湖北省武汉市中考数学模拟试卷(四)含答案解析

合集下载

湖北省武汉市部分学校2024届中考数学仿真试卷含解析

湖北省武汉市部分学校2024届中考数学仿真试卷含解析

湖北省武汉市部分学校2024届中考数学仿真试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是( )A .2224()39b b c c= B .0.00002=2×105 C .2933x x x -=-- D .3242·323x y y x x= 2.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .3πB .23πC .43πD .76π 3.把不等式组24030x x -≥⎧⎨->⎩的解集表示在数轴上,正确的是( ) A .B .C .D .4.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个5.方程13122x x-=--的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解6.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×10117.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°8.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1049.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.25πcm B.210πcm C.215πcm D.220πcm10.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(a+b)2=a2+2ab+b211.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>012.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x > B .15x <- C .15x >- D .15x < 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知⊙O 的半径为5,由直径AB 的端点B 作⊙O 的切线,从圆周上一点P 引该切线的垂线PM ,M 为垂足,连接PA ,设PA=x ,则AP+2PM 的函数表达式为______,此函数的最大值是____,最小值是______.14.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.15.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为_____度.16.不等式42x ->4﹣x 的解集为_____. 17.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .18.8的算术平方根是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中3. 20.(6分)已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题: (1)请用t 分别表示A 、B 的路程s A 、s B ;(2)在A 出发后几小时,两人相距15km ?21.(6分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.22.(8分)已知二次函数y=mx2﹣2mx+n的图象经过(0,﹣3).(1)n=_____________;(2)若二次函数y=mx2﹣2mx+n的图象与x 轴有且只有一个交点,求m 值;(3)若二次函数y=mx2﹣2mx+n的图象与平行于x 轴的直线y=5 的一个交点的横坐标为4,则另一个交点的坐标为;(4)如图,二次函数y=mx2﹣2mx+n的图象经过点A(3,0),连接AC,点P 是抛物线位于线段AC 下方图象上的任意一点,求△PAC 面积的最大值.23.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.24.(10分)[阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求as的值.25.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?26.(12分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.27.(12分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解题分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【题目详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误;D 、原式=223x ;故本选项正确; 故选:D .【题目点拨】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.2、B【解题分析】连接OE ,由菱形的性质得出∠D =∠B =60°,AD =AB =4,得出OA =OD =2,由等腰三角形的性质和三角形内角和定理求出∠DOE =60°,再由弧长公式即可得出答案.【题目详解】解:连接OE ,如图所示:∵四边形ABCD 是菱形,∴∠D =∠B =60°,AD =AB =4,∴OA =OD =2,∵OD =OE ,∴∠OED =∠D =60°,∴∠DOE =180°﹣2×60°=60°,∴DE 的长=602180π⨯=23π; 故选B .【题目点拨】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE 的度数是解决问题的关键.3、A【解题分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【题目详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2,由②,得x <1,所以不等式组的解集是:2≤x <1.不等式组的解集在数轴上表示为:.故选A .【题目点拨】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、C【解题分析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【题目详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【题目点拨】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.5、C【解题分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【题目详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【题目点拨】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.6、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】31600000000=3.16×1.故选:C.【题目点拨】本题考查科学记数法,解题的关键是掌握科学记数法的表示.7、B【解题分析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.8、C【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】260万=2600000=62.610⨯.故选C .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、B【解题分析】试题解析:∵AC =10,∴AO =BO =5,∵∠BAC =36°,∴∠BOC =72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD 的面积+扇形BOC 的面积=2扇形BOC 的面积=27252360π⨯⨯=10π .故选B . 10、D【解题分析】根据合并同类项法则,可知3a 2﹣2a 2= a 2,故不正确;根据同底数幂相乘,可知a 2•a 3=a 5,故不正确;根据完全平方公式,可知(a ﹣b )2=a 2﹣2ab+b 2,故不正确;根据完全平方公式,可知(a+b )2=a 2+2ab+b 2,正确.故选D.【题目详解】请在此输入详解!11、C【解题分析】首先求出P 点坐标,进而利用函数图象得出不等式ax 2+bx+3x >1的解集. 【题目详解】∵函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1, ∴1=﹣3x, 解得:x=﹣3,∴P (﹣3,1),故不等式ax 2+bx+3x >1的解集是:x <﹣3或x >1. 故选C .【题目点拨】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P 点坐标.12、C【解题分析】 根据不等式10x a b+>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0 【题目详解】 解不等式10x a b+>, 移项得:1-x a b> ∵解集为x<15∴1-5a b = ,且a<0 ∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15故选C【题目点拨】此题考查解一元一次不等式,掌握运算法则是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分.)13、15-x 2+x+20(0<x <10)854不存在. 【解题分析】先连接BP ,AB 是直径,BP ⊥BM ,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP ,那么有△PMB ∽△PAB ,于是PM :PB=PB :AB ,可求22210,10PB x PM AB -==从而有22210122055x AP PM x x x -+=+=-++(0<x <10),再根据二次函数的性质,可求函数的最大值.【题目详解】如图所示,连接PB ,∵∠PBM=∠BAP ,∠BMP=∠APB=90°,∴△PMB ∽△PAB ,∴PM :PB=PB :AB ,∴22210,10PB x PM AB -== ∴22210122055x AP PM x x x -+=+=-++(0<x <10), ∵105a =-<, ∴AP+2PM 有最大值,没有最小值,∴y 最大值=2485,44ac b a -= 故答案为21205x x -++(0<x <10),854,不存在.【题目点拨】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.14、1.【解题分析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【题目点拨】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.15、1.【解题分析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.【题目详解】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=1°,故答案为1.【题目点拨】本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.16、x>1.【解题分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【题目详解】解:去分母得:x ﹣1>8﹣2x ,移项合并得:3x >12,解得:x >1,故答案为:x >1【题目点拨】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.17、(7+63)【解题分析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【题目详解】 解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m , ∴DC=EF=2m ,EC=DF=6m ,∵α=30°,∴BE=63tan30EC =︒(m ), ∵背水坡的坡比为1.2:1, ∴ 1.2 1.21DF AF AF ==, 解得:AF=5(m ),则3(3)m ,故答案为(3m .【题目点拨】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.18、2.【解题分析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8,∴8的算术平方根是故答案为.考点:算术平方根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、()211a -,13. 【解题分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【题目详解】解: (221121a a a a a a +----+)÷1a a- =21(1)(1)(1)1a a a a a a a a +---⋅--() =2221(11a a a a a a a --+⋅--) =21(11a a a a a -⋅--) =21(1a )-,当+1时,原式=13. 【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20、(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解题分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【题目详解】解:(1)设s A 与t 的函数关系式为s A =kt +b ,+0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t |=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【题目点拨】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.21、(1)125°;(2)125°;(3)∠BOC=90°+12n°. 【解题分析】如图,由BO 、CO 是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A ,然后根据此结论分别解决(1)、(2)、(3). 【题目详解】如图,∵BO 、CO 是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【题目点拨】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.22、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=32时,△PAC的面积取最大值,最大值为278【解题分析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q 的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.【题目详解】解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),∴n=﹣2.故答案为﹣2.(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函数解析式为y=mx2﹣2mx﹣2,∴二次函数图象的对称轴为直线x=﹣-2m2m=2.∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,∴另一交点的横坐标为2×2﹣4=﹣2,∴另一个交点的坐标为(﹣2,5).故答案为(﹣2,5).(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函数解析式为y=x2﹣2x﹣2.设直线AC的解析式为y=kx+b(k≠0),将A(2,0)、C(0,﹣2)代入y=kx+b,得:3k+b=0 {b=-3,解得:k=1{b=-3,∴直线AC的解析式为y=x﹣2.过点P作PD⊥x轴于点D,交AC于点Q,如图所示.设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=12PQ•OD+12PQ•AD=﹣32a2+92a=﹣32(a﹣32)2+278,∴当a=32时,△PAC的面积取最大值,最大值为278.【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.23、(1)E(-3,4)、F(-5,0);(2);(3).【解题分析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF 为菱形,令y=0,则,解得,根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得则CE=,在Rt△COE中,根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2即可求出tan∠EFO=.【题目详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴BE=OF∴四边形OEBF为菱形令y=0,则,解得,∴OF=OE=BE=BF=令y=n,则,解得∴CE=在Rt△COE中,,解得∴E()∴(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得∴E()、F()∴EF的中点为()将E()、()代入中,得,得m2=2n2∴tan∠EFO=【题目点拨】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.24、tanA=32;综上所述,当β=45°时,若△APQ是“中边三角形”,as的值为34或151102.【解题分析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【题目详解】解:[理解]∵AC和BD是“对应边”,∴AC=BD,设AC=2x,则CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分线,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.【题目点拨】本题是一道相似形综合运用的试题, 考查了相似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.25、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解题分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可. (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【题目详解】(1)设捐款增长率为x,根据题意列方程得:()2⨯-=,100001x12100解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.26、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解题分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【题目详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.27、(1)213222x x -++;(2)m =3;(3145【解题分析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【题目详解】 解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12,∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++- ∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN ,∴OB PN OA PA=, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4,∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2,∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴22OP 3BP 2=, ∴当Q (0,92)时,QP 2=232BP , ∴AP 2+32BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值,∵A (4,0),Q (0,92), ∴AQ即AP 2+32BP 2【题目点拨】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.。

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

2024年湖北省武汉市中考真题数学试卷含答案解析

2024年湖北省武汉市中考真题数学试卷含答案解析

2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。

在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。

试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。

与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。

试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。

例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。

填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。

在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。

因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。

2024年湖北省中考数学试题 (含答案)

2024年湖北省中考数学试题 (含答案)

2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作元,则支出10元记作()A.元B.元C.元D.元【答案】B【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果收入20元记作元,那么支出10元记作元,故选:B.2.如图,是由4个相同的正方体组成的立方体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查了简单组合体的三视图.根据主视图的意义,从正面看该组合体所得到的图形对每一项判断即可.【详解】解:从正面看该组合体,所看到的主视图与选项相同,故选:.3.的值是()A. B. C. D.【答案】D【解析】【分析】本题主要考查单项式与单项式的乘法.运用单项式乘单项式运算法则求出结果即可判断.【详解】解:,故选:D.4.如图,直线,已知,则()A. B. C. D.【答案】B 【解析】【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,,求出结果即可.【详解】解:∵,∴,∵,∴,故选:B . 5.不等式的解集在数轴上表示为()A. B.C. D.【答案】A 【解析】【分析】本题考查了一元一次不等式的解法即在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案.【详解】解:,.在数轴上表示如图所示:故选:A .6.下列各事件是,是必然事件的是()A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为【答案】D 【解析】【分析】本题考查了随机事件和必然事件,解题的关键是掌握一定会发生的是必然事件,有可能发生,也有可能不发生的是随机事件,据此逐个判断即可.【详解】解:A 、掷一枚正方体骰子,正面朝上恰好是3,是随机事件,不符合题意;B 、某同学投篮球,一定投不中,是随机事件,不符合题意;C 、经过红绿灯路口时,一定红灯,是随机事件,不符合题意;D 、画一个三角形,其内角和为,是必然事件,符合题意;故选:D .7.《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值金,每只羊值金,可列方程为()A. B.C. D.【答案】A 【解析】【分析】本题考查了二元一次方程组的应用.根据未知数,将今有牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,两个等量关系具体化,联立即可.【详解】解:设每头牛值x 金,每头羊值y 金,∵牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,∴,故选:A .8.为半圆的直径,点为半圆上一点,且.①以点为圆心,适当长为半径作弧,交于;②分别以为圆心,大于为半径作弧,两弧交于点;③作射线,则()A. B. C. D.【答案】C 【解析】【分析】本题主要考查圆周角定理以及角平分线定义,根据直径所对的圆周角是直角可求出,根据作图可得,故可得答案【详解】解:∵为半圆的直径,∴,∵,∴,由作图知,是的角平分线,∴,故选:C9.平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为()A. B. C. D.【答案】B【解析】【分析】本题考查坐标系下的旋转.过点和点分别作轴的垂线,证明,得到,,据此求解即可.【详解】解:过点和点分别作轴的垂线,垂足分别为,∵点坐标为,∴,,∵将线段绕点顺时针旋转得到,∴,,∴,∴,∴,,∴点的坐标为,故选:B.10.抛物线的顶点为,抛物线与轴的交点位于轴上方.以下结论正确的是()A. B. C. D.【答案】C【解析】【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数的图像,如图所示:∵开口向上,与轴的交点位于轴上方,∴,,∵抛物线与轴有两个交点,∴,∵抛物线的顶点为,∴,观察四个选项,选项C符合题意,故选:C.二、填空题(每小题3分,共15分)11.写一个比大的数______.【答案】0【解析】【分析】本题考查了有理数比较大小.根据有理数比较大小的方法即可求解.【详解】解:.故答案为:0(答案不唯一).12.中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是______.【答案】【解析】【分析】本题主要考查运用概率公式求概率,根据概率公式即可得出答案.【详解】解:共有5位数学家,赵爽是其中一位,所以,从中任选一个,恰好是赵爽是概率是,故答案为:13.计算:______.【答案】1【解析】【分析】本题主要考查了分式的加减运算.直接按同分母分式加减运算法则计算即可.【详解】解:.故选:1.14.铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为______.【答案】79【解析】【分析】本题考查了正比例函数的应用.根据铁的质量与体积成正比例,列式计算即可求解.【详解】解:∵铁的质量与体积成正比例,∴m关于V的函数解析式为,当时,,故答案为:79.15.为等边三角形,分别延长,到点,使,连接,,连接并延长交于点.若,则______,______.【答案】①.##30度②.##【解析】【分析】本题考查了相似三角形的判定和性质,等边三角形的判定和性质,勾股定理.利用三角形的外角性质结合可求得;作交的延长线于点,利用直角三角形的性质求得,,证明,利用相似三角形的性质列式计算即可求解.【详解】解:∵等边三角形,,∴,,∴,,,作交的延长线于点,∴,,∵,∴,∴,∴,即,解得,故答案为:,.三、解答题(75分)16.计算:【答案】3【解析】【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:.17.已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【答案】证明见解析.【解析】【分析】利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.【详解】∵四边形ABCD是平行四边形,∴AB//DC,AB=DC,∴∠BAE=∠DCF,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴BE=DF.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.18.小明为了测量树的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得地与树相距10米,眼睛处观测树的顶端的仰角为:方案二:如图(2),测得地与树相距10米,在处放一面镜子,后退2米到达点,眼睛在镜子中恰好看到树的顶端.已知小明身高1.6米,试选择一个方案求出树的高度.(结果保留整数,)【答案】树的高度为8米【解析】【分析】本题考查了相似三角形的实际应用题,解直角三角形的实际应用题.方案一:作,在中,解直角三角形即可求解;方案二:由光的反射规律知入射角等于反射角得到相似三角形后列出比例式求解即可.【详解】解:方案一:作,垂足为,则四边形是矩形,∴米,在中,,∴(米),树的高度为米.方案二:根据题意可得,∵,∴∴,即解得:米,答:树的高度为8米.19.为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了四组,制成了不完整的统计图.分组:,,,.(1)组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个的有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.【答案】(1)12(2)180(3)见解析【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)先根据C组人数除以所占百分比求出总人数,再减去B,C,D组人数即可得A的人数;(2)求出C,D组人数在样本中所占百分比,再乘以400即可得答案;(3)根据众数、中位数、平均数的意义进行解答即可.【小问1详解】解:(人),A组人数为:(人),故答案为:12;【小问2详解】解:(人),答:估计引体向上每分钟不低于10个的有180人;【小问3详解】解:从A,B,C,D组人数来看,最中间的两个数据是第20,21个,中位数落在B组,说明B组靠后的成绩处于中等水平;由于统计图中没有具体体现学生引体向上的训练成绩,只给出训练成绩的范围,无法计算出训练成绩的众数和平均数.20.一次函数经过点,交反比例函数于点.(1)求;(2)点在反比例函数第一象限的图象上,若,直接写出的横坐标的取值范围.【答案】(1),,;(2).【解析】【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数经过点,点,列式计算求得,,得到点,再利用待定系数法求解即可;(2)利用三角形面积公式求得,得到,据此求解即可.【小问1详解】解:∵一次函数经过点,点,∴,解得,∴点,∵反比例函数经过点,∴;【小问2详解】解:∵点,点,∴,∴,,由题意得,∴,∴,∴的横坐标的取值范围为.21.中,,点在上,以为半径的圆交于点,交于点.且.(1)求证:是的切线.(2)连接交于点,若,求弧的长.【答案】(1)见解析(2)弧的长为.【解析】【分析】(1)利用证明,推出,据此即可证明结论成立;(2)设的半径为,在中,利用勾股定理列式计算求得,求得,再求得,利用弧长公式求解即可.【小问1详解】证明:连接,在和中,,∴,∴,∵为的半径,∴是的切线;【小问2详解】解:∵,∴,设的半径为,在中,,即,解得,∴,,,∴,∵,∴,∴弧的长为.【点睛】本题考查了切线的判定,勾股定理,三角函数的定义,弧长公式.正确引出辅助线解决问题是解题的关键.22.学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.(1)求与与的关系式.(2)围成的矩形花圃面积能否为,若能,求出的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.【答案】(1);(2)能,(3)的最大值为800,此时【解析】【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据可求出与之间的关系,根据墙的长度可确定的范围;根据面积公式可确立二次函数关系式;(2)令,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【小问1详解】解:∵篱笆长,∴,∵∴∴∵墙长42m,∴,解得,,∴;又矩形面积;【小问2详解】解:令,则,整理得:,此时,,所以,一元二次方程有两个不相等的实数根,∴围成矩形花圃面积能为;∴∴∵,∴;【小问3详解】解:∵∴有最大值,又,∴当时,取得最大值,此时,即当时,的最大值为80023.如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.(1)求证:.(2)若为中点,且,求长.(3)连接,若为中点,为中点,探究与大小关系并说明理由.【答案】(1)见详解(2)(3)【解析】【分析】(1)根据矩形的性质得,由折叠得出,得出,证明;(2)根据矩形性质以及线段中点,得出,根据代入数值得,进行计算,再结合,则,代入数值,得,所以;(3)由折叠性质,得直线,,是等腰三角形,则,因为为中点,为中点,所以,,所以,则,所以,证明,则,即可作答.【小问1详解】解:如图:∵四边形是矩形,∴,∴,∵分别在上,将四边形沿翻折,使的对称点落在上,∴,∴,∴,∴;【小问2详解】解:如图:∵四边形是矩形,∴,,∵为中点,∴,设,∴,在中,,即,解得,∴,∴,∵,∴,∴,解得,∵,∴;【小问3详解】解:如图:延长交于一点M,连接∵分别在上,将四边形沿翻折,使的对称点落在上,∴直线,,∴是等腰三角形,∴,∵为中点,∴设,∴,∵为中点,∴,∵,,∴,∴,,∴,在中,,∴,∴,在中,,∵,∴,∴,∴,∴,∴,【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.24.如图1,二次函数交轴于和,交轴于.(1)求的值.(2)为函数图象上一点,满足,求点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为与轴交于点,记,记顶点横坐标为.①求与的函数解析式.②记与轴围成的图象为与重合部分(不计边界)记为,若随增加而增加,且内恰有2个横坐标与纵坐标均为整数的点,直接写出的取值范围.【答案】(1);(2)或;(3)的取值范围为或.【解析】【分析】(1)利用待定系数法求解即可;(2)先求得,,作轴于点,设,分当点在轴上方和点在轴下方时,两种情况讨论,利用相似三角形的判定和性质,列式求解即可;(3)①利用平移的性质得图象的解析式为,得到图象与轴交于点的坐标,据此列式计算即可求解;②先求得或,中含,,三个整数点(不含边界),再分三种情况讨论,分别列不等式组,求解即可.【小问1详解】解:∵二次函数交轴于,∴,解得;【小问2详解】解:∵,∴,令,则,解得或,令,则,∴,,,作轴于点,设,当点在轴上方时,如图,∵,∴,∴,即,解得或(舍去);当点在轴下方时,如图,∵,∴,∴,即,解得或(舍去);∴或;【小问3详解】解:①∵将二次函数沿水平方向平移,∴纵坐标不变是4,∴图象的解析式为,∴,∴,∴;②由①得,则函数图象如图,∵随增加而增加,∴或,中含,,三个整数点(不含边界),当内恰有2个整数点,时,当时,,当时,,∴,∴,或,∴;∵或,∴;当内恰有2个整数点,时,当时,,当时,,∴,∴或,,∴;∵或,∴;当内恰有2个整数点,时,此情况不存在,舍去,综上,的取值范围为或.【点睛】本题主要考查了用待定系数法求二次函数的表达式及二次函数与线段的交点问题,也考查了二次函数与不等式,相似三角形的判定和性质.熟练掌握二次函数图象的性质及数形结合法是解题的关键.。

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−5的相反数是( )A. −5B. 5C. 15D. −152.对下列各表情图片的变换顺序描述正确的是( )A. 轴对称,平移,旋转B. 轴对称,旋转,平移C. 旋转,轴对称,平移D. 平移,旋转,轴对称3.下列事件中,是随机事件的是( )A. 通常温度降到0℃以下,纯净的水结冰B. 随意翻到一本书的某页,这页的页码是奇数C. 明天太阳从东方升起D. 任意画一个三角形,其内角和是360°4.如图所示的正三棱柱的主视图是( )A. B. C. D.5.下列整式计算的结果为a6的是( )A. a3+a3B. (a2)3C. a12÷a2D. (a3)36.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°7.毕业季来临,甲、乙、丙三位同学随机站成一排照合影,甲站在中间的概率为( )A. 12B. 13C. 16D. 238.“漏壶”是一种古代计时器,在一次实践活动中,某小组同学根据“漏壶”的原理制作了如图所示的液体漏壶,由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体,下表是实验记录的圆柱体容器液面高度y cm与时间xℎ的数据:时间x/ℎ12345圆柱体容器液面高度y/cm610141822如果本次实验记录的开始时间是上午8:00,那么当圆柱体容器液面高度达到8cm时是( )A. 8:30B. 9:30C. 10:00D. 10:309.如图,△ABC内接于⊙O,∠ACB=135°,CD⊥AB于点D,若AD=4,BD=6,则CD的长为( )A. 2B. 3C. 4D. 510.如图1,点P从边长为6的等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点Q,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,能反映点P运动时y随x变化关系的部分大致图象如图2,点P从点Q运动到B的路程为( )A. 6B. 3C. 23D. 3二、填空题:本题共6小题,每小题3分,共18分。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣20212.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.13.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯4.下列微信表情图标属于轴对称图形的是()A.B.C.D.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.18.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676二、填空题(共6小题).11.化简二次根式的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算:=.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有人?在如图扇形统计图中A等级所对应的圆心角度数为度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.参考答案一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣2021解:实数﹣2020的相反数是:2020.故选:A.2.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.1解:由题意得,x﹣1≥0,解得,x≥1,故x的值可以为1,故选:D.3.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯解:A、从一个只有红球的盒子里摸出一个球是红球,是必然事件;B、买一张电影票,座位号是5的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、走过一个红绿灯路口时,前方正好是红灯,是随机事件.故选:A.4.下列微信表情图标属于轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解:根据题意画图如下:共有12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.1解:∵两个点(x1,﹣2),(x2,4)中的﹣2<4,x1>x2,∴反比例函数y=的图象经过第二、四象限,∴k﹣2<0,解得k<2.观察各选项,只有选项D符合题意.故选:D.8.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(130﹣40)÷15=6(件/分),所以8:00时,甲仓库内快件数为:40+6×60=400(件),故③说法正确;60﹣15=45(分),即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:180÷45=4(件),故②说法正确;所以乙仓库快件的总数量为:60×4=240(件),设x分钟后,两仓库快递件数相同,根据题意得:240﹣4x=40+6x,解得x=20,即7:20时,两仓库快递件数相同,故④说法正确.所以说法正确的有②③④共3个.故选:C.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)11.化简二次根式的结果是3.解:==3.故答案为:3.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5(h),故答案为:4.5h.13.计算:=﹣1.解:=﹣==﹣1.故答案为:﹣1.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =2.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AB⊥AC,∴∠BAC=90°,∴AC===2,∴OA=AC=,∴OB===,∴BD=2OB=2;故答案为:2.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有①②④.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.解:设抛物线与x轴的交点为(x1,0)、(x2,0),∵两个交点在y轴两侧,∴x1•x2<0,即<0,∴a>0,因此①符合题意;当x=0时,y=﹣3,抛物线与y轴交点为(0,﹣3),当b>0时,而a>0,对称轴在y轴的左侧,在对称轴右侧,y随x的增大而增大,因此②符合题意;当x=1时,y=a+b﹣3的值无法确定,故③不符合题意,一元二次方程ax2+bx﹣1=0的两根就是一元二次方程ax2+bx﹣3=﹣2的两根,实际上就是抛物线y=ax2+bx﹣3,与直线y=﹣2的两个交点的横坐标,当抛物线的对称轴位于y 轴的左侧时,a、b同号,此时一元二次方程ax2+bx﹣1=0的两根异号,故④符合题意;故答案是:①②④.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.【解答】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有40人?在如图扇形统计图中A等级所对应的圆心角度数为45度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)这次随机抽取的学生共有20÷50%=40(人),扇形统计图中A等级所对应的圆心角度数为360°×=45°,故答案为:40、45;(2)B等级人数为40×27.5%=11(人),补全图形如下:(3)这次九年级学生期末数学考试成绩为优秀的学生人数大约有1200×=480(人).20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.解:(1)如图,△A1B1C1,即为所求,C1点的坐标为(3,﹣1);(2)如图,△A2B2C2,即为所求,B2点的坐标为(0,1).21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?解:(1)由题意设销售数量y=kx+b(k≠0),把(10,55),(26,39)代入函数解析式得:,解得:,∴y=﹣x+65,∴W=y(m﹣10)=(﹣x+65)(x+20﹣10)=﹣x2+x+650(1≤x≤30,x为整数).∴每天销售这种水果的利润W(元)与x(天)之间的函数关系式为W=﹣x2+x+650(1≤x≤30,x为整数);(2)∵W=﹣x2+x+650,∴抛物线的对称轴为直线x=﹣=22.5,∵a=﹣<0,1≤x≤30,x为整数,∴当x=22或x=23时,W取得最大值,最大值为:(﹣22+65)(×22+10)=43×21=903(元).∴第22或23天销售这种水果的利润最大,最大日销售利润为903元.23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.解:(1)∵EN⊥AF,BF⊥AF,∴EN∥BF,又∵E为AB的中点,∴BF=2EN,∵,∴,∴,故答案为:;(2)证明:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=∠ABC=90°,∵∠ADE=∠BAF,∴∠BAD﹣∠ADE=∠ABC﹣∠BAF,∴∠AED=∠AFB,又∵∠BAF=∠MAE,∴△AEM∽△AFB;(3)证明:如图,连接AC,过点B作BP∥AC交AF的延长线于点P,∴△BFP∽△CFA,∴,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,∵∠ABC=60°,∴∠PBC=∠ACB=60°,∴∠ABP=120°,∴∠DAE=∠ABP,在△ADE与△BAP中,,∴△ADE≌△BAP(ASA),∴AE=BP,又∵AC=AD,∴.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.解:(1)令y=0,有y=﹣x+1=0,得x=1,∴B(1,0),把点A(﹣3,0)、B(1,0)和点C(0,﹣3)代入y=ax2+bx+c中,得,解得,,∴抛物线L1的解析式为:y=x2+2x﹣3;(2)由,得,,∴D(﹣4,5),∵y=﹣x+1,∴E(0,1),B(1,0),∴OB=OE,∴∠OBD=45°.∴BD=5.∵A(﹣3,0),C(0,﹣3),∴OA=OC,AC=3,AB=4.∴∠OAC=45°,∴∠OBD=∠OAC.如图2,①当点P在点A的右边,∠PCA=∠ADB时,△PAC∽△ABD.∴,∴,∴AP=,∴;②当点P在点A的左边,∠PCA=∠ADB时,记此时的点P为P2,则有∠P2CA=∠P1CA.过点A作x轴的垂线,交P2C于点K,则∠CAK=∠CAP1,又AC公共边,∴△CAK≌△CAP1(ASA)∴AK=AP1=,∴K(﹣3,﹣),∴直线CK:y=﹣x﹣3,∴P2(﹣15,0).P的坐标:(﹣,0)或(﹣15,0);(3)QS=SR.理由如下:∵将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,∴抛物线L2的解析式为y=x2,直线OF的解析式为:y=﹣x,不妨设N(n,n2),∵点M(,0),∴直线MN的解析式为:y=,同理,直线ON的解析式为y=nx,∵MN交L2于Q点,∴Q(,),∵QR∥x轴分别交OF,ON于S,R,∴S(﹣,),R(,),∴QS=,SR=,∴QS=SR.。

湖北省武汉市2019-2020学年中考数学第四次调研试卷含解析

湖北省武汉市2019-2020学年中考数学第四次调研试卷含解析

湖北省武汉市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.512.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大3.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块4.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个5.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-36.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>38.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.9.下列四个图案中,不是轴对称图案的是()A.B.C.D.10.若关于x 的一元二次方程(m-1)x 2+x+m 2-5m+3=0有一个根为1,则m 的值为A .1B .3C .0D .1或311.计算()15-3÷的结果等于( )A .-5B .5C .1-5D .1512.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5%二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .14.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n 步的走法是:当n 被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____ 15.若一个棱柱有7个面,则它是______棱柱.16.二次函数y=x 2-2x+1的对称轴方程是x=_______.17.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是_____.18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,后求值:a 2•a 4﹣a 8÷a 2+(a 3)2,其中a=﹣1. 20.(6分)如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D 求证:AC ∥DE ;若BF=13,EC=5,求BC 的长.21.(6分)计算:(﹣1)2018﹣29+|1﹣3|+3tan30°.22.(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)23.(8分)已知关于x的分式方程11mx+-=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.24.(10分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.25.(10分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是»AC的中点,⊙O的半径为1,求图中阴影部分的面积.26.(12分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.27.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:第①个图形中有3盆鲜花,+=盆鲜花,第②个图形中有336第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.2.C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C .3.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B .4.A【解析】解:①由函数图象,得a=120÷3=40, 故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,∵甲车维修的时间是1小时,∴B (4,120).∵乙在甲出发2小时后匀速前往B 地,比甲早30分钟到达.∴E (5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F (8,0).设BC 的解析式为y 1=k 1t+b 1,EF 的解析式为y 2=k 2t+b 2,由图象得,11111204240 5.5k b k b =+⎧⎨=+⎩,2222240508k b k b =+⎧⎨=+⎩, 解得1180200k b =⎧⎨=-⎩,2280640k b =-⎧⎨=⎩, ∴y 1=80t ﹣200,y 2=﹣80t+640,当y 1=y 2时,80t ﹣200=﹣80t+640,t=5.2.∴两车在途中第二次相遇时t 的值为5.2小时,故弄③正确,④当t=3时,甲车行的路程为:120km ,乙车行的路程为:80×(3﹣2)=80km ,∴两车相距的路程为:120﹣80=40千米,故④正确,故选A .5.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.6.A试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.7.B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061448.C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.9.B【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.10.B【解析】【分析】直接把x=1代入已知方程即可得到关于m 的方程,解方程即可求出m 的值.【详解】∵x=1是方程(m ﹣1)x 2+x+m 2﹣5m+3=0的一个根,∴(m ﹣1)+1+m 2﹣5m+3=0,∴m 2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.11.A【解析】【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5, 故选:A .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.12.C【解析】【分析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】已知弧长即已知围成的圆锥的底面半径的长是6πcm ,这样就求出底面圆的半径.扇形的半径为5cm 就是圆锥的母线长是5cm .就可以根据勾股定理求出圆锥的高.【详解】设底面圆的半径是r ,则2πr=6π,∴r=3cm ,∴圆锥的高.故答案为4.14.(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位, ∵2018÷3=672…2,∴走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019, ∴棋子所处位置的坐标是(672,2019).故答案为:(672,2019).点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.15.5。

2024年湖北省武汉市部分学校中考数学模拟试卷及答案解析

2024年湖北省武汉市部分学校中考数学模拟试卷及答案解析

2024年湖北省武汉市部分学校中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

1.(3分)在1.5,﹣2,,﹣0.7,6,15%中,负分数有()A.2个B.3个C.4个D.5个2.(3分)下面4个图案中,可以看作是轴对称图形的是()A.B.C.D.3.(3分)下列事件是不可能事件的是()A.掷一次质地均匀的正方体骰子,向上的一面是6点B.在只装有红球和绿球的袋子中摸出一个球,结果是黄球C.经过城市中某一有交通信号灯的路口,遇到绿灯D.通常加热到100℃时,水沸腾4.(3分)当x=﹣1时,式子(x﹣2)2﹣2(2﹣2x)﹣(1+x)(1﹣x)的值是()A.B.2C.1D.﹣15.(3分)如图所示几何体的主视图为()A.B.C.D.6.(3分)已知反比例函数,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点(﹣3,﹣2)C.图象不可能与坐标轴相交D.y随x的增大而减小7.(3分)如图,直线y=x+b分别交x轴、y轴于A,B,M是反比例函数的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=8,则k的值为()A.﹣2B.﹣4C.﹣6D.﹣88.(3分)已知实数a,b、c满足a+b=ab=c,有下列结论:①若c≠0,则;②若a=3,则b+c=6;③若c≠0,则;④若c=4,则a2+b2=8.其中正确个数有()个.A.1B.2C.3D.49.(3分)如图,正方形ABCD的边长为4,点E是AD边上的一动点,点F是CD边上的一动点,且AE=DF,AF与BE相交于点P,连接PD,在F运动的过程中,PD的最小值为()A.B.C.D.10.(3分)平面直角坐标系中,我们把横坐标和纵坐标都是整数的点叫做整点.正方形的四个顶点坐标分别是(﹣n,0)、(0,﹣n)、(n,0)、(0,n),其中n为正整数.已知正方形内部(不包括边)的整点比边上的整点多177个,则n的值是()A.8B.9C.10D.11二、填空题:本题共6小题,共18分。

2020年湖北省武汉市武昌区中考数学(4月份)模拟试卷 (解析版)

2020年湖北省武汉市武昌区中考数学(4月份)模拟试卷 (解析版)

2020年湖北省武汉市武昌区中考数学模拟试卷(4月份)一、选择题(共10小题).1.2的相反数是()A.﹣2B.﹣C.2D.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣33.下列说法正确的是()A.打开电视机,它正在播广告是必然事件B.“明天降水概率80%“,是指明天有80%的时间在下雨C.方差越大数据的波动越大,方差越小数据的波动越小D.在抽样调查过程中,样本容量越小,对总体的估计就越准确4.下列四个图案中,轴对称图形的个数是()A.1B.2C.3D.45.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A.B.C.D.6.公元前3世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力×阻力臂=动力×动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.7.小明投掷一次骰子,向上一面的点数记为x,再投掷一次骰子,向上一面的点数记为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为()A.B.C.D.8.如图,反比例函数y=(x>0)的图象分别与矩形OABC的边AB,BC相交于点D,E,与对角线OB交于点F,以下结论:①若△OAD与△OCE的面积和为2,则k=2;②若B点坐标为(4,2),AD:DB=1:3.则k=1;③图中一定有=;④若点F是OB的中点,且k=6,则四边形ODBE的面积为18.其中一定正确个数是()A.1B.2C.3D.49.如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2、B.C.D.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A.B.C.D.二、填空题(共6小题,共18分)11.化简的结果为.12.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,8,8,10,7,9,7,则这组数据的中位数是.13.化简:+的结果是.14.如图,AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=40°,那么∠BED的度数为.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是.16.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是.三、解答题(共8小题,共72分)17.计算:2x3•x3+(3x3)2﹣8x6.18.如图,AC=DB,AB=DC,求证:EB=EC.19.某校组织了2000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6020a60≤x<70160.0870≤x<80b0.15请你根据以上的信息,回答下列问题:(1)a=,b=.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全校参加竞赛的学生约有人参赛成绩被评为“B”.20.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.21.如图,⊙O的直径AB=6cm,直线DM与⊙O相切于点E.连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=cm.(1)求线段BE的长;(2)求图中阴影部分的面积.22.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件150元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?23.△ABC中,D是BC的中点,点G在AD上(点G不与A重合),过点G的直线交AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x,y≠0).(1)如图1,若△ABC为等边三角形,点G与D重合,∠BDE=30°,求证:△AEF ∽△DEA;(2)如图2,若点G与D重合,求证:x+y=2xy;(3)如图3,若AG=nGD,x=,y=,直接写出n的值.24.已知抛物线的顶点A(﹣1,﹣4),经过点B(﹣2,﹣3),与x轴分别交于C,D两点.(1)求该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB交于点N,当MN取最大值时,求点M的坐标;(3)如图2,AE∥y轴交x轴于点E,点P是抛物线上A,D之间的一个动点,直线PC,PD与AE分别交于F,G,当点P运动时,①直接写出EF+EG的值;②直接写出tan∠ECF+tan∠EDG的值.参考答案一、选择题(共10小题,共30分)1.2的相反数是()A.﹣2B.﹣C.2D.【分析】依据相反数的定义求解即可.解:2的相反数是﹣2.故选:A.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3【分析】根据二次根式的被开方数大于等于0列式进行计算即可得解.解:根据题意得,x+3≥0,解得x≥﹣3.故选:B.3.下列说法正确的是()A.打开电视机,它正在播广告是必然事件B.“明天降水概率80%“,是指明天有80%的时间在下雨C.方差越大数据的波动越大,方差越小数据的波动越小D.在抽样调查过程中,样本容量越小,对总体的估计就越准确【分析】根据必然事件的概念、方差的定义、随机事件的概率逐项分析即可得出答案.解:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、“明天降水概率80%“,意味着明天降雨的可能是80%,故本选项错误;C、方差越大数据的波动越大,方差越小数据的波动越小,故本选项正确;D、在抽样调查过程中,样本容量越大,对总体的估计就越准确,故本选项错误;故选:C.4.下列四个图案中,轴对称图形的个数是()A.1B.2C.3D.4【分析】直接利用轴对称图形的定义分别判断得出答案.解:第1个不是轴对称图形,符合题意;第2个是轴对称图形,不合题意;第3个是轴对称图形,不合题意;第4个不是轴对称图形,符合题意,故有2个轴对称图形.故选:B.5.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.解:根据俯视图是从上面看所得到的图形,可知这个几何体的俯视图C中的图形,故选:C.6.公元前3世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力×阻力臂=动力×动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式,从而确定其图象即可.解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=,是反比例函数,A选项符合,故选:A.7.小明投掷一次骰子,向上一面的点数记为x,再投掷一次骰子,向上一面的点数记为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为()A.B.C.D.【分析】先画画树状图展示所有36种等可能的结果数,再利用反比例函数图象上点的坐标特征找出点P落在双曲线y=上的结果数,然后根据概率公式求解.解:画树状图为:共有36种等可能的结果数,其中点P落在双曲线y=上有:(1,6),(2,3),(3,2),(6,1),所以点P落在双曲线y=上的概率==.故选:B.8.如图,反比例函数y=(x>0)的图象分别与矩形OABC的边AB,BC相交于点D,E,与对角线OB交于点F,以下结论:①若△OAD与△OCE的面积和为2,则k=2;②若B点坐标为(4,2),AD:DB=1:3.则k=1;③图中一定有=;④若点F是OB的中点,且k=6,则四边形ODBE的面积为18.其中一定正确个数是()A.1B.2C.3D.4【分析】①根据反比例函数比例系数k的几何意义,可知△OAD与△OCE的面积相等,均为1,据此即可求出k的值;②根据B点坐标为(4,2),AD:DB=1:3,求出AD、AO的长,计算出△AOD的面积,据此即可求出k的值;③根据△OAD与△OCE的面积相等,列出等式AD•AO=OC•CE,然后写成比例式=,再转化为=,然后利用合比性质解答.④根据反比例函数k的几何意义,求出S四边形OGFH=6,进而得出S四边形ABCO=6×4=24,再求出S△AOD=S△CEO=6×=3,从而得到四边形ODBE的面积.解:①∵D、E均在反比例函数图象上,∴S△OAD=S△OCE,又∵△OAD与△OCE的面积和为2,∴S△OAD=S△OCE=1,∴k=2,故本选项正确;②∵B点坐标为(4,2),∴AB=4,AO=2,∵AD:DB=1:3,∴AD=1,AO=2,∴k=1×2=2,故本选项错误;③∵△OAD与△OCE的面积相等,∴AD•AO=OC•CE,∴=,∴=,∴=,∴=,∴=,故本选项正确;④∵k=6,∴S四边形OGFH=6,∴S四边形ABCO=6×4=24,∴S△AOD=S△CEO=6×=3,∴S四边形ODBE=24﹣3﹣3=18,故本选项正确.故选:C.9.如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2、B.C.D.【分析】连接OC,由O为正方形的中心,得到∠DCO=∠BCO,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,根据余弦的定义计算,得到答案.解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BEC中,cos∠ECB=,∴CE===,故选:B.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A.B.C.D.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴=+++…+=++…++++…+=(1﹣)+(﹣)=,故选:A.二、填空题(共6小题,共18分)11.化简的结果为2.【分析】根据二次根式的性质进行化简.解:=2,故答案为:2.12.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,8,8,10,7,9,7,则这组数据的中位数是8.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解:将这组数据按从小到大的顺序排列为:7,7,7,8,8,9,10,10,那么由中位数的定义可知,这组数据的中位数是=8.故答案为:8.13.化简:+的结果是.【分析】根据分式的运算法则即可求出答案.解:原式=﹣===,故答案为:.14.如图,AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=40°,那么∠BED的度数为130°.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.解:∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∵ED∥AC,∴∠CAE+∠DEA=180°,∴∠DEA=180°﹣40°=140°,∵∠AED+∠AEB+∠BED=360°,∴∠BED=360°﹣140°﹣90°=130°.故答案为:130°.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是5.【分析】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.解:∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∵S1+S2+S3=15=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2,∴S2的值是:5.故答案为:5.16.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是7.【分析】如图,取AC的中点N,连接MN,BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,MN,再利用三角形的三边关系即可解决问题.解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=8,BC=6,∴AC=10,∵AN=NC,∴BN=AC=5,∵AN=NC,DM=MC,∴MN==2,∴BM≤BN+NM,∴BM≤5+2=7,即BM的最大值是7.故答案为7.三、解答题(共8小题,共72分)17.计算:2x3•x3+(3x3)2﹣8x6.【分析】先根据单项式乘以单项式的法则和同底数幂的乘法法则,以及幂的乘方和积的乘方的运算法则,再合并同类项,即可得出结果.解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.18.如图,AC=DB,AB=DC,求证:EB=EC.【分析】根据三边相等直接得出三角形全等,再根据全等三角形的性质和等腰三角形的性质即可得证.【解答】证明:在△ABC与△DCB中,,∴△ABC≌△DCB(SSS);∴∠ECB=∠EBC,∴EB=EC.19.某校组织了2000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6020a60≤x<70160.0870≤x<80b0.15请你根据以上的信息,回答下列问题:(1)a=0.1,b=30.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是36°;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全校参加竞赛的学生约有920人参赛成绩被评为“B”.【分析】(1)根据60≤x<70的频数和频率可以求得本次调查的人数,从而可以求得a、b的值;(2)根据a的值,可以求出在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数;(3)根据统计图中的数据,可以计算出次全校参加竞赛的学生约有多少人参赛成绩被评为“B”.解:(1)本次调查的人数为:16÷0.08=200,a=20÷200=0.1,b=200×0.15=30,故答案为:0.1,30;(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是360°×0.1=36°,故答案为:36°;(3)2000×=920(人),即这次全校参加竞赛的学生约有920人参赛成绩被评为“B”,故答案为:920.20.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.【分析】图2中,连接AC、CE,得△ABC∽△CDE∽△ECA,相似比为:2;图3中,△BCE∽△EBA∽△CED,相似比为:2.解:如图所示21.如图,⊙O的直径AB=6cm,直线DM与⊙O相切于点E.连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=cm.(1)求线段BE的长;(2)求图中阴影部分的面积.【分析】(1)连接AE,易得∠AEB=90°,∠ECB=90°,那么∠AEB=∠ECB,根据弦切角定理得∠CEB=∠EAB,那么△AEB∽△ECB,由相似三角形的性质得BE2=AB•BC,从而求得BE的值;(2)连接OE,过点O作OG⊥BE于点G,易得BG=EG,根据特殊角的三角函数值知∠ABE=30°,所以可求得BO=3,OG=1.5,进而求得△EOB的面积,由于半径OE =OB,根据等边对等角得∠OEB=∠OBE=30°,由三角形的内角和定理得∠BOE=120°,则可求得扇形OBE的面积,再根据S阴影=S扇形OBE﹣S△EOB求得阴影部分的面积.解:(1)连接AE.∵AB是⊙O的直径,∴∠AEB=90°,又∵BC⊥DM,∴∠ECB=90°,∴∠AEB=∠ECB,∵直线DM与⊙O相切于点E,∴∠CEB=∠EAB,∴△AEB∽△ECB,∴=,∴BE2=AB•BC,∴BE==3(cm);(2)连接OE,过点O作OG⊥BE于点G.∴BG=EG,在Rt△ABE中,cos∠ABE==,∴∠ABE=30°,在Rt△OBG中,∠ABE=30°,BO=3,∴OG=1.5,∴S△EOB=××=,∵OE=OB,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S扇形OBE==3π,∴S阴影=S扇形OBE﹣S△EOB=(3π﹣)cm2.22.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件150元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?【分析】(1)①设y关于x的函数关系式为y=kx+b,由待定系数法求解即可;②月利润w=(x﹣150)(﹣2x+600),整理并配方,然后根据二次函数的性质可得答案;(2)设调整后的售价为t元,则调整后的单件利润为(t﹣150+a)元,销量为(﹣2t+600)件,写出月利润关于x的函数,并根据二次函数的性质得出月利润最大时的t值,从而得出关于a的方程,解出a即可.解:(1)①设y关于x的函数关系式为y=kx+b,把(200,200),(210,180)代入得:,解得:,∴y关于x的函数关系式为y=﹣2x+600;②月利润w=(x﹣150)(﹣2x+600)=﹣2x2+900x﹣90000=﹣2(x﹣225)2+11250.∵﹣2<0,∴w为开口向下的抛物线,∴当x=225时,月最大利润为11250元;∴w关于x的函数关系式为w=﹣2x2+900x﹣90000,月利润最大时的售价为225元;(2)设调整后的售价为t元,则调整后的单件利润为(t﹣150+a)元,销量为(﹣2t+600)件.月利润w=(t﹣150+a)(﹣2t+600)=﹣2t2+(900﹣2a)t+600a﹣90000,∴当t=时,月利润最大,则=210,解得a=30.∴a的值是30元.23.△ABC中,D是BC的中点,点G在AD上(点G不与A重合),过点G的直线交AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x,y≠0).(1)如图1,若△ABC为等边三角形,点G与D重合,∠BDE=30°,求证:△AEF ∽△DEA;(2)如图2,若点G与D重合,求证:x+y=2xy;(3)如图3,若AG=nGD,x=,y=,直接写出n的值.【分析】(1)先判断出∠BAD=30°,再判断出∠F=30°=∠BAD,即可得出结论;(2)先判断出△DEB≌△DHC,得出CH=BE,再判断出△FCH∽△FAE,即可得出结论;(3)先判断出点E是AB的中点,进而得出DE是△ABC的中位线,得出DE=AC,DE∥AC,进而得出△DGE∽△AGF,即可得出结论.解:(1)∵△ABC为等边三角形,∴∠BAC=∠B=60°,AB=AC,∵AD是△ABC的中线,∴∠BAD=∠BAC=30°,∵∠BDE=30°,∴∠BED=90°∴EF⊥AB,∴∠F=90°﹣∠EAF=30°=∠BAD,∵∠AED=∠FEA=90°,∴△AEF∽△DEA.(2)如图2,过C作CH∥AB交EF于H,∴∠B=∠DCH,∠BED=∠CHD,∴BD=CD,∴△DEB≌△DHC(AAS),∴CH=BE,∵CH∥AB,∴△FCH∽△FAE,∴=,∴=,∵=,=,∴=1﹣=1﹣,=﹣1=﹣1∴1﹣=﹣1,∴+=2,∴x+y=2xy.(3)如图3,连接DE.∵y=,∴AF=AC,∴AC=AF,∵x=,∴AE=AB,∴点E是AB的中点,∴点D是BC的中点,∴DE=AC=•AF=AF,∵DE∥AC,∴△DGE∽△AGF,∴==,∴DG=AG,∴AG=3DG,∴n=3.24.已知抛物线的顶点A(﹣1,﹣4),经过点B(﹣2,﹣3),与x轴分别交于C,D两点.(1)求该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB交于点N,当MN取最大值时,求点M的坐标;(3)如图2,AE∥y轴交x轴于点E,点P是抛物线上A,D之间的一个动点,直线PC,PD与AE分别交于F,G,当点P运动时,①直接写出EF+EG的值;②直接写出tan∠ECF+tan∠EDG的值.【分析】(1)由B点坐标利用待定系数法可求直线OB解析式,利用顶点式可求得抛物线解析式;(2)设M(t,t2+2t﹣3),MN=s,则可表示出N点坐标,由MN的纵坐标相等可得到关于s和t的关系式,再利用二次函数的性质可求得其最大值;(3)①设P(t,t2+2t﹣3),则可表示出PQ、CQ、DQ,再利用相似三角形的性质可用t分别表示出EF和EG的长,则可求得其定值;②利用①中的相关线段的长度和锐角三角函数定义作答即可.解:(1)∵抛物线顶点坐标为(﹣1,﹣4),∴可设抛物线解析式为y=a(x+1)2﹣4,∵抛物线经过B(﹣2,﹣3),∴﹣3=a﹣4,解得a=1,∴抛物线为y=x2+2x﹣3;(2)设直线OB解析式为y=kx,由题意可得﹣3=﹣2k,解得k=,∴直线OB解析式为y=x,设M(t,t2+2t﹣3),MN=s,则N的横坐标为(t﹣s),纵坐标为(t﹣s).∵MN∥x轴,∴t2+2t﹣3=,得s=﹣t2﹣t+2=﹣(t+)2+.∴当t=﹣时,MN有最大值,最大值为,此时点M的坐标是(﹣,﹣);(3)EF+EG=8.理由如下:如图2,过点P作PQ∥y轴交x轴于Q,在y=x2+2x﹣3中,令y=0可得0=x2+2x﹣3,解得x=﹣3或x=1.∴C(﹣3,0),D(1,0).设P(t,t2+2t﹣3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t.∵PQ∥EF,∴△CEF∽△CQP.∴=.∴EF=•PQ=×(﹣t2﹣2t+3).同理△EGD∽△QPD得=.∴EG=•PQ=•(﹣t2﹣2t+3),∴EF+EG=(﹣t2﹣2t+3)+•(﹣t2﹣2t+3)=2(﹣t2﹣2t+3)(+)=2(﹣t2﹣2t+3)×=8,∴当点P运动时,EF+EG为定值8;②由①知,EF+EG=8,则tan∠ECF+tan∠EDG==4.。

2024年湖北省武汉市部分学校中考模拟数学试题4

2024年湖北省武汉市部分学校中考模拟数学试题4

2024年湖北省武汉市部分学校中考模拟数学试题4一、单选题1.2024-的相反数是( )A .2024B .2024-C .12024D .12024- 2.我国古代的二十四节气图标诸多呈现对称之美,下列图标是轴对称图形的是( ) A . B . C . D . 3.下列事件中是必然事件的是( )A .在十字交叉路口,遇到红灯亮起.B .射击运动员在进行一次射击时,能够精准地将子弹命中靶心.C .在平面内任意绘制一个三角形,其结构表现出稳定性.D .掷一枚硬币,国徽面朝上.4.计算()323a 的结果是( ) A .59a B .69a C .527a D .627a5.如图,一个几何体是由6个相同的小正方体组成的,它的主视图是( )A .B .C .D .6.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角A ∠是135︒,第二次的拐角B ∠的度数是( )A .45︒B .90°C .120︒D .135︒7.抛一枚质地均匀的正方体骰子,下列事件中发生的概率最大的是( )A .朝上的数字为奇数B .朝上的数字是3的倍数C .朝上的数字大于2D .朝上的数字是58.甲和乙两辆车从A 地同时出发,沿相同的路线匀速驶向B 地.在甲车行驶了2小时后,因发生故障停车进行维修.维修结束后,甲车继续以匀速驶向B 地,结果比乙车晚到了30分钟.甲、乙两车行驶的路程与离开A 地的时间的函数图象如图所示,当两车相距60km 时,乙车所行驶的时间是( )A .2hB .2h 或4hC .4h 或7hD .4h 或7h 或2h9.如图,进行下列尺规作图:①O e 六等分,依次得到,,,,,A B C D E F 六个分点;②分别以点,A D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③从点G 引出O e 的切线与AD 所在的直线围成三角形.此三角形的面积是( )A .4B .3C .6D .1210.已知()()1122,,,A x y B x y 是抛物线231y ax x =-+上的两点,其对称轴是直线0x x =,若1020x x x x ->-时,总有12y y >,同一坐标系中有()()2,3,4,3M N --,且抛物线与线段MN 有两个不相同的交点,则a 的取值范围是( )A .52a ≤-B .522a -<<C .728a ≤<D .728a ≤≤二、填空题11.微米和米都是长度的单位,其中1微米等于0.000001米.在日常生活中,我们经常需要将单位微米转换为米,以便于更好地理解和使用.30微米=米(用科学记数法表示). 12.已知在反比例函数k y x =的图象的每一支上,y 随x 的增大而增大,写出一个符合条件的k 的值是.13.计算2222111x x x x x -⎛⎫÷- ⎪+--⎝⎭的结果是. 14.如图,在龟山附近的小山AB 的顶部有一座通讯塔BC ,点,,A B C 位于同一直线上.在地面P 处,测得塔顶C 的仰角为42︒,塔底B 的仰角为35︒.已知通讯塔BC 的高度为29米,则小山AB 的高度为米.(结果取整数,参考数据:tan350.70,tan420.90︒≈︒≈.)15.如图,在ABC V 中,120A ∠=︒,点D 在AB 边上,15B ACD ∠=∠=︒.则ADC BDCS S V V 的值是.16.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)经过点()1,1--,()01,,当2x =-时,与其对应的函数值1y >,有下列结论:①0abc >;②242b ac a -<;③关于x 的方程230ax bx c ++-=有两个不等的实数根;④7a b c ++>.其中正确的是(填写序号).三、解答题17.求满足不等式组849322x x x x +>+⎧⎨≥-⎩①②的整数解. 18.如图,BE 是ABC V 的角平分线,点D 在AB 上,且DE BC ∥.(1)求证:DB DE=;(2)在BC上取一点F,连接EF,添加一个条件,使四边形BDEF为菱形,直接写出这个条件.19.每年的6月6日是我国的全国“爱眼日”,旨在倡导科学防控近视,关注青少年眼健康.在某校的“爱眼日”活动中,校方随机抽取了部分学生进行视力检测,以右眼视力值作为分组依据,将学生分为五组,并进行了数据收集和整理.以下是得到的尚不完整的统计图表:视力频数分布表请根据图表信息,解答下列问题:(1)本次调查活动共抽取了______人;表中a=______,b=______;(2)若该校共有学生2400人,且视力值为4.8及以上的为视力良好,请估计该校视力良好的有多少人?20.如图所示,BC为Oe的弦,点A位于优弧»BC上,连接AO并延长与BC交于点D,与Oe交于点F,连接AC,过点D作AC的垂线与AC相交于点E,然后连接,AB BF.(1)求证:DAB CDE∠=∠;(2)若5,3,2AC AD CD BD===,求Oe的半径.四、单选题21.如图,在每个小正方形的边长为1的网格中,ABCV的顶点,A C均落在格点上,点B在网格线上,以BC为直径的半圆与边AC相交于点D,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图1中,若2AB=,先画ABCV边AC上的高,再画点B关于AC的对称点B';(2)在图2中,若点B在离最近格点三分之一处,设P和Q分别为边AC与BC上的动点,当BP与PQ之和达到最小值时,画出点P和Q.五、解答题22.某商场经营某种商品,该商品的进价为30元/件,根据市场调查发现,该商品每周的销售量y(单位:件)与售价x(单位:元/件)(x为正整数)之间满足一次函数的关系,下表记录的是某三周的有关数据.(1)求y 关于x 的函数关系式(不求自变量的取值范围);(2)若某周该商品的销售量不少于700件,求这周该商场销售这种商品获得的最大利润;(3)规定这种商品的售价不超过进价的2倍,若商品的进价每件提高m 元(0m >)时,该商场每周销售这种商品的利润仍随售价的增大而增大,请直接写出m 的取值范围. 23.问题情境:在数学实践课程中,教师引导同学们围绕“菱形纸片的折叠”主题进行探索.已知菱形ABCD ,120BAD ∠=︒,点,E F 分别是,AB BC 边上的点,将菱形ABCD 沿EF 折叠.猜想证明:(1)如图1,设对角线AC 与BD 相交于点O ,若点B 的对应点与点O 重合,折痕EF 交BD 于点G .试直接写出四边形EBFO 的形状;问题解决:(2)如图2,若点B 的对应点恰好落在对角线AC 上的点M 处,若2,4CM AM ==,求线段FC 的长;(3)如图3,若点B 的对应点恰好落在CD 边上的点N 处,若点N 为CD 的一个三等分点()CN DN >,设DN a =,求FCN △的面积(用含a 的式子表示).24.如图,在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点,A B ,与y 轴交于点C ,其对称轴为1x =-,点A 的坐标为 2,0 ,点53,2D ⎛⎫- ⎪⎝⎭在抛物线上.(1)求该抛物线的解析式;(2)如图1,点P 在y 轴上,且点P 在C 的下方,若45PDC ∠=︒,求点P 的坐标;(3)如图2,E 为线段CD 上的动点,射线OE 与线段AD 交于点M ,与抛物线交于点N ,求当MN OM取最大值时,点A D N ,,围成的三角形的面积.。

2023-2024学年湖北省武汉市武珞路中学中考数学模拟试题含解析

2023-2024学年湖北省武汉市武珞路中学中考数学模拟试题含解析

2024年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查2.如图,在△ABC 中,AB=AC=10,CB=16,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( )A .50π﹣48B .25π﹣48C .50π﹣24D .3.sin60°的值为( )A 3B 3C 2D .124.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A .13.51×106B .1.351×107C .1.351×106D .0.1531×1085.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环)7 8 9 10 次数1 4 3 2A .8、8B .8、8.5C .8、9D .8、10 6.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .157.已知反比例函数2y x -=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 8.点A 、C 为半径是4的圆周上两点,点B 为AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( )A .7或22B .7或23C .26或22D .26或239.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)10.4的平方根是( )A .4B .±4C .±2D .2 11.解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 12.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.14.分解因式:mx 2﹣6mx+9m=_____.15.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.16.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 17.化简1111x x -+-的结果是_______________. 18.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数12y kx =-的图象与反比例函数()20m y x x=>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20m y x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .20.(6分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.21.(6分)如图,MN 是一条东西方向的海岸线,在海岸线上的A 处测得一海岛在南偏西32°的方向上,向东走过780米后到达B 处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)22.(8分)已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB=6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.23.(8分)先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2. 24.(10分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.25.(10分)计算: 021( 3.14)()3|12|4cos30.26.(12分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.27.(12分)计算:21|﹣2sin45°38﹣21()2参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .2、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.3、B【解析】解:sin60°=32.故选B.4、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).5、B【解析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.7、D【解析】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.8、C【解析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--DC=2222++.DE CE=3(15)=26故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.9、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.10、C【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)1=4,∴4的平方根是±1.故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.12、C【解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、9.26×1011【解析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.14、m(x﹣3)1.【解析】先把提出来,然后对括号里面的多项式用公式法分解即可。

2020年湖北省武汉市九年级四月调考数学模拟试卷

2020年湖北省武汉市九年级四月调考数学模拟试卷

2020年湖北省武汉市九年级四月调考数学模拟试卷一.选择题1.(3分)一个数的相反数是2020-,则这个数是( ) A .2020B .2020-C .12020D .12020-2.(3分)二次根式2a -,则a 的取值范围是( ) A .2a …B .2a -…C .2a >D .0a <3.(3分)事件A :射击运动员射击二次,刚好都射中靶心;事件B :掷硬币,正面朝上,则( )A .事件A 和事件B 都是必然事件B .事件A 是随机事件,事件B 是不可能事件C .事件A 和事件B 都是随机事件D .事件A 是必然事件,事件B 是随机事件 4.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .5.(3分)如图,是由一个圆柱和一个圆锥体组成的立体图形,其俯视图是( )A .B .C .D .6.(3分)《九章算术》是我国古代数学的经典著作,书中有一问题:“金有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .911(10)(8)13x y y x x y =⎧⎨+-+=⎩B .911(8)(10)13x yx y y x =⎧⎨+-+=⎩C.10891311y x x yx y+=+⎧⎨+=⎩D.119(10)(8)13x yy x x y=⎧⎨+-+=⎩7.(3分)从2-,1-,1,2这四个数中,任取两个不同的数作为一次函数y kx b=+的系数k,b,则一次函数y kx b=+的图象不经过第四象限的概率是()A.12B.13C.14D.168.(3分)对于反比例函数21kyx+=,下列说法正确的个数是()①函数图象位于第一、三象限;②函数值y随x的增大而减小③若1(1,)A y-,2(2,)B y,3(1,)C y是图象上三个点,则132y y y<<;④P为图象上任一点,过P作PQ y⊥轴于点Q,则OPQ∆的面积是定值.A.1个B.2个C.3个D.4个9.(3分)如图,第(1)个多边形由正三角形“扩展而来边数记为312a=,第(2)个多边形由正方形“扩展”而来,边数记为420a=,第(3)个多边形由五边形“扩展”而来,边数记为530a=⋯依此类推,由正n边形“扩展而来的多边形的边数记为(3)na n…,则345121111a a a a+++⋯+结果是()A.310B.730C.833D.103910.(3分)如图,在等边ABC∆中,4AB=,D、E分别为射线CB、AC上的两动点,且BD CE=,直线AD和BE相交于M点,则CM的最大值为()A .23B .833C .33D .43二.填空题11.(3分)计算:|3|16--= .12.(3分)某体校篮球班21名学生的身高如表: 身高()cm 180 185 187 190 193 人数(名)46542则该篮球班21名学生身高的中位数是 . 13.(3分)计算:21211x x x +---的值为 . 14.(3分)如图,ABC ∆和ADE ∆中,54BAC DAE ∠=∠=︒,AB AC =,AD AE =,连接BD ,CE 交于F ,连接AF ,则AFE ∠的度数是 .15.(3分)平面直角坐标系中,O e 交x 轴正负半轴于点A 、B ,点P 为O e 外y 轴正半轴上一点,C 为第三象限内O e 上一点,PH CB ⊥交CB 延长线于点H ,已知2BPH BPO ∠=∠,15PH =,24CH =,则tan BAC ∠的值为 .16.(3分)对于一个函数,如果它的自变量x 与函数值y 满足:当11x -剟时,11y -剟,则称这个函数为“闭函数”.例如:y x =,y x =-均是“闭函数”.已知2(0)y ax bx c a =++≠是“闭函数”,且抛物线经过点(1,1)A -和点(1,1)B -,则a 的取值范围是 .。

2021年湖北省武汉市九年级四月调考数学模拟试卷(含解析)

2021年湖北省武汉市九年级四月调考数学模拟试卷(含解析)

2021年湖北省武汉市九年级四月调考数学模拟试卷(4)一、选择题(共10小题).1.﹣2的倒数是()A.2B.﹣2C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤4C.x≥﹣4D.x≥43.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.下列手机屏幕解锁图案是轴对称图形的是()A.B.C.D.5.如图,在下面四种用相同的正方体储物箱堆放在一起的形态中,主视图与左视图不相同的是()A.B.C.D.6.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.7.直线y=2x+b与反比例函数y=的图象交于两点A(1,m),B(﹣2,n),点C(2,t)也在该反比例函数的图象上,则m,n,t的大小关系为()A.n<m<t B.n<t<m C.t<m<n D.m<t<n8.如图,在四边形ABCD中,AD∥BC,∠A=45°,∠C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD﹣DC向终点C运动.设点N的运动时间为ts,△AMN的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.9.观察下面倒“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.2020B.2021C.4040D.403910.如图,AB是⊙O的直径,C是⊙O上一点,E是△ABC的内心,OE⊥EB.若AE=2,则△ABE的面积为()A.B.2C.D.1二、填空题(共6小题).11.16的算术平方根是.12.在学校的体育训练中,小杰同学投实心球的7次成绩如图所示,则这7次成绩的中位数是m.13.计算:的结果是.14.如图,E是▱ABCD的边BC上一点,将△ABE沿AE折叠,得到△AEB',AB'交CD于点F.若∠B=60°,∠CEB'=18°,则∠AFD的度数为.15.抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过两点A(﹣2,0),B(4,0),下列四个结论:①b+2a=0;②若点(﹣2020,m),(2021,n)在抛物线上,则m<n;③y>0的解集为x<﹣2或x>4;④方程a(x+1)2+bx+c=﹣b的两根为x1=﹣3,x2=3.其中正确的结论是(填写序号).16.如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,E为AB上一点,ED,BC的延长线交于点F,∠F=30°,ED=2,DF=6,BE=2,则BC的长为.三、解答题(共8题,共72分)17.计算:(3m3)2+m2•m4﹣2m8÷m2.18.如图,AB和CD相交于点O,∠A=∠D,OE∥AC,且OE平分∠BOC.求证:AC∥BD.19.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;(2)m=,n=;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.20.如图,在7×7的正方形网格中,A,B,C,E均为小正方形的顶点,用无刻度的直尺画图,保留画图痕迹.(1)将线段AB绕点A逆时针旋转90°得到线段AM;(2)在AB上画点T,使BT=4AT;(3)在BC上画点F(不与点C重合),使EF=EC;(4)在AC上画点N,使tan∠ABN=.21.如图1,▱ABCF的顶点A,B,C在⊙O上,AB=AC.(1)求证:AF为⊙O的切线;(2)如图2,CF与⊙O交于点E,连接BE.若AB=BE,CE=EF,求cos∠BEC的值.22.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05若每月上网时间xh(x≥25),A,B两种上网的月收费分别为y1元,y2元.(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=﹣x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益﹣月宽带费)23.【问题背景】(1)如图1,在△ABC中,D为AC上一点,∠ABD=∠C,求证:;【变式迁移】(2)如图2,在Rt△ABC中,∠ACB=90°,D为AB上一点,CD=CA,DE⊥AB交BC于点E,连接AE.求证:=tan∠B;【拓展迁移】(3)如图3,在菱形ABCD中,F为CD上一点,E为BC上一点,EC=1,,∠EAF=∠D,tan∠D=,直接写出AE的长.24.已知抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)直接写出A,B,C的坐标(可用含m的式子表示);(2)如图1,若m=3,P为第三象限内抛物线上的一点,∠PCO=2∠ACO,求点P的横坐标;(3)如图2,将抛物线向右平移n个单位(n>0),所得的抛物线与直线AC交于M,N两点,且满足NA=2CM,点Q的坐标为(n,m),求AQ的最小值.参考答案一、选择题(共10小题).1.﹣2的倒数是()A.2B.﹣2C.D.﹣解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤4C.x≥﹣4D.x≥4解:由题意得,x﹣4≥0,解得,x≥4,故选:D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.下列手机屏幕解锁图案是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.5.如图,在下面四种用相同的正方体储物箱堆放在一起的形态中,主视图与左视图不相同的是()A.B.C.D.解:A、主视图和左视图都相同,底层为三个小正方形,中层和上层的左边分别是一个小正方形,故本选项不合题意;B、主视图和左视图相同,底层是两个小正方形,上层的左边是一个小正方形,故本选项不合题意;C、主视图和左视图相同,底层是三个小正方形,上层的左边是一个小正方形,故本选项不合题意;D、主视图底层是三个小正方形,上层的左边是两个小正方形;左视图底层是三个小正方形,上层的左边是一个小正方形,故本选项符号题意;故选:D.6.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.解:画树状图如图:共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,∴恰好使该图形为“和谐图形”的概率为=,故选:B.7.直线y=2x+b与反比例函数y=的图象交于两点A(1,m),B(﹣2,n),点C(2,t)也在该反比例函数的图象上,则m,n,t的大小关系为()A.n<m<t B.n<t<m C.t<m<n D.m<t<n解:∵直线y=2x+b与反比例函数y=的图象交于两点A(1,m),B(﹣2,n),∴解得∴直线解析式为y=2x+2,反比例函数解析式为y=,A(1,4),B(﹣2,﹣2),∵点C(2,t)也在该反比例函数的图象上,∴C(2,2),即t=2,∴n<t<m,故选:B.8.如图,在四边形ABCD中,AD∥BC,∠A=45°,∠C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD﹣DC向终点C运动.设点N的运动时间为ts,△AMN的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.解:如图1中,当0<t≤2时,过点M作MH⊥AN于H.S=•AN•MH=×2t×t•cos45°=t2,如图2中,当2<t≤3时,连接DM,S=S△MND+S△AMD﹣S△ADN=×(2t﹣4)×(4﹣t)+×4×t﹣×4×(2t﹣4)=﹣t2+4t,如图3中,当3<t≤3.5时,连接BD,S=S△MND+S△AMD﹣S△ADN=×(2t﹣4)×1+×4×3﹣×4×(2t﹣4)=﹣3t+12,由此可知函数图象是选项B,故选:B.9.观察下面倒“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.2020B.2021C.4040D.4039解:由题意得:1=2×1﹣1,3=2×2﹣1,5=2×3﹣1…∴a=2×2020﹣1=4039.故选:D.10.如图,AB是⊙O的直径,C是⊙O上一点,E是△ABC的内心,OE⊥EB.若AE=2,则△ABE的面积为()A.B.2C.D.1解:如图,延长BE交⊙O于点F,连接AF,OF,∵AB是⊙O的直径,∴∠AFB=∠C=90°,∴∠CAB+∠CBA=90°,∵E是△ABC的内心,∴∠EAB=CAB,∠EBA=CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,∴∠FEA=45°,∴△FEA是等腰直角三角形,∴AE=AF=EF,∵AE=2,∴AF=EF=2,∵OE⊥EB,∴EF=BE=2,∴△ABE的面积为:BE•AF=2×2=2.故选:B.二、填空题(共6小题,每题3分,共18分)11.16的算术平方根是4.解:∵42=16,∴=4.故答案为:4.12.在学校的体育训练中,小杰同学投实心球的7次成绩如图所示,则这7次成绩的中位数是9.7m.解:将小杰同学的7次掷实心球的成绩从小到大排列后,处在中间位置的一个数是9.7m,因此中位数是9.7m.故答案为:9.7.13.计算:的结果是.解:原式====,故答案为:.14.如图,E是▱ABCD的边BC上一点,将△ABE沿AE折叠,得到△AEB',AB'交CD于点F.若∠B=60°,∠CEB'=18°,则∠AFD的度数为42°.解:∵将△ABE沿AE折叠,得到△AEB',∴∠AEB=∠AEB',∠BAE=∠B'AE,∵∠AEB+∠AEC=180°,∴∠AEC+18°+∠AEC=180°,∴∠AEC=81°,∠AEB=99°,∵∠B=60°,∴∠BAE=180°﹣∠AEB﹣∠B=180°﹣99°﹣60°=21°,∴∠BAF=2∠BAE=42°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AFD=∠BAF=42°,故答案为:42°.15.抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过两点A(﹣2,0),B(4,0),下列四个结论:①b+2a=0;②若点(﹣2020,m),(2021,n)在抛物线上,则m<n;③y>0的解集为x<﹣2或x>4;④方程a(x+1)2+bx+c=﹣b的两根为x1=﹣3,x2=3.其中正确的结论是①③④(填写序号).解:∵抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过两点A(﹣2,0),B(4,0),∴抛物线开口向上,对称轴为直线x==1,∴﹣=1,∴2a+b=0,故①正确;∵1+2020>2021﹣1,∴m>n,故②错误;∵抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过两点A(﹣2,0),B(4,0),且开口向上,∴y>0的解集为x<﹣2或x>4,故③正确;把抛物线y=ax2+bx+c向左平移1个单位得到y=a(x+1)2+b(x+1)+c,此时抛物线与x轴的交点为(﹣3,0)和(3,0),∴方程a(x+1)2+bx+c=﹣b的两根为x1=﹣3,x2=3,故④正确;故答案为①③④.16.如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,E为AB上一点,ED,BC的延长线交于点F,∠F=30°,ED=2,DF=6,BE=2,则BC的长为3.解:过D作DG∥AB交BC于G,∴△FDG∽△FEB,∴,∵ED=2,DF=6,BE=2,∴,∴DG=,∵∠ACB=90°,∴∠DCF=90°,∵∠F=30°,DF=6,∴DC=3,∵D为AC的中点,∴AC=6,∵DG∥AB,D为AC的中点,∴AB=2DG==3,∴BC=,故答案为:3.三、解答题(共8题,共72分)17.计算:(3m3)2+m2•m4﹣2m8÷m2.解:原式=9m6+m6﹣2m6=8m6.18.如图,AB和CD相交于点O,∠A=∠D,OE∥AC,且OE平分∠BOC.求证:AC∥BD.【解答】证明:∵OE∥AC∴∠A=∠1(两直线平行同位角相等)∵OE平分∠BOC∴∠1=∠2(角平分线的定义)又∵∠A=∠D(已知)∴∠D=∠2(等量代换)∴OE∥BD(同位角相等两直线平行)∴AC∥BD(平行于同一直线的两条直线平行)19.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取200人;(2)m=86,n=27;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,m=86,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.20.如图,在7×7的正方形网格中,A,B,C,E均为小正方形的顶点,用无刻度的直尺画图,保留画图痕迹.(1)将线段AB绕点A逆时针旋转90°得到线段AM;(2)在AB上画点T,使BT=4AT;(3)在BC上画点F(不与点C重合),使EF=EC;(4)在AC上画点N,使tan∠ABN=.解:(1)如图,线段AM即为所求作.(2)如图,点T即为所求作.(3)如图,点F即为所求作.(4)如图,点N即为所求作.21.如图1,▱ABCF的顶点A,B,C在⊙O上,AB=AC.(1)求证:AF为⊙O的切线;(2)如图2,CF与⊙O交于点E,连接BE.若AB=BE,CE=EF,求cos∠BEC的值.【解答】(1)证明:连接OB,OC,OA,延长AO交BC于点D,∵AB=AC,OB=OC,∴AD⊥BC,∴∠ADB=90°,∵四边形ABCF为平行四边形,∴AF∥BC,∴∠FAO=∠ADB=90°,∴AF为⊙O的切线;(2)解:连接AE,过点B作BH⊥FC,交FC的延长线于点H,∵四边形ABCF为平行四边形,∴AF=BC,AF∥BC,∴∠FAC=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠AEC+∠AEF=180°,∠AEC+∠ABC=180°,∴∠AEF=∠ABC=∠ACB=∠FAC,∵∠F=∠F,∴△FAE∽△FCA,∴,∴AF2=FE•FC,设CE=EF=1,CH=x,∴AF2=2,∴AF=,∴CF=AB=AC=BE=2,BC=,∵BH2=BC2﹣CH2=BE2﹣EH2,∴,解得,x=,∴EH=,∴cos∠BEC==.22.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05若每月上网时间xh(x≥25),A,B两种上网的月收费分别为y1元,y2元.(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=﹣x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益﹣月宽带费)解:(1)当x≥25时,y1=30+0.05×60(x﹣25)=3x﹣45(25≤x≤50),y2=50+0.05×60(x﹣50)=3x﹣100(x>50),∴y1=3x﹣45(25≤x≤50),y2=3x﹣100(x>50);(2)①当25≤x≤50时,3x﹣45=50,解得:x=,②当x≥50时,3x﹣45=3x﹣100,方程无解,答:x为时,两种收费方式一样;(3)设上网利润为M元,则M=y﹣y2,M=﹣x2+ax+1950﹣(3x﹣100)=﹣x2+(a﹣3)x+2050,∵此函数是二次函数,x2的系数是﹣1<0,∴抛物线开口向下,M有最大值,当x=﹣=时,M最大值==,∵某月该用户上网获得的利润最大值为5650元,∴=5650,解得:a1=123,a2=﹣117(舍去),答:a的值为123.23.【问题背景】(1)如图1,在△ABC中,D为AC上一点,∠ABD=∠C,求证:;【变式迁移】(2)如图2,在Rt△ABC中,∠ACB=90°,D为AB上一点,CD=CA,DE⊥AB交BC于点E,连接AE.求证:=tan∠B;【拓展迁移】(3)如图3,在菱形ABCD中,F为CD上一点,E为BC上一点,EC=1,,∠EAF=∠D,tan∠D=,直接写出AE的长.【解答】(1)证明:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴;(2)证明:∵CD=CA,∴∠CAD=∠CDA,∵∠ACB=∠ADE=90°,∴∠CAD+∠B=∠ADC+∠CDE=90°,∴∠B=∠CDE,又∵∠DCE=∠BCD,∴△CDE∽△CBD,∴,∴,∵∠ACE=∠BCA,∴△CAE∽△CBA,∴∠CAE=∠B,,∴tan∠CAE==tan∠B.(3)解:如图,在BE上取点M,使AM=AE,∴∠AME=∠AEM,∵∠EAF=∠D,∠C+∠D=180°,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∴∠AEM=∠AFC,∴∠AME=∠AFC,∴∠AMB=∠AFD,又∵∠B=∠D,AB=AD,∴△ABM≌△ADF(AAS),∴BM=DF,过点A作AG⊥ME于点G,则MG=GE,设DF=MB=2x,∵,∴CF=CM=3x,∴AB=5x=BC=CD,∴ME=3x﹣1,MG=,∴BG=BM+MG=2x+,∵tan∠B=tan∠D=,∴cos B=,∴BG=3x=,∴x=1,∴AG=4,EG=1,∴AE===.24.已知抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)直接写出A,B,C的坐标(可用含m的式子表示);(2)如图1,若m=3,P为第三象限内抛物线上的一点,∠PCO=2∠ACO,求点P的横坐标;(3)如图2,将抛物线向右平移n个单位(n>0),所得的抛物线与直线AC交于M,N两点,且满足NA=2CM,点Q的坐标为(n,m),求AQ的最小值.解:(1)抛物线y=x2+(m﹣2)x﹣2m,当x=0时,y=﹣2m;当y=0时,由x2+(m ﹣2)x﹣2m=0,得x1=﹣m,x2=2,∴点A、B、C的坐标分别为(2,0),(﹣m,0),(0,﹣2m);(2)当m=3时,y=x2+x﹣6,B(﹣3,0),C(0,﹣6).如图1,在OC上取点E,连接AE,使AE=CE,在OB上取点F,使OF=OA,连接EF,则F(﹣2,0).设OE=r,则AE=CE=6﹣r,∴r2+22=(6﹣r)2,解得r=,∴E(0,).设直线EF的解析式为y=kx,则﹣2k=0,解得k=∴y=x,∵OE垂直平分AF,∴AE=FE,∴∠FEO=∠AEO=∠ACO+∠ECA=2∠ACO,∵∠PCO=2∠ACO,∴∠FEO=∠PCO,∴CP∥EF,∴直线CP的解析式为y=x﹣6.由,得x2+x﹣6=x﹣6,解得x1=,x2=0(不符合题意,舍去),∴点P的横坐标为.(3)抛物线y=x2+(m﹣2)x﹣2m=(x+m)(x﹣2),将其向右平移n个单位,得到的抛物线的解析式为y=(x+m﹣n)(x﹣2﹣n),设直线AC的解析式为y=px﹣2m,则2p﹣2m=0,解得p=m,∴y=mx﹣2m.由,得x2﹣(2n+2)x+n2﹣mn+2n=0设点M、N的横坐标分别为x1、x2,如图2,MG∥x轴,交y轴于点G,HN∥x轴,AH∥y轴交HN于点H,∵∠NAH=∠MCG,∠ANH=∠CMG,∴△ANH∽△CMG,∵NA=2CM,∴=2,∴NH=2MG,∴x2﹣2=2x1,∴x1+x2﹣2=3x1,∴2n+2﹣2=3x1,∴x1=n,∴x2=2x1+2=2×n+2=n+2,∵x1•x2=n2﹣mn+2n,∴n(n+2)=n2﹣mn+2n,整理,得n=9m﹣6.由勾股定理,得AQ2=(2﹣n)2+m2=(8﹣9m)2+m2=82m2﹣144m+64,∴当m==时,AQ2最小=82×()2﹣144×+64=,∴AQ最小=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市四月调考九年级数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最小的数是()A.﹣2 B.1 C.0 D.﹣32.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×1054.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列计算正确的是()A.3a﹣a=2 B.b2•b3=b6C.a3÷a=a2D.(a3)4=a76.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.47.如图所示,该几何体的左视图是()A.B.C.D.8.某市努力改善空气质量,近年来空气质量明显好转,根据该市环保局公布的﹣这五年各年的空气质量:优良的天数,绘制成如图折线图,则这五年的全年空气质量优良天数平均为()A.343天B.344天C.345天D.346天9.下列图形都是由同样大小的黑点按一定的规律组成,其中第①个图形中一共有4个黑点,第②个图形中一共有9个黑点,第③个图形中一共有14个黑点,…,则第⑩个图形中黑点的个数是()A.44 B.48 C.49 D.5410.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:÷=.12.因式分解:x2﹣2x+1=.13.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到没有过保质期饮料的概率为.14.如图,2×2网格(•武汉模拟)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=.16.如图,△ABC中,∠ABC=45°,AB=,BC=12,以AC为直角边,A为直角顶点作等腰直角△ACD,则BD的长为.三、解答题(共8题,共72分)17.直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.18.如图,BD是▱ABCD的对角线,E、F分别为BD上两点,AC交BD于O.(1)请你添加一个条件,使得△ABE≌△CDF,并证明;(2)在问题(1)中,当AC与EF满足什么条件时,四边形AECF是矩形,请说明理由.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.20.四边形ABDC在如图所示的平面直角坐标系中,将四边形ABDC向右平移4个单位长度后得四边形A1B1D1C1,再将四边形ABDC绕点O旋转180°后得到四边形A2B2D2C2.(1)在图中画出四边形A1B1D1C1与四边形A2B2D2C2;(2)四边形A1B1D1C1与四边形A2B2D2C2关于点P成中心对称,则点P的坐标为;(3)直接写出过A2、B2、D2三点的外接圆的直径为.21.已知AB是⊙O的直径,AT是⊙O的切线,AT=AB,OT交⊙O于M(1)如图1,BT交⊙O于E,求证:sin∠BTO=;(2)如图2,若TC切⊙O于点C,求tan∠CBM的值.22.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.24.已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.湖北省武汉市四月调考九年级数学模拟试卷(四)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最小的数是()A.﹣2 B.1 C.0 D.﹣3【考点】有理数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示,故选D.【点评】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】因为是二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣2≥0,解得:x≥2.故选A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×105【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.【解答】解:根据题意:2500000=2.5×106.故选C.【点评】把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,因此不能写成25×105而应写成2.5×106.4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,故由甲乙丙丁的方差可直接作出判断.【解答】解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,故选:C.【点评】本题主要考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.下列计算正确的是()A.3a﹣a=2 B.b2•b3=b6C.a3÷a=a2D.(a3)4=a7【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】依据合并同类项法则、同底数幂的乘法则、同底数幂的除法则、幂的乘方法则法则进行判断即可.【解答】解:A.3a﹣a=2a,故A错误;B.b2•b3=b2+3=b5,故B错误;C.a3÷a=a2,故C正确;D.(a3)4=a12,故D错误.故选:C.【点评】本题主要考查的是同底数幂的运算,掌握运算法则是解题的关键.6.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4【考点】矩形的性质;角平分线的性质.【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE===8,∴CE=BC﹣BE=AD﹣BE=10﹣8=2.故选B.【点评】本题是平行四边形的性质,以及勾股定理,等腰三角形的判定定理:等角对等边,正确求得AE的长是关键.7.如图所示,该几何体的左视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据左视图是左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【解答】解:从左面看可得到左边有2个上下的正方形,故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,主要考查了学生的空间想象能力.8.某市努力改善空气质量,近年来空气质量明显好转,根据该市环保局公布的﹣这五年各年的空气质量:优良的天数,绘制成如图折线图,则这五年的全年空气质量优良天数平均为()A.343天B.344天C.345天D.346天【考点】算术平均数;折线统计图.【分析】利用折线统计图得到这五年的全年空气质量优良天数,然后根据平均数的定义求解.【解答】解:(334+333+345+347+356)÷5=343,故选A【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.9.下列图形都是由同样大小的黑点按一定的规律组成,其中第①个图形中一共有4个黑点,第②个图形中一共有9个黑点,第③个图形中一共有14个黑点,…,则第⑩个图形中黑点的个数是()A.44 B.48 C.49 D.54【考点】规律型:图形的变化类.【分析】仔细观察图形的变化情况找到规律,利用规律解答即可.【解答】解:观察图形发现:第一个图形有5×(1+1)﹣6=4个黑点;第二个图形有5×(2+1)﹣6=9个黑点;第三个图形有5×(3+1)﹣6=14个黑点;第四个图形有5×(4+1)﹣6=19个黑点;…第一个图形有5×(n+1)﹣6=5n﹣1个黑点;当n=10时,有50﹣1=49个黑点,故选C.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化规律,然后利用规律求解.10.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x的函数关系;②点P在CD上时,根据S△APE=S﹣S△ADP﹣S△CEP列式整理得到y与x的关系梯形AECD式;③点P在CE上时,利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x•2=x(0≤x≤3),②点P在CD上时,S△APE=S﹣S△ADP﹣S△CEP,梯形AECD=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P的位置的不同分三段列式求出y 与x的关系式是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:÷=2.【考点】二次根式的乘除法.【分析】利用二次根式乘除法的运算法则,即可得出结论.【解答】解:÷===2.故答案为:2.【点评】本题考查了二次根式的乘除法,解题的关键是:能熟练运用二次根式乘除法的运算法则解决问题.12.因式分解:x2﹣2x+1=(x﹣1)2.【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到没有过保质期饮料的概率为.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵在5瓶饮料中,有2瓶已过了保质期,∴从这5瓶饮料中任取1瓶,取到没过保质期饮料的概率为;故答案为.【点评】此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,2×2网格(•武汉模拟)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=2.【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】作AF⊥x轴于F,BG⊥x轴于G,则BG∥AF,由AB=BD,得出FG=DG,BG=AF,设A(a,),则B(2a,),C(﹣a,﹣),即可得到DG=FG=a,OD=3a,作CH⊥y轴于H,则△ODE∽△HCD,得出=,即=,求得OE=,然后根据S△ODE=OD•OE=,得出×3a×=,解得k=2.【解答】解:作AF⊥x轴于F,BG⊥x轴于G,则BG∥AF,∴AB=BD,∴FG=DG,BG=AF,设A(a,),则B(2a,),C(﹣a,﹣),∴DG=FG=2a﹣a=a,∴OD=3a,作CH⊥y轴于H,∴CH∥y轴,∴△ODE∽△HCD∴=,即=,∴OE=,∴S△ODE=OD•OE=,∴×3a×=,∴k=2.故答案为2.【点评】本题考查了反比例函数系数k的几何意义以及系数三角形的判定和性质,作出辅助线构建相似三角形是解题的关键.16.如图,△ABC中,∠ABC=45°,AB=,BC=12,以AC为直角边,A为直角顶点作等腰直角△ACD,则BD的长为13.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】由于AD=AC,∠CAD=90°,则可将△ABD绕点A顺时针旋转90°得△AEC,如图,根据旋转的性质得∠BAE=90°,AB=AE,BD=CE,于是可判断△ABE为等腰直角三角形,则∠ABE=45°,BE=AB=5,易得∠CBE=90°,然后在Rt△CBE中利用勾股定理计算出CE=13,从而得到BD=13.【解答】解:∵△ADC为等腰直角三角形,∴AD=AC,∠CAD=90°,将△ABD绕点A顺时针旋转90°得△AEC,如图,∴∠BAE=90°,AB=AE,BD=CE,∴△ABE为等腰直角三角形,∴∠ABE=45°,BE=AB=×=5,∵∠ABC=45°,∴∠CBE=45°+45°=90°,在Rt△CBE中,CE===13,∴BD=13.故答案为13.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.三、解答题(共8题,共72分)17.直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【考点】一次函数与一元一次不等式.【专题】探究型.【分析】先把点(3,5)代入直线y=2x+b,求出b的值,再根据2x+b≥0即可得出x的取值范围.【解答】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得b=﹣1,∵2x+b≥0,∴2x﹣1≥0,解得x≥.【点评】本题考查的是一次函数与一元一次不等式,先根据题意得出关于x的一元一次不等式是解答此题的关键.18.如图,BD是▱ABCD的对角线,E、F分别为BD上两点,AC交BD于O.(1)请你添加一个条件,使得△ABE≌△CDF,并证明;(2)在问题(1)中,当AC与EF满足什么条件时,四边形AECF是矩形,请说明理由.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边形的性质得一边相等、一角相等,然后找到另外一个相等的角或相等的边即可证明全等;(2)首先得到四边形AECF是平行四边形,然后利用对角线相等的四边形是矩形即可判定.【解答】证明:(1)添加条件AE=CF即可证得△ABE≌△CDF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,∴△ABE≌△CDF;(2)当AC=EF时,四边形AECF是矩形,证明:∵四边形ABCD是平行四边形,∴∠BAC=∠DCA,∵∠BAE=∠DCF,∴∠EAO=∠FCO,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形,∵AC=EF,∴四边形AECF是矩形.【点评】此题主要考查了矩形形的判定.矩形的判别方法是说明一个四边形为矩形形的理论依据,常用三种方法:①定义;②四角相等;③对角线相等.具体选择哪种方法需要根据已知条件来确定.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【考点】列表法与树状图法.【分析】(1)首先设袋中黄球的个数为x个,由从中任意摸出一个球,它是蓝球的概率为,利用概率公式即可得方程: =,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到不同颜色球的情况,再利用概率公式求解即可求得答案.【解答】解:(1)设袋中黄球的个数为x个,∵从中任意摸出一个球,它是蓝球的概率为,∴=,解得:x=1,∴袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:P==.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.四边形ABDC在如图所示的平面直角坐标系中,将四边形ABDC向右平移4个单位长度后得四边形A1B1D1C1,再将四边形ABDC绕点O旋转180°后得到四边形A2B2D2C2.(1)在图中画出四边形A1B1D1C1与四边形A2B2D2C2;(2)四边形A1B1D1C1与四边形A2B2D2C2关于点P成中心对称,则点P的坐标为(2,0);(3)直接写出过A2、B2、D2三点的外接圆的直径为.【考点】作图-旋转变换;三角形的外接圆与外心;作图-平移变换.【专题】作图题.【分析】(1)利用网格特点和平移、旋转的性质画图;(2)根据中心对称的性质,点P为各对应点的连线的交点,然后确定P点位置,写出P点坐标;(3)利用勾股定理分别计算出A2D2=,A2B2=B2D2=,则根据勾股定理的逆定理可判断过A2、B2、D2三点的三角形为直角三角形,∠A2B2D2=90°,然后根据圆周角定理可得到过A2、B2、D2三点的外接圆的直径为.【解答】解:(1)如图,四边形A1B1D1C1与四边形A2B2D2C2为所作;(2)点P的坐标为(2,0);(3)A2D2==,A2B2=B2D2==,因为A2D22=A2B22+B2D22,所以过A2、B2、D2三点的三角形为直角三角形,∠A2B2D2=90°,所以A2D2为过A2、B2、D2三点的外接圆的直径,即过A2、B2、D2三点的外接圆的直径为.故答案为(2,0),.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.利用勾股定理的逆定理和圆周角定理是解决(3)问的关键.21.已知AB是⊙O的直径,AT是⊙O的切线,AT=AB,OT交⊙O于M(1)如图1,BT交⊙O于E,求证:sin∠BTO=;(2)如图2,若TC切⊙O于点C,求tan∠CBM的值.【考点】切线的性质.【分析】(1)作OF⊥BT于F,根据等腰直角三角形的性质得出BF=EF=OF,再利用三角函数解答即可;(2)根据切线的性质和平行线分线段成比例定理进行解答即可.【解答】解:(1)作OF⊥BT于F,则BF=EF=OF,∴sin∠BTO===(2)∵BC∥OT,则∠CBM=∠BMO=∠ABM,作MN⊥AB于N,∴tan∠AOT==2,∴=2,设ON=x,MN=2x,则OM=x=OB,∴BN=(+1)x,∴tan∠CBM=tan∠ABM===.【点评】本题考查的是切线的判定和平行线分线段成比例定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线、灵活运用平行线分线段成比例定理是解题的关键.22.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】压轴题;方案型.【分析】(1)关系式为:A种纪念品10件需要钱数+B种纪念品5件钱数=1000;A种纪念品5件需要钱数+B种纪念品3件需要钱数=550;(2)关系式为:A种纪念品需要的钱数+B种纪念品需要的钱数≤10000;购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍;(3)计算出各种方案的利润,比较即可.【解答】解:(1)设A,B两种纪念品每件需x元,y元.,解得:.答:A,B两种纪念品每件需50元,100元;(2)设购买A种纪念品a件,B种纪念品b件.,解得20≤b≤25.则b=20,21,22,23,24,25;对应的a=160,158,156,154,152,150答:商店共有6种进货方案.(3)解:设利润为W元,则W=20a+30b=20(200﹣2b)+30b=﹣10b+4000(20≤b≤25),∴W随着b的增大而减小,∴当b=20时,W最大,此时a=160时,W最大,∴W=4000﹣10×20=3800(元),最大答:方案获利最大为:A种纪念品160件,B种纪念品20件,最大利润为3800元.【点评】解决本题的关键是读懂题意,找到符合题意的相应的关系式是解决问题的关键,注意第二问应求得整数解.23.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.【考点】相似形综合题.【分析】(1)根据AD∥BC得=,又tan∠C=故故AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,根据△ABC∽△DGC,得到a、b的关系即可解决问题.②根据条件推出∠HDC=∠DCG=30°即可解决问题.【解答】解:(1)∵∠DAB+∠ABC=180°,∴AD∥BC,∴=,∵tan∠C=,∴,∴AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,∵AG∥BC,∴,∵AF=FC,∴AG=BC,∴四边形ABCG是平行四边形,∵∠ABC=90°∴四边形ABCG是矩形,∴FB=FC,∠BCG=∠AGC=90°,∴∠FBC=∠FCB,∵∠FBC+∠BC,E=90°,∠BCE+∠ECG=90°,∴∠ECG=∠FBC,∴∠DCG=∠ACB,∵∠ABC=∠DGC=90°∴△ABC∽△DGC,∴,∴,∴a2﹣ab﹣b2=0,∴a=(或a=舍弃),∵DG∥BC,∴====,②由1可知四边形ABHD是正方形,∵∠BDC=75°,∠BDH=45°,∴∠HDC=∠DCG=30°,∵∠DGC=90°,∴∠CDG=60°,∠DGE=30°,设DE=m,则DG=2DE=2a,DC=2DG=4a,∴EC=3a,∴=3.【点评】本题考查正方形的判定和性质、相似三角形的判定和性质、勾股定理等知识,添加辅助线构造特殊图形是解决问题的关键.24.已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.【考点】二次函数综合题;一次函数的应用;全等三角形的应用;等腰三角形的性质;等边三角形的性质.【专题】压轴题.【分析】(1)已知3点求抛物线的解析式,设解析式为y=ax2+bx+c,待定系数即得a、b、c的值,即得解析式.(2)BQ=AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(﹣2,0),B(0,2),C(,0)三点,∴,解得,∴y=﹣x2﹣x+2.(2)∵AQ⊥PB,BO⊥AP,∴∠AOQ=∠BOP=90°,∠PAQ=∠PBO,∵AO=BO=2,∴△AOQ≌△BOP,∴OQ=OP=t.①如图1,当t≤2时,点Q在点B下方,此时BQ=2﹣t,AP=2+t.∵BQ=AP,∴2﹣t=(2+t),∴t=.②如图2,当t>2时,点Q在点B上方,此时BQ=t﹣2,AP=2+t.∵BQ=AP,∴t﹣2=(2+t),∴t=6.综上所述,t=或6时,BQ=AP.(3)当t=﹣1时,抛物线上存在点M(1,1);当t=3+3时,抛物线上存在点M(﹣3,﹣3).分析如下:∵AQ⊥BP,∴∠QAO+∠BPO=90°,∵∠QAO+∠AQO=90°,∴∠AQO=∠BPO.在△AOQ和△BOP中,,∴△AOQ≌△BOP,∴OP=OQ,∴△OPQ为等腰直角三角形,∵△MPQ为等边三角形,则M点必在PQ的垂直平分线上,∵直线y=x垂直平分PQ,∴M在y=x上,设M(x,y),∴,解得或,∴M点可能为(1,1)或(﹣3,﹣3).①如图3,当M的坐标为(1,1)时,作MD⊥x轴于D,则有PD=|1﹣t|,MP2=1+|1﹣t|2=t2﹣2t+2,PQ2=2t2,∵△MPQ为等边三角形,∴MP=PQ,∴t2+2t﹣2=0,∴t=﹣1+,t=﹣1﹣(负值舍去).②如图4,当M的坐标为(﹣3,﹣3)时,作ME⊥x轴于E,则有PE=3+t,ME=3,∴MP2=32+(3+t)2=t2+6t+18,PQ2=2t2,∵△MPQ为等边三角形,∴MP=PQ,∴t2﹣6t﹣18=0,∴t=3+3,t=3﹣3(负值舍去).综上所述,当t=﹣1+时,抛物线上存在点M(1,1),或当t=3+3时,抛物线上存在点M (﹣3,﹣3),使得△MPQ为等边三角形.【点评】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.总体来说本题难度较高,其中技巧需要好好把握.。

相关文档
最新文档