高中物理电磁学公式概念及试题(带答案)大全
高中物理电磁学公式大全总结
高中物理电磁学公式大全总结以下是一些高中物理电磁学中常用的公式总结:
1. 电荷和电场:
库仑定律,F = k |q1 q2| / r^2。
电场强度,E = F / q。
电势能,U = k |q1 q2| / r。
电势差,V = U / q。
2. 电流和电路:
电流强度,I = Q / t。
电阻定律,V = I R。
电功率,P = V I。
电阻与电导,R = ρ (L / A),G = 1 / R。
3. 磁场和磁感应强度:
洛伦兹力,F = q (v × B)。
磁场强度,B = F / (q v sinθ)。
磁感应强度,B = μ H。
安培环路定理,∮B·dl = μ I。
4. 电磁感应:
法拉第电磁感应定律,ε = -dΦ / dt。
楞次定律,ε = -N dΦ / dt。
自感系数,L = N Φ / I。
电磁感应电动势,ε = B l v sinθ。
5. 电磁波:
光速,c = λ f。
波长和频率关系,λ = c / f。
光的能量,E = h f。
光的强度,I = P / A。
以上是一些高中物理电磁学中常用的公式总结,这些公式可以
帮助我们理解和计算电磁学中的各种现象和问题。
需要注意的是,
在具体应用时,还需要结合具体情况和问题进行适当的变形和推导。
高一物理电磁学试题答案及解析
高一物理电磁学试题答案及解析1.一个带电粒子射入一固定在O点的点电荷的电场中,粒子运动轨迹如图虚线abc所示,图中实线表示电场的等势面,下列判断错误的是:()A粒子在a→b→c的过程中,电场力始终做正功;B粒子在a→b→c的过程中,一直受静电引力作用;C粒子在a→b→c的过程中,加速度先增大后减小D粒子在a→b→c的过程中,ab段逆着电场线,bc段顺着电场线。
【答案】AD【解析】分析:电荷受到的合力指向轨迹的内侧,根据轨迹弯曲方向判断出粒子与固定在O点的电荷是异种电荷,它们之间存在引力,根据力与速度的夹角分析做功的正负.解答:解:A、粒子在a→b过程,电场力做功正功,b→c的过程电场力做负功.故A错误.B、根据轨迹弯曲方向判断出,粒子在a→b→c的过程中,一直受静电引力作用.故B正确,C根据点电荷产生的电场的特点,粒子在a→b→c的过程中,加速度先增大后减小,C正确.D、粒子在a→b→c的过程中,轨迹与电场线不在同一直线上,故D错误.本题选错误的,故选AD2.电场中有一点P,下列说法中正确的有()A.若放在P点的电荷的电量减半,则P点的场强减半B.若P点没有检验电荷,则P点场强为零C.P点的场强越大,则同一电荷在P点受到的电场力越大D.P点的场强方向为放在该点的电荷的受力方向【答案】C【解析】电场中某点的电场强度只与电场本身有关,与检验电荷有无以及检验电荷的电量无关,选项AB错误;根据F=Eq可知,P点的场强越大,则同一电荷在P点受到的电场力越大,选项C正确;P点的场强方向为放在该点的正电荷的受力方向,选项D错误;故选C.【考点】电场强度.3.如图所示,光滑绝缘的水平桌面上,固定着一个带电量为+Q的小球P,带电量分别为-q和+2q的小球M和N,由绝缘细杆相连,静止在桌面上,P与M相距L,P、M和N视为点电荷,下列说法正确的是()A.M与N的距离大于LB.P、M和N在同一直线上C.在P产生的电场中,M、N处的电势相同D.M、N及细杆组成的系统所受合外力为零【答案】BD【解析】由电荷间的相互作用规律可知,P对M有吸引力,对N有排斥了,故P、M和N在同一直线上,选项B正确;MN之间的距离无法比较,选项A错误;在P产生的电场中,M处的电势高于N点,选项C错误;因MN及细杆系统处于平衡状态,故所受的合外力等于零,选项D正确;故选BD.【考点】电势;电荷间的相互作用。
2023高中物理电磁学复习 题集附答案
2023高中物理电磁学复习题集附答案本文为2023高中物理电磁学复习题集,附带答案。
以下是一些常见的物理电磁学习题,希望能够帮助你巩固相关知识点。
1. 第一题:一个电荷为+5μC的粒子静止在坐标原点上,它周围的电场强度是多少?答案:+5μC电荷在原点产生的电场强度为0。
2. 第二题:一个电子静止在坐标轴上的点A,电子自A点开始沿x轴正方向移动2m,求此过程中的电势变化。
答案:电子受到电场力的作用,沿着电场力方向移动,即x轴正方向,因此电势变化为正。
根据公式ΔV = -Ed,其中ΔV为电势变化量,E为电场强度,d为位移。
根据题目给出的信息,可知电场强度E与电子电量q的比值恒定,即E = kq/r²,其中k为电场常量,q为电子电量,r为距电子的距离。
由于电场力的方向与电场强度的方向相反,所以ΔV = E × d = -kd。
3. 第三题:一个有限长直导线,导线均匀带有电荷密度λ,求解导线上某一点P的电场强度。
答案:根据导线的电荷分布,可以将线密度λ看作一个线元,电元dE对点P的电场强度为dE = kdλ/r,其中r为点P到线元的距离。
将所有的线元叠加起来,可以得到整个导线上点P的电场强度为E = ∫dE =∫kdλ/r。
4. 第四题:一半径为R的均匀充电球,带电量为Q,求球外面的电场强度。
答案:球外点P与球心O连线与球面相交,沿着球面上的一小段圆周弧元的电场强度相等,符合位矢叠加原理。
设球面元的电荷量为dQ,球面元上的电场强度为dE,由于球面元带电体均匀,因此整个球面上的电场强度大小相等,方向指向球心。
球外一点的电场强度可以看作是球面上所有电场强度的叠加,因此球外点的电场强度为E = kQ/r²,其中k为电场常量,Q为球的总电量,r为球心到点P的距离。
5. 第五题:一个电子从电势为V1的地方沿着电场力线方向到电势为V2的地方,求电子所受的电场力做功。
答案:根据题意,电子从电势为V1的地方到电势为V2的地方,说明在此过程中电势降低,因为电势差ΔV = V2 - V1 < 0。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高中物理电磁学常考题总结(带答案解析)
高中物理电磁学常考题总结(带答案解析)姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、综合题(共60题;共0分)1.如图所示,厚度不计的圆环套在粗细均匀、长度为0.8m的圆柱顶端。
圆环可在园柱上滑动,同时从静止释放,经0.4s圆柱与地相碰,圆柱与地相碰后速度瞬间变为0,且不会倾倒。
(1)求静止释放瞬间,圆柱下端离地的高度(2)若最终圆环离地的距离为0.6m,则圆环与圆柱间的滞动摩擦力是圆环重力的几倍?(3)若圆环速度减为0时,恰好到达地面,则从静止释放时圆环离地的高度为多少?2.如图所示,ABCD是游乐场中的滑道,它位于竖直平面内,由两个半径分别为R1=10m和R2=2m的1/4光滑田弧,以及长L=10m、动摩擦因数=0.1的水平滑连组成,所有滑道平滑连接,D点恰好在水面上。
游客(可视为质点)可由AB弧的任意位置从静止开始下滑,游客的质量为m=50kg。
(1)若到达AB弧的末端时速度为5m/s,此时游客对滑道的压力多大?(2)若要保证游客能滑入水中,开始下滑点与B点间网弧所对应的圆心角要足什么条件。
(可用三角函数表示)(3)若游客在C点脱离滑道,求其落水点到D点的距离范围。
3.如图1所示是某质谱仪的模型简化图,P点为质子源,初速度不计的质子经电压加速后从O点垂直磁场边界射入,在边界OS的上方有足够大的垂直纸面的匀强磁场区域,B=0.2T。
a、b间放有一个宽度为L ab =0.1cm的粒子接收器S,oa长度为2m。
质子的比荷,质子经电场、磁场后正好打在接收器上。
(1)磁场的方向是垂直纸面向里还是向外?(2)质子进入磁场的角度范围如图2所示,向左向右最大偏角,所有的质子要打在接收板上,求加速电压的范围(结果保留三位有效数字,取cos80=0.99, )。
(3)将质子源P换成气态的碳I2与碳14原子单体,气体在P点电离后均帯一个单位正电(初速度不计),碳12的比荷C/kg,碳14的比荷保持磁感应强度不变,从O 点入射的角度范围不变,加速电压可以在足够大的范围内改变。
(完整版)电磁学试题库试题及答案
电磁学试题库 试题3一、填空题(每小题2分,共20分)1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。
(2)若两球壳之间的电压是U ,其电流密度( )。
5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势大小( ),方向( )。
7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a<r<b )的任一圆柱面的总位移电流是( )。
8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是( )。
9、对铁磁性介质M B H、、三者的关系是( ) )。
10、有一理想变压器,12N N =15,若输出端接一个4Ω的电阻,则输出端的阻抗为( )。
一、选择题(每小题2分,共20分) 1、关于场强线有以下几种说法( ) (A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的大小(D )电场线代表点电荷在电场中的运动轨迹R I O a b vPzRLI2、对某一高斯面S ,如果有0=⋅⎰S S d E则有( ) (A )高斯面上各点的场强一定为零 (B )高斯面内必无电荷 (C )高斯面内必无净电荷 (D )高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。
高中物理磁场习题200题(带答案解析)
WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
物理磁学试题解析及答案
物理磁学试题解析及答案一、选择题1. 磁铁的南极用符号表示为:A. NB. SC. OD. P答案:B2. 磁感应强度的单位是:A. 特斯拉B. 安培C. 库伦D. 伏特答案:A3. 地球的磁场是由:A. 地球内部的电流产生的B. 地球表面的岩石产生的C. 地球大气层产生的D. 太阳风产生的答案:A4. 磁通量Φ的计算公式是:A. Φ = B × A × cosθB. Φ = B × AC. Φ = A / BD. Φ = B / A答案:A5. 奥斯特实验证明了:A. 电能生磁B. 磁能生电C. 电能生热D. 磁能生光答案:A二、填空题1. 磁铁的两极分别是____和____。
答案:北极(N极)、南极(S极)2. 磁感应强度的国际单位制单位是____。
答案:特斯拉(T)3. 地球磁场的北极实际上位于地球的地理____。
答案:南极4. 磁通量是磁场线通过某个面积的量度,其单位是____。
答案:韦伯(Wb)5. 法拉第电磁感应定律表明,当磁通量发生变化时,会在导体中产生____。
答案:感应电动势三、简答题1. 简述磁铁的磁化过程。
答案:磁铁的磁化过程是指在外部磁场的作用下,磁铁内部的磁畴排列变得有序,从而显示出磁性的过程。
2. 什么是安培环路定理?答案:安培环路定理是电磁学中描述磁场与电流之间关系的一个基本定律,它指出通过任何闭合环路的总磁通量等于该环路所包围的电流的代数和乘以磁导率。
四、计算题1. 一个长为0.5m,宽为0.3m的矩形线圈,垂直于磁场放置,磁场强度为0.2T,求线圈的磁通量。
答案:Φ = B × A × cosθ = 0.2 × 0.5 × 0.3 × 1 = 0.03 Wb2. 一个导体线圈在磁场中以0.1m/s的速度移动,磁场强度为0.3T,线圈面积为0.04m²,求线圈中产生的感应电动势。
高三物理电磁学试题答案及解析
高三物理电磁学试题答案及解析1.如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)线框cd边刚进入磁场时速度v的大小;=0.27J,则在此过程中线框产生的焦耳热Q为多少?(2)若线框进入磁场过程中F做功为WF【答案】(1)2m/s (2)0.12J【解析】(1)当后,对线框:解得:又解得:(2)根据功能关系得:解得:【考点】功能关系;牛顿定律的应用.2.如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。
第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。
在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。
不计空气阻力,重力加速度为g。
求:(1)在-x轴上有质子到达的坐标范围;(2)垂直于y轴进入电场的质子,在电场中运动的时间;(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
【答案】(1)(2)(3)【解析】(1)设-x轴的第一个坐标点为x1(2)质子垂直进入电场时距x轴的距离:(3)在磁场中运动情景如图所示。
由牛顿定律可知:由动能定理:【考点】带电粒子在磁场中的运动;动能定理.3.如图在xoy坐标系第Ⅰ象限,磁场方向垂直xoy平面向里,磁感应强度大小为B=1.0T;电场方向水平向右,电场强度大小为E=N/C.一个质量m=2.0×10﹣7kg,电荷量q=2.0×10﹣6C的带射入第Ⅰ象限,恰好在xoy平面中做匀速直线运动.0.10s后改正电粒子从x轴上P点以速度v变电场强度大小和方向,带电粒子在xoy平面内做匀速圆周运动,取g=10m/s2.求:大小和方向;(1)带电粒子在xoy平面内做匀速直线运动的速度v(2)带电粒子在xoy平面内做匀速圆周运动时电场强度E′的大小和方向;(3)若匀速圆周运动时恰好未离开第Ⅰ象限,x轴上入射P点应满足何条件?【答案】(1)2m/s,方向斜向上与x轴正半轴夹角为60°;(2)1N/C,方向竖直向上.(3)0.27m【解析】(1)如图粒子在复合场中做匀速直线运动,设速度v与x轴夹角为θ,依题意得:解得所以:θ=60°即速度v大小2m/s,方向斜向上与x轴正半轴夹角为60°(2)带电粒子在xOy平面内做匀速圆周运动时,电场力F电必须与重力平衡,洛伦兹力提供向心力:解得E′=1N/C,方向竖直向上.(3)如图带电粒子匀速圆周运动恰好未离开第1象限,圆弧左边与y轴相切N点;PQ匀速直线运动,PQ=vt="0.2" m洛伦兹力提供向心力:,得R=0.2m由几何知识得:OP=R+Rsin60°-PQcos60°OP==0.27m故:x轴上入射P点离O点距离至少为0.27m【考点】带电粒子在复合场中的运动;4.图中L为自感系数足够大的理想电感,C是电容量足够大的理想电容,R1、R2是阻值大小合适的相同电阻,G1、G2是两个零刻度在中央的相同的灵敏电流表,且电流从哪一侧接线柱流入指针即向哪一侧偏转,E是可以不计内阻的直流电源.针对该电路下列判断正确的是( )A.电键S闭合的瞬间,仅电流计G1发生明显地偏转B.电键S闭合的瞬间,两电流计将同时发生明显的偏转C.电路工作稳定后,两电流计均有明显不为零的恒定示数D.电路工作稳定后再断开电键S,此后的短时间内,G1的指针将向右偏转,G2的指针将向左偏转【答案】BD【解析】电路接通瞬间,由于自感系数足够大,所以有电流通过R1,直流电不能通过电容器,则有电流通过R2,所以电键S闭合的瞬间,两电流计将同时发生明显的偏转,故A错误,B正确;L为理想电感,电路温度后,R1被短路,则没有电流通过,示数为零,故C错误;电路工作稳定后再断开电键S,此后的短时间内,电容器放电,电流从右端通过R1,从左端通过R2,则G1的指针将向右偏转,G2的指针将向左偏转,故D正确.故选BD.【考点】自感现象.【名师】此题考查自感以及电容器问题;解决本题的关键知道电感器对电流的变化有阻碍作用:当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小,而电阻没有此特点,当K断开电阻、电容构成一回路,电容器可以储存电荷。
高二物理电磁学试题答案及解析
高二物理电磁学试题答案及解析1.如图所示,充电后的平行板电容器水平放置,电容为C,极板间的距离为d,上板正中有一小孔。
质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g).求:(1)小球到达小孔处的速度;(2)极板间电场强度的大小和电容器所带电荷量;(3)小球从开始下落运动到下极板处的时间.【答案】;(2);;(3)【解析】小球到达小孔前是自由落体运动,根据速度位移关系公式,有:v2=2gh;解得:(2)对从释放到到达下极板处过程运用动能定理列式,有:mg(h+d)-qEd=0解得:电容器两极板间的电压为:U=Ed电容器的带电量为:Q=CU=(3)加速过程:减速过程,有:0=v+at2t=t1+t2联立解得:【考点】带电粒子在复合场中的运动;动能定理【名师】本题主要考查了带电粒子在复合场中的运动、动能定理综合应用。
属于难度较大的题目。
带电粒子在复合场中的加速或减速运动问题用动能定理列方程,更简单,但要注意重力和电场力都做功,不要有遗漏而出错。
2.如图所示,圆形区域内有一垂直纸面的匀强磁场,P为磁场边界上的一点,有无数带有同样电荷,同样质量的粒子在纸面内沿各个方向以相同的速率通过P点进入磁场,这些粒子射出边界的位置均处于边界上的某一段弧上,这段圆弧的弧长是圆周长的1/3,将磁感应强度的大小从原来的变为,结果相应的弧长变为原来的一半,则等于()A.B.C.2D.3【答案】B【解析】当磁感应强度为时,从P点射入的粒子与磁场边界的最远交点为M,最远的点是轨迹上直径与磁场边界圆的交点,∠POM=120°,如图所示:设圆的半径为r,所以粒子做圆周运动的半径R为:,解得:.磁感应强度为时,相应的弧长变为原来的一半,即弧长为圆的周长的,从P点射入的粒子与磁场边界的最远交点为N,最远的点是轨迹上直径与磁场边界圆的交点,∠PON=60°,如图所示,所以粒子做圆周运动的半径为:,解得:,由带电粒子做圆周运动的半径:,由于v、m、q相等,则得:,故B正确【考点】考查了带电粒子在匀强磁场中的运动【名师】带电粒子在电磁场中的运动一般有直线运动、圆周运动和一般的曲线运动;直线运动一般由动力学公式求解,圆周运动由洛仑兹力充当向心力,一般的曲线运动一般由动能定理求解3.如图所示的装置可以用来测定磁场的磁感应强度,天平右臂下面挂一个矩形线圈,宽为L,共n匝,线圈的下半部分悬在匀强磁场中,磁场方向垂直于纸面。
高一物理电磁学试题
高一物理电磁学试题1. 如图所示,a 、b 、c 是一条电场线的三点,电场线的方向由a 到c ,a 、b 间距离等于b 、c 间距离,用φa 、φb 、φc 和E a 、E b 、E c 分别表示a 、b 、c 三点的电势和场强,可以判定A .φa >φb >φcB .E a >E b >E cC .φa –φb =φb –φaD .E a = E b = E c【答案】A【解析】【考点】电场强度;电势. 专题:电场力与电势的性质专题.分析:本题考查了电场线和电势、电场强度以及电势差之间的关系,尤其注意公式U=Ed 的适用条件以及公式中各个物理量的含义.解答:解:只有一条电场线,不能确定具体的电场,无法比较电场强弱及两点间的电势差,公式U=Ed 也不能适用,故BCD 错误;沿电场线电势降低,可以比较电势高低,根据电场线方向可知φa >φb >φc ,故A 正确. 故选A .点评:本题容易错选CD 选项,即把电场误认为是匀强电场,或者错误应用公式U=Ed 求解,对于公式U=Ed 一定注意其适用条件,尤其是公式中d 的含义.2. 用30cm 的细线将质量为4×10-3㎏的带电小球P 悬挂在O点,当空中存在水平向右,大小为1×104N/C 的匀强电场时,小球偏转37°后处于静止状态。
(sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)分析小球的带电性质及带电量;(2)求细线的拉力。
【答案】解:(1)由受力分析可知电荷带正电, (2分) 根据力的平衡条件得:即有:(4分)(2)由力的平衡可得: (4分)【解析】略3. 如图所示,平行板电容器电容为C ,带电量为Q ,板间距离为,今在两板正中央处放一电荷,则它受到的电场力大小为( )A.B.C.D.【答案】C【解析】分析:根据电容器的定义式C=,求出电容器两端间的电势差,根据匀强电场的强度公式E=得出电场强度,从而得出电场力.解答:解:电势差U=,则电场强度E==,电场力F=qE=.故C正确,A、B、D错误.故选C.4.在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示。现让小球A、B、C带等量的正电荷Q,让小球D带负电荷q,使四个小球均处于静止状态,则Q与q的比值为( )A. B. C.3 D.【答案】D【解析】以A、B、C三个中的一个为研究对象,如以B为研究对象有:受到A、C的斥力作用,同时受到D点点电荷的引力作用,设三角形边长为L,根据受力平衡得:,其中,所以解得:,故ABC错误,D正确。
高中物理电磁学公式概念及试题(带答案)大全
电磁学物理概念规律名称公式备注库仑定律真空中: F=k介质中: F=kk=9.0×109 N·m2/C2ε为介电常数电场强度定义式:E=点电荷:E=匀强电场:E=q为检验电荷,Q为产生电场的点电荷电场力F=电场力的功W= 电场力做功跟电荷运动的路径无关电势差U= 为电场力做的功点电荷电势U= r为电介质中的点到点电荷Q的距离(取无穷远电势为零)电势能Δε= Δε为电势能的增量电容定义式:C=平行板电容器的电容:C=ε是介电常数,k是静电力常量串联电容并联电容C=电流I= 电量q=电阻定律R= 电阻率ρ=串联电阻R串=R1+R2+…+Rn 串联的总电阻值大于每一个分电阻值并联电阻①两个电阻并联:R并=②n个相同电阻(R)并联:R并=③并联的总阻值小于任一支路的阻值电动势ε= 内U外为路端电压,U内为内压,当外电路断开时:E=U外欧姆定律部分电路:I=U/R全电路:I=闭合电路的常用规律ε=ε=IR+Ir根据这三式,可以得到测定电源电动势和内阻的三种不同方法电功W=UIt=I2Rt= 对于非纯电阻电路:①计算电功只能用W=②计算电功率只能用P=③计算电热只能用Q=④W>Q电功率P=UI=I2R=焦耳定律普遍式:Q=纯电阻电路中:Q=W=UIt=U2t/R=Pt磁感应强度B= L⊥B当B与S成θ角时:Φ=磁通量Φ=安培力F=ILB(B⊥L)或F= L是有效长度θ是B、L间的夹角洛伦兹力F= (v⊥B) 或F= θ为B、v间的夹角电磁力矩M=BIS(平面S平行磁感线时)S是线圈面积,对N匝线圈:M=NBIS法拉第电磁感应定律普适公式:ε=导体切割:E= (B、L、v三者相互垂直)N是线圈匝数,L是导体有效长度自感电动势ε= L是自感系数(自感或电感)感抗XL=容抗XC=交变电动势、电流最大值:εm=BSωIm=εm/R瞬时值:e= i= S为线圈面积,ω为角速度,R为全电路的总电阻(线框从中性面开始转动)正弦或余弦交流电的有效值Um= 为电路电压最大值理想变压器U1、U2、I2、I2与n1、n2分别为原、副线圈的电压、电流与匝数振荡电路周期频率周期:T=频率:f =L为线圈的自感C为电容器的电容电磁波波长λ= f为频率,c为波速,λ为波长1.如图所示,A、B、C、D是真空中一正四面体的四个顶点.现在在A、B两点分别固定两个点电荷Q1和Q2,则关于C、D两点的场强和电势,下列说法正确的是() A.若Q1和Q2是等量异种电荷,则C、D两点电场强度不同,电势相同B.若Q1和Q2是等量异种电荷,则C、D两点电场强度和电势均相同C.若Q1和Q2是等量同种电荷,则C、D两点电场强度和电势均不相同D.若Q1和Q2是等量同种电荷,则C、D两点电场强度和电势均相同2.如图所示,带有等量异种电荷的两块等大的平行金属板M、N水平正对放置.两板间有一带电微粒以速度v0沿直线运动,当微粒运动到P点时,将M板迅速向上平移一小段距离,则此后微粒的可能运动情况是()A.沿轨迹④运动B.沿轨迹①运动C.沿轨迹②运动D.沿轨迹③运动3.真空中有一半径为r0的带电金属球壳,通过其球心的一直线上各点的电势φ分布如图,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离.下列说法中正确的是()A.A点的电势低于B点的电势新- 课-标- 第-一 -网B.A点的电场强度方向由A指向BC.A点的电场强度小于B点的电场强度D.正电荷沿直线从A移到B的过程中,电场力做负功4.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成如图所示稳定的静电场.实线为其电场线,虚线为其等势线,A、B两点与两球球心连线位于同一直线上,C、D两点关于直线AB对称,则()A.A点和B点的电势相同B.C点和D点的电场强度相同C.正电荷从A点移至B点,电场力做正功D.负电荷从C点沿直线CD移至D点,电势能先增大后减小5.两个等量同种电荷固定于光滑水平面上,其连线中垂线上有A、B、C三点,如图甲所示.一个电量为2 C、质量为1 kg的小物块从C点静止释放,其运动的v-t图象如图乙所示,其中B点处为整条图线切线斜率最大的位置(图中标出了该切线).则下列说法正确的是()A.B点为中垂线上电场强度最大的点,场强E=2 V/mB.由C到A的过程中物块的电势能先减小后变大C.由C到A的过程中,电势逐渐升高D.A、B两点电势差U AB=-5 V6.如图所示,光滑绝缘斜面的底端固定着一个带正电的小物块P,将另一个带电小物块Q 在斜面的某位置由静止释放,它将沿斜面向上运动.设斜面足够长,则在Q向上运动过程中()A.物块Q的动能一直增大B.物块Q的电势能一直增大C.物块P、Q的重力势能和电势能之和一直增大D.物块Q的机械能一直增大7 .(单选))如图,两根相互平行的长直导线分别通有方向相反的电流I 1和I 2,且I 1>I 2;a 、b 、c 、d 为导线某一横截面所在平面内的四点且a 、b 、c 与两导线共面;b 点在两导线之间,b 、d 的连线与导线所在平面垂直.磁感应强度可能为零的点是( )A .a 点B .b 点C .c 点D .d 点 8 .(单选)()如图,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘.当MN 中电流突然减小时,线圈所受安培力的合力方向( )A .向左B .向右C .垂直纸面向外D .垂直纸面向里9 .(单选))如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )A .棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小 二 模拟题组 10(单选)如图所示,两平行光滑金属导轨MN 、PQ 间距为l ,与电动势为E 、内阻不计的电源相连.质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面的夹角为θ,回路其余电阻不计.为使ab 棒静止,需在空间施加一匀强磁场,其磁感应强度的最小值及方向分别为( )A.mgR El,水平向右 B.mgR cos θEl ,垂直于回路平面向上C.mgR tan θEl ,竖直向下D.mgR sin θEl ,垂直于回路平面向下11 .(单选)(2014·衡阳模拟)如图所示,在竖直向下的匀强磁场中有两根竖直放置的平行粗糙导轨CD、EF,导轨上放一金属棒MN.现从t=0时刻起,给金属棒通以图示方向的电流且电流强度与时间成正比,即I=kt,其中k为常量,金属棒与导轨始终垂直且接触良好.下列关于金属棒的速度v、加速度a随时间t变化的关系图象,可能正确的是()电磁学物理概念规律名称公式备注库仑定律真空中: F=k介质中: F=kk=9.0×109 N·m2/C2ε为介电常数电场强度定义式:E=F/q点电荷:E=kQ/r2匀强电场:E=U/dq为检验电荷,Q为产生电场的点电荷电场力F=Eq电场力的功W=qU 电场力做功跟电荷运动的路径无关电势差U=W/q W 为电场力做的功点电荷电势U=kQ /εr r为电介质中的点到点电荷Q的距离(取无穷远电势为零)电势能Δε=qU Δε为电势能的增量电容定义式:C=Q/U平行板电容器的电容:C= εS/4πkdε是介电常数,k是静电力常量串联电容并联电容C=C1+C2...电流I=q/t 电量q=It电阻定律R=ρL/s 电阻率ρ=R·S/L串联电阻R串=R1+R2+…+Rn 串联的总电阻值大于每一个分电阻值并联电阻①两个电阻并联:R并=R1R2/(R1+R2)②n个相同电阻(R)并联:R并=R/n③并联的总阻值小于任一支路的阻值电动势ε=U外+U内U外为路端电压,U内为内压,当外电路断开时:E=U外欧姆定律部分电路:I=U/R全电路:I=ε/(R+r)闭合电路的常用规律ε=U+Irε=U+(U/R)rε=IR+Ir根据这三式,可以得到测定电源电动势和内阻的三种不同方法电功W=UIt=I2Rt=U2t/R 对于非纯电阻电路:①计算电功只能用W=UIt②计算电功率只能用P=UI③计算电热只能用Q=I2Rt④W>Q电功率P=UI=I2R=U2/R焦耳定律普遍式:Q=I2Rt纯电阻电路中:Q=W=UIt=U2t/R=Pt磁感应强度B=F/IL, L⊥B B=ΦS当B与S成θ角时:Φ=BSsinθ磁通量Φ=B·S安培力F=ILB(B⊥L)或F=ILBsinθL是有效长度θ是B、L间的夹角洛伦兹力f=qvB(v⊥B) f=qvBsinθθ为B、v间的夹角电磁力矩M=BIS(平面S平行磁感线时)S是线圈面积,对N匝线圈:M=NBIS法拉第电磁感应定律普适公式:ε=NΔΦ/ Δt导体切割:E=BLv(B、L、v三者相互垂直)N是线圈匝数,L是导体有效长度自感电动势ε=LΔI/ Δt L是自感系数(自感或电感)感抗XL=2πfL容抗XC=1/2πfC交变电动势、电流最大值:εm=BSωIm=εm/R瞬时值:e=εmsinωt i=Imsinωt S为线圈面积,ω为角速度,R为全电路的总电阻(线框从中性面开始转动)正弦或余弦交流电的有效值Um=ImR为电路电压最大值理想变压器U1、U2、I2、I2与n1、n2分别为原、副线圈的电压、电流与匝数振荡电路周期频率周期:T=2π频率:f =L为线圈的自感C为电容器的电容电磁波波长λ=c/f f为频率,c为波速,λ为波长1.[解析]选B.若Q1和Q2是等量异种电荷,则C、D位于两个点电荷的中垂面上,所以C、D两点电场强度相同,电势相同,所以A错误,B正确;若Q1和Q2是等量同种电荷,则C、D两点电势相同,电场强度大小相等,方向不同,所以C、D错误.2.[解析]选C.由E=Ud=QCd=4πkQεS可知,两极板所带电荷量、电介质和正对面积不变时,M板迅速向上平移一小段距离,不影响板间场强,因而场强不变,故微粒受力情况不变,粒子沿原直线运动.3.[解析]选B.由图象知φA>φB,故A错;电场强度的方向从高电势指向低电势,即A→B,故B正确;图象斜率的绝对值表示场强大小,E A>E B,故C错;正电荷受力方向为A→B,电场力做正功,故D 错.4.[解析]选C.由题图可知,A、B两点不在同一等势面上,电势不相同,A错误;由对称性可知,C、D两点的电场强度方向不同,B错误;由W AB=U AB·q,U AB>0,q>0可知,W AB>0,C正确;沿CD直线,由C到D,电势先增大后减小,故负电荷由C沿直线CD移至D点,电势能先减小后增大,D错误.5.[解析]选D.由图乙知,小物块在B点时加速度最大,故B点场强最大,加速度大小为2 m/s2,据qE=ma得E=1 V/m,选项A错误;由C到A的过程中小物块的动能一直增大,电势能始终在减小,故电势逐渐降低,选项B、C错误;根据动能定理有qU AB=12m v 2B-12m v2A,解得:U AB=-5 V,选项D正确.6.[解析]选D.由F库-mgsin θ=ma可知,物块沿斜面的加速度先向上逐渐减小,再沿斜面向下,逐渐增大,其速度先增大后减小,故物块Q的动能先增大再减小,A错误;因电场力始终做正功,故电势能一直减小,物块Q的机械能一直增大,B错误,D正确;因只有电场力、重力做功,物块的电势能、重力势能、动能之和守恒,又知动能先增大后减小,故重力势能和电势能之和先减小后增大,C错误.7.[解析]选C.由安培定则画出a、b、c、d的磁感线的分布图,由图可知a、c两点的磁场方向相反,当B1=B2时该点处的磁感应强度可能为零,又I1>I2,故该点距I1距离应比I2大,故C正确,A、B、D 错误.8.[解析]选B.因为导线MN靠近ab,由图可知,线圈中等效合磁场为垂直纸面向里,当MN中电流减小时,由楞次定律可知感应电流的磁场阻碍磁通量的减小,故线圈向右运动,所受安培力的合力向右,故只有B项正确.9.[解析]选A.水平的直线电流在竖直磁场中受到水平的安培力而偏转,与竖直方向形成夹角,此时它受拉力、重力和安培力而达到平衡,根据平衡条件有tan θ=F安mg=BILmg,所以棒中的电流增大,θ角变大;两悬线变短,不影响平衡状态,θ角不变;金属棒质量变大,θ角变小;磁感应强度变大,θ角变大.故A 正确.10.[解析]选D.对金属棒ab受力分析可知,为使ab棒静止,ab受到沿斜面向上的安培力作用时,安培力最小,此时对应的磁感应强度也就最小,由左手定则可知此时磁场方向垂直于回路平面向下,再由平衡关系可知IlB=mgsin θ,其中I=ER,可得磁感应强度B=mgRsin θEl,对比各选项可知,选D.11.[解析]选D.从t=0时刻起,金属棒通以电流I=kt,由左手定则可知,安培力方向垂直纸面向里,使其紧压导轨,导致金属棒在运动过程中,所受到的摩擦力增大,所以加速度在减小,当滑动摩擦力小于重力时速度与加速度方向相同,所以金属棒做加速度减小的加速运动.当滑动摩擦力等于重力时,加速度为零,此时速度达到最大.当安培力继续增大时导致加速度方向竖直向上,则出现加速度与速度方向相反,因此做加速度增大的减速运动.v-t图象的斜率绝对值表示加速度的大小,故选项A、B均错误.对金属棒MN,由牛顿第二定律得mg-μF N=ma,而F N=BIL=BktL,即mg-μBktL=ma,因此a=g-μkBL mt,显然加速度a与时间t成线性关系,故选项C错误,D正确.。
高考物理新电磁学知识点之磁场真题汇编含答案
高考物理新电磁学知识点之磁场真题汇编含答案一、选择题1.航母上飞机弹射起飞是利用电磁驱动来实现的。
电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间()A.两个金属环都向左运动B.两个金属环都向右运动C.从左侧向右看,铝环中感应电流沿顺时针方向D.铜环受到的安培力小于铝环受到的安培力2.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。
一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60 角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则()A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1C.t1∶t2=1∶1D.t1∶t2=2∶13.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q m 越小 4.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为e m 的电子以速度v 0从A 点沿AB 边射出(电子重力不计),欲使电子能经过AC 边,磁感应强度B 的取值为A .B <03mv ae B .B <02mv aeC .B >03mv aeD .B >02mv ae5.如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M 点水平射入场区,经一段时间运动到M 点的右下方N 点,关于小球由M 到N 的运动,下列说法正确的是( )A .小球可能做匀变速运动B .小球一定做变加速运动C .小球动量可能不变D .小球机械能守恒6.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射人水平放置,电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关7.某小组重做奥斯特实验,在一根南北方向放置的直导线的正下方放置一小磁针,如图所示,给导线通入恒定电流,小磁针再次静止时偏转了30°,已知该处地磁场水平分量55.010B T -=⨯,通电直导线在该处产生的磁感应强度大小为( )A .52.910T -⨯B .57.110T -⨯C .58.710T -⨯D .41.010T -⨯ 8.一回旋加速器当外加磁场一定时,可把质子加速到v ,它能把氚核加速到的速度为 ( )A .vB .2vC .3vD .23v 9.关于垂直于磁场方向的通电直导线所受磁场作用力的方向,正确的说法是( ) A .跟磁场方向垂直,跟电流方向平行B .跟电流方向垂直,跟磁场方向平行C .既跟磁场方向垂直,又跟电流方向垂直D .既不跟磁场方向垂直,也不跟电流方向垂直10.如图所示,矩形线圈abcd 在匀强磁场中可以分别绕垂直于磁场方向的轴P 1和P 2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时( )A .线圈绕P 1转动时的电流等于绕P 2转动时的电流B .线圈绕P 1转动时的电动势小于绕P 2转动时的电动势C .线圈绕P 1和P 2转动时电流的方向相同,都是a →b →c →dD .线圈绕P 1转动时dc 边受到的安培力大于绕P 2转动时dc 边受到的安培力11.电荷在磁场中运动时受到洛仑兹力的方向如图所示,其中正确的是( ) A . B . C . D . 12.如图所示,有abcd 四个离子,它们带等量的同种电荷,质量不等.有m a =m b <m c =m d ,以不等的速度v a <v b =v c <v d 进入速度选择器后有两种离子从速度选择器中射出,进入B 2磁场,由此可判定( )A .射向P 1的是a 离子B .射向P 2的是b 离子C .射到A 1的是c 离子D .射到A 2的是d 离子13.无线充电技术已经被应用于多个领域,其充电线圈内磁场与轴线平行,如图甲所示;磁感应强度随时间按正弦规律变化,如图乙所示。
高中物理《电磁学》练习题(附答案解析)
高中物理《电磁学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
高一物理电磁学试题答案及解析
高一物理电磁学试题答案及解析1.在研究长度为L、横截面积为S的均匀导体中电流的流动时,在导体两端加上电压U,于是导体中有匀强电场产生,在导体中移动的自由电子受匀强电场作用而加速,而和做热运动的正离子碰撞而减速,这样边反复碰撞边向前移动。
可以认为阻碍电子向前运动的阻力大小与电子移动的平均速率v成正比,其大小可以表示成kv(k是恒量)。
当电场力和碰撞的阻力相平衡时,导体中自由电子定向运动的速率v为一定值。
这一定值为()A.B.C.D.【答案】B【解析】【考点】带电粒子在匀强电场中的运动.专题:带电粒子在电场中的运动专题.分析:当电子匀速运动时,受力平衡,电场力和电子受到的阻力的大小相等,根据平衡的条件即可求得电子运动的速度的大小.解答:解:导体中的电场强度为E=,电子受到的电场力为F=eE=,电子受到的阻力为f=kv,当电场力和碰撞的阻力相平衡时 F=f,即=kv,所以v=,所以B正确.故选B.点评:本题属于信息给予题,从所给的信息中找出有用的信息,根据条件求解即可.2.如图所示,在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了12 J,金属块克服摩擦力做功8 J,重力做功24 J,则以下判断正确的是()A.金属块带负电荷B.电场力做功4 JC.金属块的电势能与动能之和增加了16JD.金属块的机械能减少12J【答案】CD【解析】在金属块滑下的过程中动能增加了12J,金属块克服摩擦力做功8J,重力做功24J,根据动能定理得:W总=WG+W电+Wf=△EK,解得:W电=-4J,所以金属块克服电场力做功4.0J,金属块的电势能增加4J.由于金属块下滑,电场力做负功,由于电场力应该水平向右,所以金属块带正电荷.故A错误,B错误;金属块的动能增加12J,电势能增加4J,所以金属块的电势能与动能之和增加了12+4="16" J.故C正确;在金属块滑下的过程中重力做功24J,重力势能减小24J,动能增加了12J,所以金属块的机械能减少12J,故D正确.故选CD。
高一物理电磁学试题答案及解析
高一物理电磁学试题答案及解析1.额定电压都是110 V,额定功率PA ="100" W、PB="40" W的A、B两只灯,接在220 V的电路中,若要两盏电灯都正常发光,又使整个电路消耗的电功率最小的连接方式应是下图中的( )【答案】C【解析】【考点】电功、电功率;串联电路和并联电路.专题:恒定电流专题.分析:由题可知,灯泡的电压相等,但是灯泡的功率不同,由此可以知道两种灯泡的电阻的大小不同,在由电路的串并联的知识先逐个分析灯泡能否正常的发光,再判断消耗的功率最小的电路.解答:解:A、由于AB两个灯泡的电阻大小不同,所以直接把AB串连接入电路的话,AB的电压不会平分,AB不会同时正常发光,所以A错误;B、由于额定电压都是110V,额定功率PA =100W、PB=40W,由此可知RB>RA,把灯泡A与电阻并联的话,会使并联的部分的电阻更小,所以AB的电压不会平分,AB不会同时正常发光,所以B错误;C、由于额定电压都是110V,额定功率PA =100W、PB=40W,由此可知RB>RA,把灯泡B与电阻并联的话,可以使并联部分的电阻减小,可能使A与并联部分的电阻相同,所以AB能同时正常发光,并且电路消耗的功率与A灯泡的功率相同,所以总功率的大小为200W;D、把AB并联之后与电阻串连接入电路的话,当电阻的阻值与AB并联的总的电阻相等时,AB 就可以正常发光,此时电阻消耗的功率为AB灯泡功率的和,所以电路消耗的总的功率的大小为280W;由CD的分析可知,正常发光并且消耗的功率最小的为C,所以C正确.故选C.点评:解答本题是一定要注意题目要同时满足两个条件即灯泡能够正常发光并且消耗的功率还要最小.2.电子产品制作车间里常常使用电烙铁焊接电阻器和电容器等零件,技术工人常将电烙铁和一个白炽灯串联使用,电灯还和一只开关并联,然后再接到市电上(如图),下列说法正确的是( ) A.开关接通时比开关断开时消耗的总功率大B.开关接通时,电灯熄灭,只有电烙铁通电,可使消耗的电功率减小C.开关断开时,电灯发光,电烙铁也通电,消耗的总功率增大,但电烙铁发热较少D.开关断开时,电灯发光,可供在焊接时照明使用,消耗总功率减小【答案】AD【解析】【考点】电功、电功率;串联电路和并联电路.专题:恒定电流专题.分析:开关闭合时,灯泡会发生短路,总电阻会减小,消耗的功率会增大,同理当开关断开时,灯泡串联在电路中,总电阻增大,消耗的功率较小.解答:解:A、开关接通时,灯泡发生短路,电阻小于开关断开时的电阻,有公式P=可知,开关接通时比开关断开时消耗的总功率大,故A正确;B、开关接通时,电灯熄灭,只有电烙铁通电,电路中电阻减小,有公式P=可知,消耗的功率增大;故B错误;C、开关断开时,电灯发光,电烙铁也通电,消耗的总功率减小,且电烙铁发热较少,故C错误D、开关断开时,灯泡串联在电路中,电灯发光,总电阻增大,可供在焊接时照明使用,消耗总功率减小,故D正确;故选AD点评:本题考查了串联电路的特点和电阻、电压、实际功率的计算,关键是公式及其变形的灵活运用.3.如图所示,灯丝发热后发出的电子经加速电场后,进入偏转电场.若加速电压为U1,偏转电压为U2,设电子不落到电极上,则要使电子在电场中的偏转量y变为原来的2倍,可选用的方法是()A.只使Ul变为原来的1/2倍B.只使U2变为原来的l/2倍C.只使偏转电极的长度L变为原来的2倍D.只使偏转电极间的距离d变为原来的2倍【答案】A【解析】略4.关于元电荷的下列说法中正确的是()A.元电荷实质上是指电子和质子本身B.所有带电体的电荷量一定等于元电荷的整数倍C.元电荷的数值通常取作e=1.60×10-19 CD.元电荷e的数值最早是由美国物理学家密立根用油滴实验测得的【答案】BCD【解析】元电荷是指电量1.60×10-19 C,不是指电子和质子;选项A错误;所有带电体的电荷量一定等于元电荷的整数倍,选项B正确;元电荷的数值通常取作e=1.60×10-19C,选项C正确;元电荷e的数值最早是由美国物理学家密立根用油滴实验测得的,选项D正确;故选BCD.【考点】元电荷.5.两个相同的金属小球A、B,所带的电量qA =+qo、qB=-7qo,相距r放置时,相互作用的引力大小为F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁学公式概念及试题(带答案)大全电磁学物理概念规律名称公式备注库仑定律真空中: F=k介质中: F=kk=9.0×109 N·m2/C2ε为介电常数电场强度定义式:E=点电荷:E=匀强电场:E=q为检验电荷,Q为产生电场的点电荷电场力F=电场力的功W= 电场力做功跟电荷运动的路径无关电势差U= 为电场力做的功点电荷电势U= r为电介质中的点到点电荷Q的距离(取无穷远电势为零)电势能Δε= Δε为电势能的增量电容定义式:C=平行板电容器的电容:C=ε是介电常数,k是静电力常量串联电容并联电容C=电流I= 电量q=电阻定律R= 电阻率ρ=串联电阻R串=R1+R2+…+Rn 串联的总电阻值大于每一个分电阻值并联电阻①两个电阻并联:R并=②n个相同电阻(R)并联:R并=③并联的总阻值小于任一支路的阻值电动势ε= 内U外为路端电压,U内为内压,当外电路断开时:E=U外欧姆定律部分电路:I=U/R全电路:I=闭合电路的常用规律ε=ε=IR+Ir根据这三式,可以得到测定电源电动势和内阻的三种不同方法电功W=UIt=I2Rt= 对于非纯电阻电路:①计算电功只能用W=②计算电功率只能用P=③计算电热只能用Q=④W>Q电功率P=UI=I2R=焦耳定律普遍式:Q=纯电阻电路中:Q=W=UIt=U2t/R=Pt磁感应强度B= L⊥B当B与S成θ角时:Φ=磁通量Φ=安培力F=ILB(B⊥L)或F= L是有效长度θ是B、L间的夹角洛伦兹力F= (v⊥B) 或F= θ为B、v间的夹角电磁力矩M=BIS(平面S平行磁感线时)S是线圈面积,对N匝线圈:M=NBIS法拉第电磁感应定律普适公式:ε=导体切割:E= (B、L、v三者相互垂直)N是线圈匝数,L是导体有效长度自感电动势ε= L是自感系数(自感或电感)感抗XL=容抗XC=交变电动势、电流最大值:εm=BSωIm=εm/R瞬时值:e= i= S为线圈面积,ω为角速度,R为全电路的总电阻(线框从中性面开始转动)正弦或余弦交流电的有效值Um= 为电路电压最大值理想变压器U1、U2、I2、I2与n1、n2分别为原、副线圈的电压、电流与匝数振荡电路周期频率周期:T=频率:f =L为线圈的自感C为电容器的电容电磁波波长λ= f为频率,c为波速,λ为波长1.如图所示,A、B、C、D是真空中一正四面体的四个顶点.现在在A、B两点分别固定两个点电荷Q1和Q2,则关于C、D两点的场强和电势,下列说法正确的是() A.若Q1和Q2是等量异种电荷,则C、D两点电场强度不同,电势相同B.若Q1和Q2是等量异种电荷,则C、D两点电场强度和电势均相同C.若Q1和Q2是等量同种电荷,则C、D两点电场强度和电势均不相同D.若Q1和Q2是等量同种电荷,则C、D两点电场强度和电势均相同2.如图所示,带有等量异种电荷的两块等大的平行金属板M、N水平正对放置.两板间有一带电微粒以速度v0沿直线运动,当微粒运动到P点时,将M板迅速向上平移一小段距离,则此后微粒的可能运动情况是()A.沿轨迹④运动B.沿轨迹①运动C.沿轨迹②运动D.沿轨迹③运动3.真空中有一半径为r0的带电金属球壳,通过其球心的一直线上各点的电势φ分布如图,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离.下列说法中正确的是() A.A点的电势低于B点的电势新- 课-标- 第-一 -网B.A点的电场强度方向由A指向BC.A点的电场强度小于B点的电场强度D.正电荷沿直线从A移到B的过程中,电场力做负功4.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成如图所示稳定的静电场.实线为其电场线,虚线为其等势线,A、B两点与两球球心连线位于同一直线上,C、D两点关于直线AB对称,则()A.A点和B点的电势相同B.C点和D点的电场强度相同C.正电荷从A点移至B点,电场力做正功D.负电荷从C点沿直线CD移至D点,电势能先增大后减小5.两个等量同种电荷固定于光滑水平面上,其连线中垂线上有A、B、C三点,如图甲所示.一个电量为2 C、质量为1 kg的小物块从C 点静止释放,其运动的v-t图象如图乙所示,其中B点处为整条图线切线斜率最大的位置(图中标出了该切线).则下列说法正确的是() A.B点为中垂线上电场强度最大的点,场强E=2 V/mB.由C到A的过程中物块的电势能先减小后变大C.由C到A的过程中,电势逐渐升高D.A、B两点电势差U AB=-5 V6.如图所示,光滑绝缘斜面的底端固定着一个带正电的小物块P,将另一个带电小物块Q 在斜面的某位置由静止释放,它将沿斜面向上运动.设斜面足够长,则在Q向上运动过程中()A.物块Q的动能一直增大B.物块Q的电势能一直增大C.物块P、Q的重力势能和电势能之和一直增大D.物块Q的机械能一直增大7 .(单选))如图,两根相互平行的长直导线分别通有方向相反的电流I 1和I 2,且I 1>I 2;a 、b 、c 、d 为导线某一横截面所在平面内的四点且a 、b 、c 与两导线共面;b 点在两导线之间,b 、d 的连线与导线所在平面垂直.磁感应强度可能为零的点是( )A .a 点B .b 点C .c 点D .d 点 8 .(单选)()如图,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘.当MN 中电流突然减小时,线圈所受安培力的合力方向( )A .向左B .向右C .垂直纸面向外D .垂直纸面向里9 .(单选))如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )A .棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小二模拟题组 10(单选)如图所示,两平行光滑金属导轨MN 、PQ 间距为l ,与电动势为E 、内阻不计的电源相连.质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面的夹角为θ,回路其余电阻不计.为使ab 棒静止,需在空间施加一匀强磁场,其磁感应强度的最小值及方向分别为( )A.mgR El,水平向右B.mgR cos θEl ,垂直于回路平面向上C.mgR tan θEl ,竖直向下D.mgR sin θEl ,垂直于回路平面向下11 .(单选)(2014·衡阳模拟)如图所示,在竖直向下的匀强磁场中有两根竖直放置的平行粗糙导轨CD、EF,导轨上放一金属棒MN.现从t=0时刻起,给金属棒通以图示方向的电流且电流强度与时间成正比,即I=kt,其中k为常量,金属棒与导轨始终垂直且接触良好.下列关于金属棒的速度v、加速度a随时间t变化的关系图象,可能正确的是() 电磁学物理概念规律名称公式备注库仑定律真空中: F=k介质中: F=kk=9.0×109 N·m2/C2ε为介电常数电场强度定义式:E=F/q点电荷:E=kQ/r2匀强电场:E=U/dq为检验电荷,Q为产生电场的点电荷电场力F=Eq电场力的功W=qU 电场力做功跟电荷运动的路径无关电势差U=W/q W 为电场力做的功点电荷电势U=kQ /εr r为电介质中的点到点电荷Q的距离(取无穷远电势为零)电势能Δε=qU Δε为电势能的增量电容定义式:C=Q/U平行板电容器的电容:C= εS/4πkdε是介电常数,k是静电力常量串联电容并联电容C=C1+C2...电流I=q/t 电量q=It电阻定律R=ρL/s 电阻率ρ=R·S/L串联电阻R串=R1+R2+…+Rn 串联的总电阻值大于每一个分电阻值并联电阻①两个电阻并联:R并=R1R2/(R1+R2)②n个相同电阻(R)并联:R并=R/n③并联的总阻值小于任一支路的阻值电动势ε=U外+U内U外为路端电压,U内为内压,当外电路断开时:E=U外欧姆定律部分电路:I=U/R全电路:I=ε/(R+r)闭合电路的常用规律ε=U+Irε=U+(U/R)rε=IR+Ir根据这三式,可以得到测定电源电动势和内阻的三种不同方法电功W=UIt=I2Rt=U2t/R 对于非纯电阻电路:①计算电功只能用W=UIt②计算电功率只能用P=UI③计算电热只能用Q=I2Rt④W>Q电功率P=UI=I2R=U2/R焦耳定律普遍式:Q=I2Rt纯电阻电路中:Q=W=UIt=U2t/R=Pt磁感应强度B=F/IL, L⊥B B=ΦS当B与S成θ角时:Φ=BSsinθ磁通量Φ=B·S安培力F=ILB(B⊥L)或F=ILBsinθL是有效长度θ是B、L间的夹角洛伦兹力f=qvB(v⊥B) f=qvBsinθθ为B、v间的夹角电磁力矩M=BIS(平面S平行磁感线时)S是线圈面积,对N匝线圈:M=NBIS法拉第电磁感应定律普适公式:ε=NΔΦ/ Δt导体切割:E=BLv(B、L、v三者相互垂直)N是线圈匝数,L是导体有效长度自感电动势ε=LΔI/ Δt L是自感系数(自感或电感)感抗XL=2πfL容抗XC=1/2πfC交变电动势、电流最大值:εm=BSωIm=εm/R瞬时值:e=εmsinωt i=Imsinωt S为线圈面积,ω为角速度,R 为全电路的总电阻(线框从中性面开始转动)正弦或余弦交流电的有效值Um=ImR为电路电压最大值理想变压器U1、U2、I2、I2与n1、n2分别为原、副线圈的电压、电流与匝数振荡电路周期频率周期:T=2π频率:f =L为线圈的自感C为电容器的电容电磁波波长λ=c/f f为频率,c为波速,λ为波长1.[解析]选B.若Q1和Q2是等量异种电荷,则C、D位于两个点电荷的中垂面上,所以C、D两点电场强度相同,电势相同,所以A 错误,B正确;若Q1和Q2是等量同种电荷,则C、D两点电势相同,电场强度大小相等,方向不同,所以C、D错误.2.[解析]选C.由E=Ud=QCd=4πkQεS可知,两极板所带电荷量、电介质和正对面积不变时,M板迅速向上平移一小段距离,不影响板间场强,因而场强不变,故微粒受力情况不变,粒子沿原直线运动.3.[解析]选B.由图象知φA>φB,故A错;电场强度的方向从高电势指向低电势,即A→B,故B正确;图象斜率的绝对值表示场强大小,E A>E B,故C错;正电荷受力方向为A→B,电场力做正功,故D 错.4.[解析]选C.由题图可知,A、B两点不在同一等势面上,电势不相同,A错误;由对称性可知,C、D两点的电场强度方向不同,B 错误;由W AB=U AB·q,U AB>0,q>0可知,W AB>0,C正确;沿CD直线,由C到D,电势先增大后减小,故负电荷由C沿直线CD 移至D点,电势能先减小后增大,D错误.5.[解析]选D.由图乙知,小物块在B点时加速度最大,故B点场强最大,加速度大小为2 m/s2,据qE=ma得E=1 V/m,选项A错误;由C到A的过程中小物块的动能一直增大,电势能始终在减小,故电势逐渐降低,选项B、C错误;根据动能定理有qU AB=12m v 2B-12m v2A,解得:U AB=-5 V,选项D正确.6.[解析]选D.由F库-mgsin θ=ma可知,物块沿斜面的加速度先向上逐渐减小,再沿斜面向下,逐渐增大,其速度先增大后减小,故物块Q的动能先增大再减小,A错误;因电场力始终做正功,故电势能一直减小,物块Q的机械能一直增大,B错误,D正确;因只有电场力、重力做功,物块的电势能、重力势能、动能之和守恒,又知动能先增大后减小,故重力势能和电势能之和先减小后增大,C错误.7.[解析]选C.由安培定则画出a、b、c、d的磁感线的分布图,由图可知a、c两点的磁场方向相反,当B1=B2时该点处的磁感应强度可能为零,又I1>I2,故该点距I1距离应比I2大,故C正确,A、B、D 错误.8.[解析]选B.因为导线MN靠近ab,由图可知,线圈中等效合磁场为垂直纸面向里,当MN中电流减小时,由楞次定律可知感应电流的磁场阻碍磁通量的减小,故线圈向右运动,所受安培力的合力向右,故只有B项正确.9.[解析]选A.水平的直线电流在竖直磁场中受到水平的安培力而偏转,与竖直方向形成夹角,此时它受拉力、重力和安培力而达到平衡,根据平衡条件有tan θ=F安mg=BILmg,所以棒中的电流增大,θ角变大;两悬线变短,不影响平衡状态,θ角不变;金属棒质量变大,θ角变小;磁感应强度变大,θ角变大.故A 正确.10.[解析]选D.对金属棒ab受力分析可知,为使ab棒静止,ab 受到沿斜面向上的安培力作用时,安培力最小,此时对应的磁感应强度也就最小,由左手定则可知此时磁场方向垂直于回路平面向下,再由平衡关系可知IlB=mgsin θ,其中I=ER,可得磁感应强度B=mgRsin θEl,对比各选项可知,选D.11.[解析]选D.从t=0时刻起,金属棒通以电流I=kt,由左手定则可知,安培力方向垂直纸面向里,使其紧压导轨,导致金属棒在运动过程中,所受到的摩擦力增大,所以加速度在减小,当滑动摩擦力小于重力时速度与加速度方向相同,所以金属棒做加速度减小的加速运动.当滑动摩擦力等于重力时,加速度为零,此时速度达到最大.当安培力继续增大时导致加速度方向竖直向上,则出现加速度与速度方向相反,因此做加速度增大的减速运动.v-t图象的斜率绝对值表示加速度的大小,故选项A、B均错误.对金属棒MN,由牛顿第二定律得mg-μF N=ma,而F N=BIL=BktL,即mg-μBktL=ma,因此a=g-μkBL mt,显然加速度a与时间t成线性关系,故选项C错误,D正确.。