误差修正模型的stata应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差修正模型的stata应用
误差修正模型:
如果用两个变量,人均消费y和人均收入x(从格林的数据获得)来研究误差修正模型。
令z=(y x)’,则模型为:
k
,z,A,,z,p,z,, ,t0t,1it,1ti,1
,,,,'其中,
如果令,即滞后项为1,则模型为 k,1
,z,A,,z,p,z,,t0t,11t,1t
实际上为两个方程的估计:
,y,a,by,bx,p,y,p,x,,ty11t,112t,111t,112t,11t
,x,a,by,bx,p,y,p,x,,tx21t,122t,121t,122t,12t
用ols命令做出的结果:
gen t=_n
tsset t
time variable: t, 1 to 204
gen ly=L.y
(1 missing value generated)
gen lx=L.x
(1 missing value generated)
reg D.y ly lx D.ly D.lx
Source | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 21.07
Model | 37251.2525 4 9312.81313 Prob > F = 0.0000
Residual | 87073.3154 197 441.996525 R-squared = 0.2996 -------------+------------------------------ Adj R-squared = 0.2854 Total | 124324.568 201 618.530189 Root MSE = 21.024
------------------------------------------------------------------------------
D.y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .0417242 .0187553 2.22 0.027 .0047371 .0787112
lx | -.0318574 .0171217 -1.86 0.064 -.0656228 .001908
ly |
D1. | .1093189 .082368 1.33 0.186 -.0531173 .2717552
lx |
D1. | .0792758 .0566966 1.40 0.164 -.0325344 .1910861
_cons | 2.533504 3.757158 0.67 0.501 -4.875909 9.942916
,y,a,by,bx,p,y,p,x,,a这是的回归结果,其中=2.5335,
ty11t,112t,111t,112t,11ty
b=0.04172,b= -0.03186,p=0.10932,p=0.07928 11121112
同理可得的回归结果,见下 ,x,a,by,bx,p,y,
p,x,,tx21t,122t,121t,122t,12t
reg D.x ly lx D.ly D.lx
Source | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 11.18
Model | 36530.2795 4 9132.56988 Prob > F = 0.0000
Residual | 160879.676 197 816.648101 R-squared = 0.1850 -------------+------------------------------ Adj R-squared = 0.1685 Total | 197409.955 201 982.139082 Root MSE = 28.577
------------------------------------------------------------------------------
D.x | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .037608 .0254937 1.48 0.142 -.0126676 .0878836
lx | -.0307729 .0232732 -1.32 0.188 -.0766694 .0151237
ly |
D1. | .4149475 .111961 3.71 0.000 .1941517 .6357434
lx |
D1. | -.1812014 .0770664 -2.35 0.020 -.3331825 -.0292203
_cons | 11.20186 5.10702 2.19 0.029 1.130419 21.27331
如果用vec 命令
vec y x, pi
Vector error-correction model
Sample: 3 - 204 No. of obs = 202
AIC = 18.29975 Log likelihood = -1839.275 HQIC = 18.35939
Det(Sigma_ml) = 277863.4 SBIC = 18.44715