影。

比如在一些自动门那里,它能感应到有人靠近,然后自动打开门,多方便呀!还有在一些安防系统中,它能及时发现异常情况,保障我们的安全。

你说,要是没有它,我们的生活得少了多少便利呀!它就像是一个默默奉献的小英雄,不张扬却不可或缺。

再想想看,如果把热释电红外传感器比作一个乐队的话,那红外线就是它演奏的音乐。

它能精准地捕捉到每一个音符,然后奏响美妙的乐章。

哎呀,热释电红外传感器真的是太神奇啦!它让我们的生活变得更加智能、更加便捷。

我们真应该好好感谢这个小小的科技宝贝呀!它虽然不起眼,但却有着大大的能量。

所以呀,朋友们,让我们好好珍惜热释电红外传感器给我们带来的便利吧!让它继续在我们的生活中发挥重要的作用,为我们的生活增添更多的精彩!这就是热释电红外传感器,一个神奇又实用的小玩意儿,你爱上它了吗?。

热释电红外报警实验

热释电红外报警实验

热释电红外报警实验一、实验目的了解热释电红外传感器的工作原理及热释电效应,了解热释电红外报警器的的电路设计方法和调试,掌握热释电红外传感器的使用。

二、实验原理1、热释电效应原理当已极化的热电晶体薄片受到辐射热时候,薄片温度升高,极化强度p下降,表面电荷减少,相当于“释放”一部s分电荷,所以起名叫热释电。

释放的电荷通过一系列的放大,转化成输出电压。

如果继续照射,晶体薄片的温度升高到Tc(居里温度)值时,自发极化突然消失。

不再释放电荷,输出信号为零, 热释电效应原理如图1-11所示。

1-11热释电效应因此,热释电探测器只能探测交流的斩波式的辐射(红外光辐射要有变化量)。

当面积为A的热释电晶体受到调制加热,而使其温度T发生微小变化时,就有热释电电流。

dt dTAP i ,A 为面积,P 为热电体材料热释电系数,dtdT 是温度的变化率。

2、热释电红外报警实验原理热释电红外报警电路,由传感器、检测放大电路、比较输出电路、驱动延时电路、继电器等组成,实验原理图如图1-12所示。

传感器及放大滤波部分:D 为电压输入端,允许输入电压1-15V 。

S 为信号输出端,与后级电路连接。

G 为接地端。

因其输出形式为电压信号且非常微弱,故需要进行阻抗变换和信号放大。

R2作为热释电传感器的负载,通过C2耦合到前级放大器A1,A1的增益为27倍,且由C4,R6组成了滤波网络对采集信号进行放大滤波。

同理A2组成一个低通反馈放大器,增益150倍。

经此两极放大滤波后信号被放大到4000倍以上。

其中R1,C1为退耦电路,R3,R5为偏置电路。

A1输出后的信号经C5耦合到后级放大器A2,A2在静态输出时约为4.5V 。

C3,C9为退耦电容。

比较输出部分:A3组成比较电路,当无报警信号输入时,其反向端电压大于同向端电压,比较器输出负电压,不能驱动后级电路产生报警信号,当有人入侵,有报警信号产生,比较器翻转输出正电压,驱动后级电路报警。

热释电红外探测器组成和原理

热释电红外探测器组成和原理

热释电红外探测器组成和原理1热释电红外探测器的组成 (1)1.1热释电红外传感器的结构 (1)1.2热释电红外探测器的光学系统 (2)2热释电红外探测器的原理 (5)在过去的几十年里,传感器这一用语经历了从诞生到家喻户晓的过程。

今天很难找到一个科学领域或产业部门能够完全脱离传感器而存在。

热释电红外传感器作为热释电红外探测器的核心部件因其新颖的工作原理越来越受到人们的关注。

本章将先介绍热释电红外探测器的工作原理,并深入分析热释电红外传感器的工作原理,然后对热释电红外探测器的组成和关键技术做详细介绍。

1热释电红外探测器的组成目前市场上的热释电红外传感器是探测器的核心器件。

如图1所示。

它的主要部分是由高热电系数的材料制成尺寸约在2×1mm的探测元件。

在每个探测器内装入一个或两个探测元件、并将两个探测元件以反极性串联,以抑制由于自身温度变化而产生的干扰。

热释电红外传感器的作用主要是探测接收红外辐射并将其转换为微弱的电压信号。

下面小节中将对热释电红外传感器的热释电效应做详细分析介绍。

图1 热释电红外探测器的基本组成1.1热释电红外传感器的结构热释红外传感器和热电偶一样是基于热电效应的热电型红外传感器。

不同的是,它的热释电系数远远高于热电偶,其内部的热电元件采用高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化强度随温度的变化而变化。

为了抑制因自身温度变化而产生的干扰,在工艺上将两个特征一致的热电敏感元反向串联接成差动平衡电路,它能以非接触式探测出物体放出的红外线能量变化,并将其转换为电信号输出。

典型的热释电红外传感器结构如图2所示,热释电陶瓷敏感元件、场效应管和偏置高阻被封在管壳内。

器件的性能不仅与敏感元件本身的特性有关,与敏感元件的物理尺寸、固定方式、以及偏置电阻的大小和场效应管的类型也有关。

红外窗口的性能、器件密封方式以及外围电路的特性都会影响器件的探测效率。

图2 热释电红外传感器内部结构热释电红外传感器是以探测人体辐射为目标,所以热释电元件对波长为m 12~8左右的红外辐射必须非常敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热释电红外探测器报警与成像原理的分析研究
通过对热释电红外探测器的性能分析,说明热释电红外探测器应用报警原理与成像机理;对热释电红外探测器结构及光(热)电转换原理分析,说明斩波式热释电红外成像的工作过程。

标签:热释电;斩波;DTGS;灵敏度;分辨率
1 热释电红外探测器的性能分析
在某些绝缘物质中,当温度变化时,介质的固有电极化强度将发生变化,使屏蔽电荷失去平衡,多余的屏蔽电荷被释放出来的现象称为热释电效应。

能产生热释电效应的晶体称为热释电体,又称热电元件。

热电元件常用的单晶材料有钽酸锂LiTaO3、氘化的硫酸三甘肽DTGS等。

当温度变化时,晶体结构中的正、负电荷重心产生相对位移,晶体极化值就会发生变化,在晶体表面就会产生电荷。

在热电元件两端并联上电阻,将电流信号转换成电压信号,将该电压信号进行放大、滤波、延迟、比较,即可实现红外报警功能;若将该电压信号处理放大在显示器上变成光信号,可实现成像功能。

热释电红外探测器由传感探测元、干涉滤光片和场效应管匹配器三部分组成,设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。

其内部的热电元由高热电系数的硫酸三甘钛(TGS)配合滤光镜片窗口组成,其极化强度随温度梯度的变化而变化。

2 热释电红外报警器的结构原理
热释电红外报警器又称被动式红外报警器,主要由光学系统(菲涅尔透镜)、热释电红外探测器、信号滤波和放大、信号处理和报警电路等几部分组成。

菲涅尔透镜可以将入侵目标辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外探测器是报警器设计中的核心器件,它可以把入侵目标的红外信号转换为电信号以供信号处理部分使用。

信号处理主要是把探测器输出的微弱电信号进行放大、滤波、延迟、比较,最后由驱动电路实现声光报警功能。

在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收被测物体能量或能量变化来完成探测目的。

被动红外报警器的特点是能够响应入侵者在所防范区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。

当入侵目标辐射的红外线通过菲涅尔透镜被聚焦在热释电红外探测器的探测元上时,电路中的探测器将输出电压信号,然后使该信号先通过一个由R、C 组成的带通滤波器。

由于热释电红外探测器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz 左右),所以必需对热释红外探测器输出的电压信号进行放大。

可运用集成运算
放大器来进行多级放大,以使其获得足够的增益。

当探测器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限值,系统将输出高电平信号;无异常情况时则输出低电平信号。

这就是实现热释电红外报警功能的原理,用热释电红外探测器设计的监控报警系统具有结构简单、成本低等优点。

3 热释电红外成像
3.1 热释电摄像管的结构与工作过程
热释电红外探测器近20年广泛地用于辐射和非接触式温度测量、激光参数测量、工业自动控制、空间技术、红外成像技术中。

热释电红外探测器其温度响应率达到4~5μA/℃,可分辨温差小于0.05℃,信号灵敏度高,图像清晰度和抗强光干扰能力也较高。

所以热释电红外成像技术的应用的前景尤其看好。

图1是热释电管的结构示意图。

热释电摄像管主要由两部分组成:(1)换能元件组成的光学成像面(即光电变换元件)——靶面。

热释电靶的厚度约为30um,它的电极化轴垂直于表面。

(2)电信号扫描读出机构——电子抢。

扫描电子枪由电子束发射源、电子束聚焦偏转系统组成。

热释电靶面即热释电红外探测元,采用热释电材料氘化的硫酸三甘肽。

投射到热释电靶面上的红外辐射(热图像)使靶面上各点的极化的程度与靶面各点温度改变的大小成正比,因而靶面上产生一个与所接收的辐照度分布完全对应的极化电荷分布。

该电荷分布经电子枪的电子束偏转扫描系统一行行、一场场读出电荷信号,这样,热分布像就转换成为电荷分布的电学像,电学像再在显示器显示可见灰度等级图像。

即光(远红外线)-电-光(可见光)的转换过程。

3.2 热释电摄像管的工作电路设计思想
3.2.1 锁相电路与正、负场视频处理电路
热释电摄像管的工作过程分为热图像的写入和视频信号的读出两个过程。

由于热释电靶面上的电荷是静电荷,如果靶温不变,靶面电荷被扫描电子束着靶中和后,就不能再产生新的电荷密度,这样就要求对输入的辐射进行调制,使输入辐射必须是变化量。

一般来说,调制的方式有两种,一种是平移式(摄像时将摄像机相对被摄物体作平移运动或原地转动),一种是斩波式(在摄像管前方安装机械调制器,该调制器周期性地截止、打开输入辐射)。

斩波调制式的热像和视场是稳定的,但由于斩波器的打开和关闭产生的图像信号极性相反,所以需要设计斩波锁相控制电路,同时需设计正、负场视频处理电路。

3.2.2 热释电探测器红外成像的工作过程(原理框图)如图2
图2
3.2.3 熱释电探测器红外成像的技术参数
热释电探测器红外成像的主要性能参数有分辨率、灵敏度、响应光谱、惰性等。

分辨率是电视图像的一个重要指标,热传导会使电视图像的分辨率降低,在斩波模式中,将热扩散的有效的减少到了斩波时间(即斩波周期)。

对于一个斩波频率为30Hz的TGS材料,对应一个1英寸摄像管300线的分辨率。

灵敏度的定义为S=I/AE,I为信号电流,A为靶面扫描面积,E为靶面上的照度。

光谱响应是指响应率与入射光波长的关系,热释电成像的光谱响应由靶面材料、窗口材料、镜头的透射光谱特性来确定。

热释电探测器光敏感层上的照度突然改变时,信号的电流并不能立即跟上这个变化,而是有一定的时间滞后(包括电滞后和热滞后),这种现象称之为惰性。

以上几个方面说明了无论是探测器的设计生产工艺还是电路设计思路都要充分考虑影响上述技术参数的因素。

4 结束语
热成像系统经历了从单元到多元、制冷型到非制冷并举的发展过程,非制冷焦平面探测器的出现,使热成像系统得到很大的发展并迅速推广到各个领域。

热成像系统多采用中波红外3~5μm或长波红外8~14μm作为工作波段,但随着光电对抗技术的发展,为提高系统的抗干扰以及探测和识别能力,多波段探测技术成为热成像技术发展的重要方向。

本论文的研究分析成果不仅具有理论意义,而且对中国目前正在进行的非制冷焦平面探测器技术研究以及日益广泛的应用具有积极的指导意义。

参考文献
[1]金伟其,候光明,刘广荣.非致冷焦平面热成象技术及其应用[J].红外技术,1998(6).
[2]Jha A R,张孝霖.红外技术应用—光电、光子器件及传感器[Z].2004.
[3]吴新社,范乃华,李龙,等.铁电型非制冷红外焦平面探测器的调制器设计[J].红外技术,2007(6).
[4]叶玉堂,刘爽.红外与微光技术,2010.。

相关文档
最新文档