高中数学选择题训练(含答案)
高中必修一数学选择题含答案详细(选择题)
高中数学组卷(选择题)一.选择题(共20小题)1.(2016•衡水校级四模)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的元素个数为()A.1 B.2 C.3 D.42.(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3] C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)3.(2016•山东)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)4.(2015•安徽四模)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}5.(2016•台州模拟)设x取实数,则f(x)与g(x)表示同一个函数的是()A.B.C.f(x)=1,g(x)=(x﹣1)0D.6.(2015•中山市校级二模)函数,则当f(x)≥1时,自变量x 的取值范围为()A. B. C.D.7.(2015•南宁一模)f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]8.(2010•上海)(上海春卷18)已知函数f(x)=的图象关于点P对称,则点P的坐标是()A. B. C. D.(0,0)9.(2009•山东)已知定义在R上的奇函数f(x),满足f(x﹣4)=﹣f(x)且在区间[0,2]上是增函数,则()A.f(﹣25)<f(11)<f(80)B.f(80)<f(11)<f(﹣25)C.f(11)<f(80)<f(﹣25)D.f(﹣25)<f(80)<f(11)10.(2016•赤峰模拟)若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.211.(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)12.(2016•深圳校级一模)函数f(x)=|e x+|(a∈R)在区间[0,1]上单调递增,则a 的取值范围是()A.a∈[﹣1,1]B.a∈[﹣1,0]C.a∈[0,1]D.a∈[﹣,e] 13.(2016•大庆二模)若x∈(e﹣1,1),a=lnx,b=,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c14.(2016•杭州模拟)在同一个坐标系中画出函数y=a x,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()A.B.C.D.15.(2016•临沂一模)已知a是常数,函数的导函数y=f′(x)的图象如图所示,则函数g(x)=|a x﹣2|的图象可能是()A.B.C.D.16.(2016•河西区二模)函数的定义域为()A.(0,2)B.[0,2)C.(0,2]D.[0,2]17.(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.10018.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|19.(2013•天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0 20.(2015秋•庄河市期末)已知指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是()A.B.C.D.高中数学组卷(选择题)参考答案与试题解析1【解答】解:由|x+1|﹣1>0,得|x+1|>1,即x<﹣2或x>0.∴A={x|x<﹣2或x>0},则∁U A={x|﹣2≤x≤0};由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.则B={x|sinπx=0}={x|x=k,k∈Z},则(∁U A)∩B={x|﹣2≤x≤0}∩{x|x=k,k∈Z}={﹣2,﹣1,0}.∴(∁U A)∩B的元素个数为3.故选:C.2.【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].故选:B.3.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.4.【解答】解:集合M={x|0≤x<2},N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B5.【解答】解:对于A,f(x)=x2(x∈R),与g(x)==|x|(x∈R)的对应关系不同,所以不是同一函数;对于B,f(x)==1(x>0),与g(x)==1(x>0)的定义域相同,对应关系也相同,所以是同一函数;对于C,f(x)=1(x∈R),与g(x)=(x﹣1)0=1(x≠1)的定义域不同,所以不是同一函数;对于D,f(x)==x﹣3(x≠﹣3),与g(x)=x﹣3(x∈R)的定义域不同,所以不是同一函数.故选:B.6.【解答】解:∵,∴分两种情况:①当x>2时,由f(x)≥1得,,解得2<x≤3,②当x≤2时,由f(x)≥1得,|3x﹣4|≥1,即3x﹣4≥1或3x﹣4≤﹣1,解得,x≤1或x≥,则x≤1或≤x≤2.综上,所求的范围是.故选D.7.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A8.(【解答】解:设P(m,n),任意给点M(x,y)关于P(m,n)的对称点为N(2m﹣x,2n﹣y),由,联立方程组:,解这个方程组得到,9.【解答】解:∵f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4)=f(x),即函数的周期是8,则f(11)=f(3)=﹣f(3﹣4)=﹣f(﹣1)=f(1),f(80)=f(0),f(﹣25)=f(﹣1),∵f(x)是奇函数,且在区间[0,2]上是增函数,∴f(x)在区间[﹣2,2]上是增函数,∴f(﹣1)<f(0)<f(1),即f(﹣25)<f(80)<f(11),10.【解答】解:f(1)=2﹣4=﹣2,f(f(1))=f(﹣2)=2×(﹣2)+2=﹣2,故选C.11.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.12.【解答】解:f(x)=;∵x∈[0,1];∴a≥﹣1时,f(x)=,;∴a≤1时,f′(x)≥0;即﹣1≤a≤1时,f′(x)≥0,f(x)在[0,1]上单调递增;即a的取值范围是[﹣1,1].故选A.13.【解答】解:∵x∈(e﹣1,1),a=lnx∴a∈(﹣1,0),即a<0;又y=为减函数,∴b=>==1,即b>1;又c=e lnx=x∈(e﹣1,1),∴b>c>a.故选B.14.(【解答】解:正弦函数的周期公式T=,∴y=sinax的最小正周期T=;对于A:T>2π,故a<1,因为y=a x的图象是减函数,故错;对于B:T<2π,故a>1,而函数y=a x是增函数,故错;对于C:T=2π,故a=1,∴y=a x=1,故错;对于D:T>2π,故a<1,∴y=a x是减函数,故对;故选D15.【解答】解:∵,∴f′(x)=x2+(1﹣a)x﹣a,由函数y=f′(x)的图象可知,∴a>1,则函数g(x)=|a x﹣2|的图象是把函数y=a x向下平移2个单位,然后取绝对值得到,如图.故可能是D.16.【解答】解:要使原函数有意义,则,解得:0≤x<2.所以原函数的定义域为[0,2).故选B.17.【解答】解:,∴m2=10,又∵m>0,∴.故选A18.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.19.【解答】解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R 上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a <1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.20.【解答】解:指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,令x﹣16=0,解得x=16,且f(16)=1+7=8,所以f(x)的图象恒过定点P(16,8);设幂函数g(x)=x a,P在幂函数g(x)的图象上,可得:16a=8,解得a=;所以g(x)=,幂函数g(x)的图象是A.。
高中数学必修一选择题660题(附答案)
A.若
B.若
C.
D.
76、若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()
A.{0,1,2,3,4} B.{1,2,3,4}
C.{1,2} D.{0}
77、下列式子中,正确的是()
A. B.
C.空集是任何集合的真子集D.
78、已知全集U=R,集合M={x|x2-4≤0},则∁UM等于()
A.x0∈N
B.x0∉N
C.x0∈N或x0∉N
D.不能确定
35、下列集合中,不同于另外三个集合的是()
A.{x|x=1} B.{y|(y-1)2=0}
C.{x=1} D.{1}
36、下列各项中,不可以组成集合的是()
A.所有的正数B.等于 的数
C.接近于 的数D.不等于 的偶数
37、已知集合A={x∈N|- ≤x≤ },则有()
A.B是A的子集
B.A中的元素都不是B的元素
C.A中至少有一个元素不属于B
D.B中至少有一个元素不属于A
27、用列举法表示集合{x|x2-2x+1=0}为()
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
28、已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()
(A)所有的正数(B)所有的老人
(C)不等于0的数(D)我国古代四大发明
21、若全集 ,则集合 的真子集共有( )
A. 个 B. 个 C. 个 D. 个
22、若集合 中的元素是△ 的三边长,
则△ 一定不是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰三角形
23、下面有四个命题:
高中数学--历年高考真题精选7(附答案)
高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知二次函数的图象如图所示,则它与轴所围图形的面积为A .B .C .D .3.在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5(B) 5(C) -10 (D) 104.为了迎接2010年广州亚运会,某大楼安装5个彩灯,他们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红橙黄绿蓝中的一种颜色,且这5个彩灯商量的颜色各不相同,记得这5个彩灯有序地闪亮一次为一个闪烁,而相邻两个闪烁的时间间隔均为5妙。
在每一个闪烁中,那么需要的时间至少是 A .1205秒B .1200秒C .1195秒D .1190秒 5.由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为( ) A .154B .174 C .1ln 22D .2ln 26. ( 2x -3 )5的展开式中x 2项的系数为(A )-2160(B )-1080 (C )1080(D )21607.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 】A .14B .16C .20D .488.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =9.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有A.6种B.12种C.24种D.30种二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知圆C 的圆心是直线1,(1x t y t=⎧⎨=+⎩为参数)与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为12.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 13.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .14.若变量x,y 满足约束条件 ,4,,y x x y y k ≤⎧⎪+≤⎨⎪≥⎩且 2z x y =+的最小值为-6,则k =_______.15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 是BC=CD ,过C 作圆O 的切线交AD 于E 。
高中数学选择题训练(含答案)
p))tan(pp5p4p2p 3333 333B CA1B111.已知全集=I {Îx x |R },集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,Îk R },且Æ=B A C I )(,则实数k 的取值范围是的取值范围是 A.0<k 或3>k B.32<<k C.30<<k D.31<<-k12.已知函数îíì=xx x f 3log )(2)0()0(£>x x ,则)]41([f f 的值是的值是 A.9 B.91 C.-9 D.-91 13.设函数1)(22+++-=x x n x x x f (Îx R ,且21-¹n x ,Îx N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列的等差数列B.是公比不为1的等比数列的等比数列C.是常数列是常数列D.不是等差数列,也不是等比数列不是等差数列,也不是等比数列 14.若p p 43<<x ,则2cos 12cos 1xx -++等于等于 A.)24cos(2x -p B.)24cos(2x --p C.)24sin(2x -p D.)24sin(2x --p15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为命题的序号为 A.⑴,⑵,⑶⑴,⑵,⑶ B.⑸ C.⑶,⑸⑶,⑸ D.⑴,⑸⑴,⑸16.下列不等式中,与不等式xxx --223≥0同解的是同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x≥0 D.)2lg(-x ≤0 17.曲线214y x =+-与直线:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是的取值范围是A.(512,+∞)∞) B.(512,3]4 C.(0,512) D.(13,3]418.双曲线22148x y -=的两条渐进线的夹角是的两条渐进线的夹角是A.arctan 2B.arctan 22C.2arctan2D.2arctan419(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为所在曲线的形状为A B PA1B 1OA B PA1B 1A B PA1B 1O A B PA1B 1O ABC DP A1B 1C 1D 1A. B. C. D. (第9(A)题图) 19(B).已四知四棱棱锥P -ABCD 的底面为行平行四四形边形,,设x =2P A 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为之间的关系为A.x >yB.x =yC.x <yD.不能确定不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.720 pABACADBAB11411222aCD}+ab ab22233333ax -1[]1111那么异面直线所成角的大小是所成角的大小是 22221 D D 1 B 1 51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的 A.充分非必要条件充分非必要条件 B.必要非充分条件必要非充分条件 C.充要条件充要条件 D.既非充分又非必要条件既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,xx f )31()(=,那么)9(1--f 的值为的值为 (A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,p 2)内,使x x x tan sin cos >>成立的x 的取值范围是的取值范围是(A )(4p ,43p )(B )(45p ,23p )(C )(23p ,p 2) (D )(23p ,47p ) 55.设21,l l 是基底向量,已知向量2121213,2,l l CD l l CB kl l AB -=+=-=,若A ,B ,D 三点共线,则k 的值是的值是(A )2 (B )3 (C )-2 (D )-3 56.使ax x <-+-|3||4|有实数解的a 的取值范围是的取值范围是 (A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是的位置关系是 (A )相交)相交 (B )相切)相切 (C )相离)相离 (D )相交或相切交或相切58.设O 是椭圆3cos2sinx yj j==ìí=î的中心,P 是椭圆上对应于6p j =的点,那么直线OP 的斜率为的斜率为 (A )33(B )3 (C )332 (D )239959(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M所成的角等于所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm 60.对2×2数表定义平方运算如下:数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d æö++æöæöæö==ç÷ç÷ç÷ç÷++èøèøèøèø . 则21201-æöç÷èø为 (A )1011æöç÷èø (B )1001æöç÷èø (C )1101æöç÷èø(D )0110æöç÷èø61.集合=P {x ,1},=Q {y ,1,2},其中Îy x ,{1,2,…,9}且Q P Ì,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.21 62.已知函数3)(x x x f --=,1x ,2x ,Î3x R ,且021>+x x ,032>+x x ,013>+x x ,则,则)()()(321x f x f x f ++的值的值(A )一定大于零(B )一定小于零)一定小于零 (C )等于零)等于零 (D )正负都有可能)正负都有可能63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于等于(A )1 (B )43 (C )21 (D )8364.设b a ,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是 (A )1tan tan <b a (B )2sin sin <+b a (C )1cos cos >+b a (D )2tan )tan(21ba b a +<+ 65.在四边形ABCD 中,0=×BC AB ,AD BC =,则四边形ABCD 是(A )直角梯形)直角梯形 (B )菱形)菱形 (C )矩形)矩形 (D )正方形)正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是成立的是 (A )ab ≤41 (B )b a 11+≥4 (C )22b a +≥21 (D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b Î,R ,则||ab 的最小值是的最小值是 (A )1 (B )2 (C )4 (D )5 68.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,3)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为成等差数列,则椭圆方程为(A )22186x y += (B )221166x y +=(C )22184x y += (D )221164x y += 69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为此球的体积为 (A )33312cm p (B )33316cm p (C )3316cm p (D )3332cm p 69(B).有三个平面a ,β,γ,下列命题中正确的是,下列命题中正确的是(A )若a ,β,γ两两相交,则有三条交线两两相交,则有三条交线(B )若a ⊥β,a ⊥γ,则β∥γ(C )若a ⊥γ,β∩a =a ,β∩γ=b ,则a ⊥b(D )若a ∥β,β∩γ=Æ,则a ∩γ=Æ 70.n xx 2)1(-展开式中,常数项是展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 223x [)p p )p p[p p ]p p)p )p )p )p2223)3)3ABD1B 1PQPQRR SPPQQRRS)pBAC1Ap p )p )sin(p )p43343322)2)2( 323x111c c b b a a 的值为的值为 OB OA OC )p 3333322(1)(2)11x y -+-ABCDpp p 33xy O11-p21b+33223222--22123)}11p p)(p6p p p pA BCMαβ3 p p p2pABAPp p p2156305533AB CA11C1E)参考答案题号1 2 3 4 5 6 7 8 9(A) 9(B) 10 答案A A A D D C C C A C B 题号11 12 13 14 15 16 17 18 19(A) 19(B) 20 答案A B C C B D B B C D A 题号21 22 23 24 25 26 27 28 29(A) 29(B) 30 答案B C D B D C C D B A A 题号31 32 33 34 35 36 37 38 39(A) 39(B) 40 答案C D D D A A D B A A B 题号41 42 43 44 45 46 47 48 49(A) 49(B) 50 答案A C A C D B D D C C D 题号51 52 53 54 55 56 57 58 59(A) 59(B) 60 答案A A B C A C D D D A B 题号61 62 63 64 65 66 67 68 69(A) 69(B) 70 答案B B C D C D B A D D A 题号71 72 73 74 75 76 77 78 79(A) 79(B) 80 答案C A C D C D A C A D C 题号81 82 83 84 85 86 87 88 89(A) 89(B) 90 答案A A D B B C A C B A A 题号91 92 93 94 95 96 97 98 99(A) 99(B) 100 答案B B C D B C C A D C D 题号101 102 103 104 105 106 107 108 109(A) 109(B) 110 答案D C B C C C A D C B B 题号111 112 113 114 115 116 117 118 119(A) 119(B) 120 答案D B B B C C A D D D C 题号121 122 123 124 125 126 127 128 129(A) 129(B) 130 答案C A A C B C A C C C C 题号131 132 133 134 135 136 137 138 139(A) 139(B) 140 答案A C C A D D D C B C B 题号141 142 143 144 145 146 147 148 149(A) 149(B) 150 答案C C A D C C B D A B D 。
高中数学集合练习与答案
高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。
高中数学试卷(含答案)
高中数学试卷(含答案)高中数学试卷(含答案)第一部分:选择题(共50分)1. 若实数a满足a² - 3a + k = 0有两个相等的实根,则k的取值范围是()A. k < 0B. k = 0C. k > 0D. k ≠ 3/2答案:C解析:对于二次方程a² - 3a + k = 0,判别式Δ = (-3)² - 4 × 1 × k需要满足Δ = 0。
解得k = 9/4,因此k > 0。
2. 已知三阶行列式的展开式为|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃,则|A|的值为()A. 0B. 1C. -1D. 2解析:根据行列式的展开式可得|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂- a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃。
由于这是一个三阶行列式,对于任意的i,aᵢᵢ出现了两次,所以|A| = 0。
3. 已知二次函数f(x) = ax² + bx + c的图像过点(2,1),且在x轴上有一个零点。
下列说法正确的是()A. a > 0且c > 0B. a < 0且c < 0C. a > 0且c < 0D. a < 0且c > 0答案:C解析:由已知条件得到方程f(2) = a(2)² + b(2) + c = 1,化简得4a +2b + c = 1。
又由于在x轴上有一个零点,即方程ax² + bx + c = 0有实根,所以b² - 4ac ≥ 0。
联立两个方程,解得a > 0且c < 0。
4. 若a + b = 2c,则下列选项中一定为正数的是()A. a + 2b - 3cB. 3a + 4b - 5cC. a - 4b + 3cD. 2a + 3b - 4c解析:利用已知条件a + b = 2c,可以将选项中的式子用a和b表示。
高中数学抛物线练习题(含答案)
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。
高中数学竞赛赛题精选(带答案)
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
高中数学试题及答案
高中数学试题一、选择题:本大题共12小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合;,则中所含元素的个数为( )2、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学。
初中。
高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A。
简单随机抽样 B。
按性别分层抽样 C。
按学段分层抽样 D。
系统抽样3、设函数,的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是()(A)是偶函数(B)是奇函数(C)是奇函数(D)是奇函数4、直线L过点P(-1,2),且与以A(-2,-3),B(4,0)为端点的线段相交,则L的斜率的取值范围是()A。
错误! B。
错误!∪(0,5]C。
错误!∪[5,+∞) D。
错误!∪错误!5、如果执行右边的程序框图,输入正整数和实数,输出,则()为的和为的算术平均数和分别是中最大的数和最小的数和分别是中最小的数和最大的数6、设等差数列的前项和为,则()A。
3 B.4 C。
5 D.67.若直线y=kx+1与圆x2+y2+kx+my-4=0交于M,N两点,且M,N关于直线x+2y=0对称,则实数k+m= ()A。
—1 B。
1 C。
0 D.28、某几何体的三视图如图所示,则该几何体的体积为 ( )A. B.C. D.(第8题)(第9题)9、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A. B。
C. D。
10、如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A。
错误! B。
错误! C。
10 D.不能估计11、已知函数,若||≥,则的取值范围是( )A. B. C. D.12、阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数",也叫高斯(Gauss)函数如[—2]=—2,[—1.5]=— 2,[2。
高中数学经典试题及详细答案
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7C. 6D. 5MNAMNBNMCMND10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高考数学选择、填空题专项汇编题(共40套)[附答案]
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
高中数学选择题训练150道(含答案)
27.点 (2,0), 是圆 上任意一点,则线段 中点的轨迹是
A.椭圆B.直线C.圆D.抛物线
28.设椭圆 的焦点在 轴上, {1,2,3,4,5}, {1,2,3,4,5,6,7},这样的椭圆共有
个 个 个 个
29(A).如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B-APQC的体积为
(A) 都是第一象限角,若 ,则
(B) 都是第二象限角,若 ,则
(C) 都是第三象限角,若 ,则
(D) 都是第四象限角,若 ,则
35.已知 分别是 的边 上的中线,且 , ,则 是
(A) (B) (C) (D)
36.若 ,则下列不等式中正确的是
(A) (B) (C) (D)
37.圆 与圆 的公切线有
A.B.C.D.(第9(A)题图)
19(B).已知四棱锥P-ABCD的底面为平行四边形,设x=2PA2+2PC2-AC2,y=2PB2+2PD2-BD2,则x,y之间的关系为
>y=y<yD.不能确定
20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为
.360C
数学高考选择题训练三
(A)1条 (B)2条 (C)3条 (D)4条
38.已知圆 与抛物线 的准线相切,则 为
(A)1 (B)2 (C)3 (D)4
39(A).如图,已知面ABC⊥面BCD,AB⊥BC,BC⊥CD,且AB=BC=CD,设AD与面ABC所成角为 ,AB与面ACD所成角为β,则 与β的大小关系为
(第9(A)题图)
(A) <β(B) =β( >β(D)无法确定
高中数学选择题训练150道(附含答案解析)
数学高考选择题训练一1.给定集合=M {4|πθθk =,∈k Z},}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立的是A.M N P ⊂⊂B.M N P ⊂=C.M N P =⊂D.M N P == 2.关于函数21)32(sin )(||2+-=x x x f ,有下面四个结论:(1))(x f 是奇函数; (2)当2003>x 时,21)(>x f 恒成立; (3))(x f 的最大值是23; (4))(x f 的最小值是21-.其中正确结论的个数是A.1个B.2个C.3个D.4个3.过圆01022=-+x y x 内一点P (5,3)的k 条弦的长度组成等差数列,且最小弦长为数列的首项1a ,最大弦长为数列的末项k a ,若公差∈d [31,21],则k 的取值不可能是 A.4 B.5 C.6 D.74.下列坐标所表示的点不是函数)62tan(π-=x y 的图象的对称中心的是 (A )(3π,0) B.(35π-,0) C.(34π,0) D.(32π,0) 5.与向量=l (1,3)的夹角为o 30的单位向量是 A.21(1,3) B.21(3,1) C.(0,1) D.(0,1)或21(3,1)6.设实数y x ,满足10<<xy 且xy y x +<+<10,那么y x ,的取值范围是A.1>x 且1>yB.10<<x 且1<yC.10<<x 且10<<yD.1>x 且10<<y7.已知0ab ≠,点()M a b ,是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是A.//m l ,且l 与圆相交B.l m ⊥,且l 与圆相切C.//m l ,且l 与圆相离D.l m ⊥,且l 与圆相离8.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.216y x = B.28x y =- C.216y x =或28x y =- D.216y x =或28x y =9(A).如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,则该棱柱体积的最小值为A.34B.33C.4D.3AB CA 1B 1C 1(第9(A)题图)9(B).在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 A.4条 B.6条 C.8条 D.10条10.某班级英语兴趣小组有5名男生和5名女生,现要从中选4名学生参加英语演讲比赛,要求男生、女生都有,则不同的选法有A.210种B.200种C.120种D.100种11.已知全集=I {∈x x |R},集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,∈k R},且∅=B A C I )(,则实数k 的取值范围是A.0<k 或3>kB.32<<kC.30<<kD.31<<-k12.已知函数⎩⎨⎧=xxx f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是A.9B.91 C.-9 D.-91 13.设函数1)(22+++-=x x nx x x f (∈x R ,且21-≠n x ,∈x N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列B.是公比不为1的等比数列C.是常数列D.不是等差数列,也不是等比数列 14.若ππ43<<x ,则2cos 12cos 1xx -++等于 A.)24cos(2x -π B.)24cos(2x --π C.)24sin(2x -π D.)24sin(2x --π15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为A.⑴,⑵,⑶B.⑸C.⑶,⑸D.⑴,⑸16.下列不等式中,与不等式xx --23≥0同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x ≥0 D.)2lg(-x ≤0 17.曲线1y =:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是A.(512,+∞)B.(512,3]4C.(0,512)D.(13,3]418.双曲线22148x y -=的两条渐进线的夹角是A.arctanarctan19(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111A. B. C. D. (第9(A)题图) 19(B).已知四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为A.x >yB.x =yC.x <yD.不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.72021.已知集合}01211|{2<--=x x x A ,集合=B {)13(2|+=n x x ,∈n Z},则B A 等于 A.{2} B.{2,8} C.{4,10} D.{2,4,8,10} 22.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为A.0B.-1C.1D.223.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是A.38>dB.3<dC.38≤3<d D.d <38≤3 24.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是A.π98B.π2197C.π2199D.π100 25.下列命题中,错误的命题是A.在四边形ABCD 中,若AD AB AC +=,则ABCD 为平行四边形B.已知b a b a +,,为非零向量,且b a +平分a 与b 的夹角,则||||b a =C.已知a 与b 不共线,则b a +与b a -不共线D 对实数1λ,2λ,3λ,则三向量1λ-a 2λb ,2λ-b 3λc ,3λ-c 1λa 不一定在同一平面上26.四个条件:a b >>0;b a >>0;b a >>0;0>>b a 中,能使b a 11<成立的充分条件的个数是 A.1 B.2 C.3 D.4 27.点M (2,0),N 是圆221x y +=上任意一点,则线段MN 中点的轨迹是 A.椭圆 B.直线 C.圆 D.抛物线28.设椭圆22221x y a b+=的焦点在y 轴上,a ∈{1,2,3,4,5},b ∈{1,2,3,4,5,6,7},这样的椭圆共有A.35个B.25个C.21个D.20个 29(A).如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为A.2V B.3V C.4V D.5VABC PQA 1B 1C 1(第9(A)题图)29(B).设长方体的三条棱长分别为a ,b ,c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则=++cba111A.411 B.114 C.211 D.11230.用10元、5元和1元面值的钞票来购买20元的商品,不同的支付方法有 A.9种 B.8种 C.7种 D.6种31.如果命题“⌝(p 或q )”为假命题,则A.p ,q 均为真命题B.p ,q 均为假命题C.p ,q 中至少有一个为真命题D.p ,q 中至多有一个为真命题 32.设ax x f x ++=)110lg()(是偶函数,xxb x g 24)(-=是奇函数,那么b a +的值为(A )1 (B )-1 (C )21- (D )2133.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是(A )1或21 (B )1或21- (C )1或31 (D )1或31-34.以下命题正确的是(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >35.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=AD a ,=BE b ,则是(A )b a 3234+ (B )b a 3432+ (C )b a 3234- (D )b a 3432- 36.若10<<a ,则下列不等式中正确的是(A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>- (D )1)1(1>-+a a37.圆221:40C x y x +-=与圆222:610160C x y x y ++++=的公切线有(A )1条 (B )2条 (C )3条 (D )4条 38.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 (A )1 (B )2 (C )3 (D )439(A).如图,已知面ABC ⊥面BCD ,AB ⊥BC ,BC ⊥CD ,且AB=BC=CD ,设AD 与面AB C所成角为α,AB 与面ACD 所成角为β,则α与β的大小关系为ABCD(第9(A)题图)(A )α<β (B )α=β (C )α>β (D )无法确定39(B).在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外40.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有(A )25条 (B )60条 (C )80条 (D )181条41.已知0>>b a ,全集=I R ,集合}2|{b a x b x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与N M ,的关系为A.)(N C M p I =B.N M C p I )(=C.N M P =D.N M P = 42.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 (A )2 (B )2(C )22 (D )2log 343.在ABC ∆中,A tan 是以-4为第3项,4为第7项的等差数列的公差;B tan 是以31为第3项,9为第6项的等比数列的公比,则该三角形是(A )锐角三角形(B )直角三角形(C )钝角三角形(D )等腰三角形44.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于(A )3 (B )32 (C )3或 32 (D )3 45.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥ 46.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为(A )(41,+∞) (B )41[,+∞) (C )(0,21)(D )(0,]21 47.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是(A )2k >(B )32k -<< (C )3k <-或2k > (D )都不对 48.共轭双曲线的离心率分别为1e 和2e ,则1e 和2e 关系为(A )1e = 2e (B )121e e⋅= (C )12111e e += (D )2212111e e += 49(A).棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为(A )33a (B )43a (C )63a (D )123a49(B).如图,长方体ABCD -A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°, 那么异面直线AD 1与DC 1所成角的大小是A.arcsin42arcsin 4C. arccos 4D. 2arccos450.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数有(A )210 (B )50 (C )60 (D )120A A 1BCDD1B 1C 1(9 B 图)数学高考选择题训练六51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x x f )31()(=,那么)9(1--f 的值为 (A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,π2)内,使x x x tan sin cos >>成立的x 的取值范围是(A )(4π,43π)(B )(45π,23π)(C )(23π,π2) (D )(23π,47π) 55.设21,l l 是基底向量,已知向量2121213,2,l l l l kl l -=+=-=,若A ,B ,D 三点共线,则k 的值是(A )2 (B )3 (C )-2 (D )-3 56.使a x x <-+-|3||4|有实数解的a 的取值范围是(A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是(A )相交 (B )相切 (C )相离 (D )相交或相切58.设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩的中心,P 是椭圆上对应于6πϕ=的点,那么直线OP 的斜率为(A(B (C (D59(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M 所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm60.对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d ⎛⎫++⎛⎫⎛⎫⎛⎫== ⎪⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则21201-⎛⎫⎪⎝⎭为(A )1011⎛⎫⎪⎝⎭ (B )1001⎛⎫ ⎪⎝⎭ (C )1101⎛⎫ ⎪⎝⎭ (D )0110⎛⎫⎪⎝⎭数学高考选择题训练七61.集合=P {x ,1},=Q {y ,1,2},其中∈y x ,{1,2,…,9}且Q P ⊂,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.2162.已知函数3)(x x x f --=,1x ,2x ,∈3x R ,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值(A )一定大于零(B )一定小于零 (C )等于零 (D )正负都有可能 63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于(A )1 (B )43 (C )21 (D )83 64.设βα,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是(A )1tan tan <βα (B )2sin sin <+βα (C )1cos cos >+βα(D )2tan )tan(21βαβα+<+ 65.在四边形ABCD 中,0=⋅,AD BC =,则四边形ABCD 是(A )直角梯形 (B )菱形 (C )矩形 (D )正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是(A )ab ≤41 (B )b a 11+≥4 (C )22b a +≥21(D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b ∈,R ,则||ab 的最小值是(A )1 (B )2 (C )4 (D )568.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为 (A )22186x y += (B )221166x y +=(C )22184x y += (D )221164x y += 69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为 (A )33312cm π (B )33316cm π (C )3316cm π (D )3332cm π69(B).有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线(B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b(D )若α∥β,β∩γ=∅,则α∩γ=∅ 70.n xx 2)1(-展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 2数学高考选择题训练八71.设集合=M {1|-x ≤<x 2},=N {x x |≤a },若∅≠N M ,则a 的取值范围是 A.(-∞,2)B.(-1,+∞) C.[-1,+∞) D. [-1,1] 72.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则α的取值范围是(A )[0,32[)2ππ ,)π(B )[0,65[)2ππ ,)π(C )32[π,)π(D )2(π,]65π73.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为(A )12 (B )10 (C )8 (D )6 74.若把一个函数的图象按=a (3π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是(A )2)3cos(-+=πx y (B )2)3cos(--=πx y (C )2)3cos(++=πx y (D )2)3cos(+-=πx y 75.设b a ,为非零向量,则下列命题中:①a b a b a ⇔-=+||||与b 有相等的模;②a b a b a ⇔+=+||||||与b 的方向相同;③a b a b a ⇔-<+||||||与b 的夹角为锐角;④||||||||a b a b a ⇔-=+≥||b 且a 与b 方向相反.真命题的个数是(A )0 (B )1 (C )2 (D )3 76.若y x 22log log +≥4,则y x +的最小值为(A )8 (B )24 (C )2 (D )477.如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么a b ,的值分别是(A )13,6 (B )13,-6 (C )3,-2 (D )3,6 78.已知抛物线21:2C y x =的图象与抛物线2C 的图象关于直线y x =-对称,则抛物线2C 的准线方程是(A )18x =- (B )12x = (C )18x = (D )12x =-79(A).在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a ,则三棱锥P -BDQ 的体积为(A )3363a (B )3183a (C )3243a (D )无法确定ABC DA 1B 1C 1D 1PQ(第9(A)题图)79(B).下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PQQRR S SP PPQQRR SSPPPQQQR RSSSPP QQRRSSS(A ) (B ) (C ) (D )80.某博物馆要在20天内接待8所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校均只参观1天,则在这20天内不同的安排方法数是(A )77320A C (B )820A (C )717118A C (D )1818A数学高考选择题训练九81.若集合1A ,2A 满足A A A =21 ,则称(1A ,2A )为集合A 的一个分拆,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A ,1A )为集合A 的同一种分拆,则集合=A {1a ,2a ,3a }的不同分拆种数是A.27B.26C.9D.882.已知函数x x f 2log )(=,2)(y x y x F +=,,则F ()41(f ,1)等于 (A )-1 (B )5 (C )-8 (D )383.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是(A )1997 (B )1999 (C )2001 (D )2003 84.将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是(A )x cos (B )x cos 2 (C )x sin (D )x sin 285.下列命题是真命题的是:①⇔b a //存在唯一的实数λ,使=a λb ;②⇔b a //存在不全为零的实数μλ,,使λ+a μ0=b ;③a 与b 不共线⇔若存在实数μλ,,使λa μ+b =0,则0==μλ;④a 与b 不共线⇔不存在实数μλ,,使λ+a μ0=b .(A )①和 (B )②和③ (C )①和② (D )③和④ 86.若02log )1(log 2<<+a a a a ,则a 的取值范围是(A )(0,1)(B )(0,21)(C )(21,1)(D )(0,1)∪(1,+∞) 87.已知⊙221:9C x y +=,⊙222:(4)(6)1C x y -+-=,两圆的内公切线交于1P 点,外公切线交于2P点,则1C 分12PP 的比为(A )12- (B )13- (C )13(D )916- 88.双曲线2216436x y -=上一点P 到它的左焦点的距离是8,那么P到它的右准线的距离是(A )325 (B )645 (C )965 (D )128589(A).已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角B ―AC ―D 等于(A )1200 (B )900 (C )600 (D )45089(B).如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在(A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部ABCA 1B 1C 1(第9(B)题图)90.25人排成5×5方阵,从中选出3人,要求其中任意3人不同行也不同列,则不同的选出方法种数为(A )600 (B )300 (C )100 (D )60数学高考选择题训练十91.已知集合=M {1,3},=N {03|2<-x x x ,∈x Z},又N M P =,那么集合P 的真子集共有 A.3个 B.7个 C.8个 D.9个92.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水22t 升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供 (A )3人洗澡 (B )4人洗澡(C )5人洗澡 (D )6人洗澡93.已知等差数列}{n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于 (A )38 (B )20 (C )10 (D )994.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称 (A ))62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 95.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k 的值为(A )-6 (B )6 (C )3 (D )-396.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为(A )0 (B )-1 (C )1 (D )2 97.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C 挡住,则a 的取值范围是 (A )(-∞,-1)∪(-1,+∞)(B )(-∞,-2)∪(2,+∞)(C )(-∞,,+∞)(D )(-∞,-4)∪(4,+∞)98.设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,且120PF PF⋅=,则12||||PF PF ⋅的值等于(A )2 (B )(C )4 (D )899(A).用一个平面去截正方体,所得的截面不可能...是 (A )六边形 (B )菱形 (C )梯形 (D )直角三角形99(B).已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是(A )2∶π (B )1∶2π (C )1∶π (D )4∶3π 100.在8)2(-x 的展开式中,x 的指数为正偶数的所有项的系数和为(A )3281 (B )-3281 (C )-3025 (D )3025数学高考选择题训练十一101.已知集合=A {2|-x ≤x ≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则A.-3≤m ≤4B.-3<<m 4C.42<<mD.m <2≤4102.定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则 (A ))()(21x f x f > (B ))()(21x f x f >-(C ))()(21x f x f -< (D ))(1x f ,)(2x f 的大小与1x ,2x 的取值有关 103.设n S n n 1)1(4321--++-+-= ,则32124++++m m m S S S (∈m N *)的值为 (A )0 (B )3 (C )4 (D )随m 的变化而变化 104.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为60o ,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是(A )相切 (B )相交 (C )相离 (D )随βα,的值而定105. 方程12221log 2x x x +=+的解所在的区间是A. 1(0,)3B. 11(,)32C. 1(,22D. (2106.已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是(A )3-<x 或2->x (B )21-<x 或31->x (C )3121-<<-x (D )23-<<-x 107.已知直线1:23l y x =+和直线23l l ,.若1l 与2l 关于直线y x =-对称,且32ll ⊥,则3l 的斜率为(A )-2 (B )12- (C )12(D )2 108.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 (A )(0,+∞)(B )(0,2) (C )(1,+∞)(D )(0,1)109(A).长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(A )π27 (B )π56 (C )π14 (D )π64109(B).二面角α―AB ―β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么 (A )∠CEB =∠DEB (B )∠CEB >∠DEB(C )∠CEB <∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定 110.在1003)23(+x 展开式所得的x 的多项式中,系数为有理数的项有 (A )50项 (B )17项 (C )16项 (D )15项数学高考选择题训练十二111.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121ccb b aa ==”是“N M =”的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件112.定义在R 上的函数)1(+=x f y 的图象如图1所示,它在定义域上是 减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则 0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是 (A )②③ (B )①④(C )②④ (D )①③1 113.在等差数列}{n a 中,公差1=d ,8174=+a a ,则20642a a a ++ (A )40 (B )45 (C )50 (D )55 114.已知θ是三角形的一个内角,且21cos sin =+θθ,则方程1cos sin 22=-θθy x 表示 (A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 115.平面直角坐标系中,O 为坐标原点,已知两点A (2,-1),B (-1,3),若点C满足OB OA OC βα+=其中0≤βα,≤1,且1=+βα,则点C 的轨迹方程为(A )0432=-+y x (B )25)1()21(22=-+-y x (C )0534=-+y x (-1≤x ≤2)(D )083=+-y x (-1≤x ≤2) 116.z y x >>且2=++z y x ,则下列不等式中恒成立的是(A )yz xy > (B )yz xz > (C )xz xy > (D )|||||y z y x > 117.已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是(A )1)∪(1(B ))(C )(0,1) (D )(1) 118. 已知动点(,)M x y 3411x y =+-,则点M 的轨迹是A. 椭园B. 双曲线C. 抛物线D. 两条相交直线119(A).如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215ACDEF(第9(A)题图)119(B).已知边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是(A )a 23 (B )a 43 (C )a 23(D )a43120.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为(A )240 (B )120 (C )60 (D )30数学高考选择题训练十三121.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba11<成立的充分条件的个数是A.1B.2C.3D.3122.如果函数px nx y ++=21的图象关于点A (1,2)对称,那么 (A )=p -2,=n 4 (B )=p 2,=n -4 (C )=p -2,=n -4 (D )=p 2,=n 4123.已知}{n a 的前n 项和142+-=n n S n ,则||||||1021a a a +++ 的值为 (A )67 (B )65 (C )61 (D )56124.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是(A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f > (C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <125.下列命题中,正确的是(A )||||||b a b a ⋅=⋅ (B )若)(c b a -⊥,则c a b a ⋅=⋅ (C )2a ≥||a (D )c b a c b a ⋅⋅=⋅⋅)()(126.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为(A )43 (B )42(C )423 (D )23127.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 (A )5 (B )3 (C )2 (D )1128.椭圆22221x y a b+=(0a b >>)的半焦距为c ,若直线2y x =与椭圆的一个交点的横坐标恰为c ,则椭圆的离心率为(A(B (C 1 (D 1 129(A).斜棱柱底面和侧面中矩形的个数最多可有(A )2个 B )3个 (C )4个 (D )6个129(B).二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900130.从10种不同的作物种子中选出6种分别放入6个不同的瓶子中展出,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有(A )48210A C 种(B )5919AC 种 (C )5918A C 种 (D )5819C C 种数学高考选择题训练十四131.已知集合}1log |{2>==x x y y A ,,}1)21(|{>==x y y B x ,,则B A 等于 A.}210|{<<y y B.}10|{<<y y C.}121|{<<y y D.∅ 132.设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于(A )a b 2- (B )ab - (C )c (D )abac 442- 133.在等比数列}{n a 中,首项01<a ,则}{n a 是递增数列的充要条件是公比 (A )1>q (B )1<q (C )10<<q (D )0<q134.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是 (A )0 (B )1 (C )-1 (D ) 2135.已知n m ,是夹角为o 60的单位向量,则n m a +=2和n m b 23+-=的夹角是 (A )o 30 (B )o 60 (C )o 90 (D )o 120136.设∈c b a ,,(0,+∞),则三个数b a 1+,c b 1+,ac 1+的值 (A )都大于2(B )都小于2(C )至少有一个不大于2(D )至少有一个不小于2137.若直线240mx ny +-=(m n ∈、R )始终平分圆224240x y x y +---=的周长,则mn 的取值范围是(A )(]1,0 (B )(0,1)(C )(-∞,1) (D )(]1,∞- 138.已知点P (3,4)在椭圆22221x y a b+=上,则以点P为顶点的椭圆的内接矩形PABC 的面积是(A )12 (B )24 (C )48 (D )与a b 、的值有关139(A).在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,则AB 与β所成的角是(A )6π (B )3π (C )4π (D )2πABCMNαβ(第9(A)题图)139(B).已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC为棱,以面BCD 与面BCA 为面的二面角的大小是(A )4π (B )3π (C )2π (D )32π140.现从8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学分别有(A )男生5人,女生3人 (B )男生3人,女生5人 (C )男生6人,女生2人 (D )男生2人,女生6人数学高考选择题训练十五141.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则 A.B A U = B.B A C U U )(= C.)(B C A U U = D.)()(B C A C U U 142.若函数)(x f y =存在反函数,则方程c x f =)((c 为常数) (A )有且只有一个实根 (B )至少有一个实根 (C )至多有一个实根 (D )没有实根143.下列四个数中,哪一个时数列{)1(+n n }中的一项 (A )380 (B )39 (C )35 (D )23 144.若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在 (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限145.已知平面上有三点A (1,1),B (-2,4),C(-1,2),P 在直线AB 上,使||31||=,连结PC ,Q 是PC 的中点,则点Q 的坐标是(A )(21-,2)( B )(21,1)(C )(21-,2)或 (21,1)(D )(21-,2)或(-1,2) 146.若c b a >>,则下列不等式中正确的是(A )||||c b c a > (B )ac ab > (C )||||c b c a ->- (D )c b a 111<< 147.直线cos1sin130x y +-=的倾斜角是(A )1 (B )12π+ (C )12π- (D )12π-+ 148.椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是(A (B (C (D149(A).空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,若1a ∥1b ,2a 与2b 交于一点,则l 和m 的位置关系为(A )一定异面 (B )一定平行 (C )异面或相交(D )平行或异面149(B).如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C 所成角的正切值为(A )52 (B )25 (C )32 (D )23AB C DA 1B 1C 1D 1E(第9(B)题图)150.若n xx )1( 展开式中第32项与第72项的系数相同,那么展开式的中间一项的系数为 A.52104C B.52103C C.52102C D.51102C参考答案。
高中数学必修一集合150道选择题(含答案、解析、考点分析)
集合选择150题(含答案、解析、考点分析)选择题(共150小题)1.已知集合A={x|x−3x−6≤0},B={x|x2﹣3x﹣10<0},则∁R(A∩B)=()A.(﹣∞,3)∪[5,+∞)B.(﹣∞,3]∪(5,+∞)C.(﹣∞,3)∪(5,+∞)D.(﹣∞,3]∪[5,+∞)2.下列叙述错误的是()A.{x|x>1}⊆{x|x≥1}B.集合N中的最小数是1C.方程x2﹣6x+9=0的解集是{3}D.{4,3,2}与{3,2,4}是相同的集合3.已知集合A={1,2,3},B为A所有子集组成的集合,则下列不是集合B的子集的是()A.A B.B C.∅D.{∅}4.设U=A∪B,A={1,2,3,4,5},B={10以内的素数},则∁U(A∩B)=()A.{2,4,7}B.∅C.{4,7}D.{1,4,7} 5.已知集合A={x|y=√x+1},B={y|y=ln(x2+1)},则A∪B=()A.[﹣1,+∞)B.[0,+∞)C.(﹣1,0)D.[﹣1,0]6.已知集合A={x|0<log2(x+4)<2},B={y|y=√x−2+√2−x},则A∩B=()A.∅B.{0}C.{2}D.{x|﹣3<x<0} 7.设集合A={x∈Z|y=lg(﹣x2+3x+4)},B={x|2x≥4},则A∩B=()A.[2,4)B.{2,4}C.{3}D.{2,3}8.已知集合M={x|0<x+1<2},P={x|2x2−x<1},则M∩P=()A.(﹣∞,1)B.(0,1)C.(﹣1,0)D.(﹣1,1)9.设集合A={x|lgx<0},B={x|12<2x<2},则()A.A=B B.A⊆B C.B⊆A D.A∩B=∅10.已知集合A={x∈Z|y=√4x−x2−3},B={a,1},若A∩B=B,则实数a的值为()A.2B.3C.1或2或3D.2或311.已知集合A={x|x2+2>3x},B=(a,a+2],若A∪B=R,则实数a的取值范围为()A.[0,1)B.(1,2)C.(﹣∞,0]D.(1,+∞)12.已知集合M={x|y=log2(x﹣5)},N={y|y=x+1x,x>0},则M∪N=()A.(﹣∞,5)B.[2,+∞)C.[2,5)D.(5,+∞)13.若集合A={x|y=ln(x2﹣2x﹣3)},B={x||2﹣x|<3},则A∩B=()A.{x|x≤﹣1}B.{x|x>3}C.{x|﹣1<x<3}D.{x|3<x<5} 14.已知集合A={x|2x>6﹣x},B={0,2,4,6},则A∩B=()A.{0}B.{0,2}C.{2,4}D.{4,6} 15.已知集合M={x|y=ln(1﹣x)},N={x|x2﹣2x<0},则M∪N=()A.(0,2)B.(0,1)C.(﹣∞,1)D.(﹣∞,2)16.设集合A={x|x2﹣2x>0},B={y|y=2x+1},则B∪(∁U A)=()A.[1,2)B.(1,+∞)C.[0,+∞)D.R17.已知非零实数a,b,c,则代数式a|a|+b|b|+c|c|表示的所有的值的集合是()A.{3}B.{﹣3}C.{3,﹣3}D.{3,﹣3,1,﹣1} 18.已知全集U=R,集合M={x|2x2+x﹣6<0}与集合N={x|x=2k﹣1,k∈Z}的关系的V enn 图如图所示,则阴影部分所示的集合中的元素个数为()A.3个B.2个C.1个D.0个19.设集合A={x|lnx>0},B={x|1−1x<0},则A∩B=()A.(1,+∞)B.(﹣∞,1)C.(0,1)D.∅20.已知集合A={0,1,2,3,4},B={x|3x﹣x2>0},则集合A∩B的子集个数为()A.2B.3C.4D.821.设集合A={x|﹣4<x﹣1<5},B={x|x2>4},则A∩B=()A.{x|2<x<6}B.{x|﹣3<x<6}C.{x|﹣2<x<2}D.{x|﹣3<x<﹣2或2<x<6}22.已知集合A={x∈R|x2﹣kx+k+42≤0,k∈R},B={x∈R|1≤x≤4},若A⊆B,则k的取值范围为()A .(4,367]B .(﹣2,367]C .(﹣∞,367]D .(﹣2,4]23.已知集合A ={x |y =ln (x +1)},B ={x |x 2﹣4≤0},则A ∩B =( )A .{x |x ≥﹣2}B .{x |﹣1<x ≤2}C .{x |﹣1<x <2}D .{x |x ≥2}24.已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( )A .1B .2C .3D .4 25.已知集合A ={x 2﹣3x +2<0},B ={x |log 8x >13},则( )A .A ⊆B B .B ⊆AC .A ∩∁R B =∅D .A ∩B =∅26.设全集U =R ,已知集合A ={x |x <3或x ≥9},集合B ={x |x ≥a },若(∁U A )∩B ≠∅,则a 的取值范围为( )A .a >3B .a ≤3C .a <9D .a ≤927.已知集合A ={x |y =ln (x ﹣1)},B ={x|y =√x −1},则( )A .A =B B .A ⊆BC .A ∩B =∅D .A ∪B =R28.若集合A ={x ∈N |(x ﹣3)(x ﹣2)<6},则A 中的元素个数为( )A .3B .4C .5D .629.已知非空集合A ,B 满足以下两个条件:(i )A ∪B ={1,2,3,4,5},A ∩B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(A ,B )的个数为( )A .7B .8C .9D .1030.已知集合A ={y |y =x 2+2x ,x ∈R },B ={x |x 2+y 2=2,x ∈R ,y ∈R },则A ∩B =( )A .[﹣1,2]B .(﹣1,2]C .(−1,√2]D .[−1,√2]31.已知集合A ={(x ,y )|x 2+y 2≤2,x ∈N ,y ∈N },则集合A 的子集个数为( )A .4B .9C .15D .1632.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2≤1},则集合A ∩B 的子集个数为( )A .2B .4C .8D .1633.已知集合A ={x |1<2x ≤8},B ={0,1,2},则下列选项正确的是( )A .A ⊆B B .A ⊇BC .A ∪B ={0,1,2}D .A ∩B ={1,2}34.设集合A ={0,1},B ={m |m =y ﹣x ,x ∈A 且y ∈A },则A ∩B =( )A .∅B .{1}C .{0}D .{0,1}35.已知集合A ={x |y =ln (2﹣x )},B ={x |﹣3<x <3},则B ∩(∁R A )=( )A .(﹣3,2]B .[﹣3,2)C .(2,3]D .[2,3)36.已知集合M ={x |x 2+x >0},N ={x |ln (x ﹣1)>0},则( )A .M ⊇NB .M ⊆NC .M ∩N =(1,+∞)D .M ∪N =(2,+∞)37.已知全集U ={﹣2,﹣1,1,2,3,4},集合A ={﹣2,1,2,3},集合B ={﹣1,﹣2,2,4},则(∁U A )∪B 为( )A .{﹣1,﹣2,2,4}B .{﹣1,﹣2,3,4}C .{﹣1,2,3,4}D .{﹣1,1,2,4} 38.已知集合A ={x |log 4x <1},集合B ={{x |x 2﹣3≥0,x ∈Z }(其中Z 表示整数集),则A ∩(∁Z B )=( )A .{1,2,3}B .{﹣1,1}C .{1,2}D .{1}39.已知全集U =R ,集合M ={x ∈R |x 2﹣x ≤0},集合N ={y ∈R |y =cos x ,x ∈R },则(∁U M )∩N =( )A .[﹣1,0)B .(0,1)C .(﹣∞,0)D .∅40.已知集合A ={x |1n (x ﹣1)≤0},B ={x |0<x <3},则(∁R A )∩B =( )A .(0,1]∪(2,3)B .(2,3)C .(0,1)∪(2,3)D .[2,3) 41.已知M ={x |x 2﹣x ≤0},N ={x |x−1x ≤0},则集合M 、N 之间的关系为( ) A .M ∩N =∅ B .M =NC .N ⫋MD .M ⫋N 42.已知集合A ={x ||x ﹣2|<3},B ={x|y =1log 2x },则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,5)C .(﹣∞,1)∪(1,5)D .(5,+∞)43.已知集合A ={x |x 2﹣x ﹣6>0},B ={y|y =x −8x ,x >4},则A ∩B =( )A .(﹣2,2)B .(﹣2,3]C .(﹣2,+∞)D .(3,+∞)44.设集合A ={x ||x ﹣a |=1},B ={﹣1,0,b }(b >0),若A ⊆B ,则对应的实数(a ,b )有( )A .1对B .2对C .3对D .4对45.已知集合A ={x |1<x <2},集合B ={x|y =√m −x 2},若A ∩B =A ,则m 的取值范围是()A.(0,1]B.(1,4]C.[1,+∞)D.[4,+∞)46.已知集合A={x∈N*|x2﹣2x﹣3<0},则满足条件B⊆A的集合B的个数为()A.2B.3C.4D.847.若全集U=R,集合A={y∈R|y=x2},B={x∈R|y=log3(x﹣1)},则A∩(∁R B)=()A.(﹣∞,1]B.[1,2]C.[0,1]D.[0,1)48.已知全集U={x∈Z|0<x≤10},M={1,2,3,4,5},N={5,6,7,8,9,10},则M ∪(∁U N)=()A.N B.M C.∁U M D.M∩N49.已知集合A={x|x2﹣x﹣2<0},B={x|a<x<a+3}.若A∩B={x|0<x<2),则A∪B=()A.{x|﹣2<x<3}B.{x|﹣1<x<3}C.{x|0<x<3}D.{x|﹣2<x<1} 50.设集合M={x|x2≤4},集合N={x|1≤x≤2},则∁M N=()A.{x|﹣2≤x<1}B.{﹣2,﹣1,0}C.{x|x≤﹣2}D.{x|0<x<2} 51.若集合A={x|log2x<3},B={x|x2﹣2x﹣8≤0},则A∪B=()A.{x|x<8}B.{x|﹣2≤x≤4}C.{x|﹣2≤x<8}D.{x|0<x≤4} 52.已知全集U={﹣1,0,1,2,3,4},集合A,B满足∁U A={0,2,4},∁U B=(﹣1,0,1,3},则A∩B=()A.{﹣1,0,1,2,3,4}B.{﹣1,1,2,3,4}C.{0}D.∅53.已知R为实数集,集合A={x|0<x<2},B={x|x<3},则(∁R A)∩B=()A.{x|2<x<3}B.{x|2≤x<3}C.{x|x<0或2≤x<3}D.{x|x≤0或2≤x<3}54.设集合A={x|2x≥8},集合B={x|y=lg(x﹣1)},则A∪B=()A.[1,3)B.(1,3]C.(1,+∞)D.[3,+∞)55.已知A={x∈N|y=ln(x2﹣x﹣2)},B={y∈N|y=e√1−|x|},则(∁N A)∩B=()A.{1,2}B.{0,1}C.{0,1,2}D.∅56.已知集合A={1,2,3,4,5},则集合A各子集中元素之和为()A.320B.240C.160D.8A.(0,3)B.(1,3)C.(0,2]D.(1,2]58.已知集合A={x∈R|x2﹣2x﹣3<0},B={﹣1,0,1,2,3,4},则()A.A∩B={x|﹣1<x<3}B.A∩B={0,1,2}C.A∪B={x|﹣1<x<4}D.A∪B={﹣1,0,1,2,3,4} 59.已知集合A={y|y=e x﹣1},B={x|y=ln(x+1)},则A∩B=()A.(1,+∞)B.(0,+∞)C.(﹣1,+∞)D.(﹣1,0)60.已知全集U=R,A={x|(x+1)(x﹣2)>0},B={x|2x≤2},则(∁U A)∩B=()A.{x|﹣1<x<1}B.{x|0≤x≤1}C.{x|﹣1≤x≤1}D.{x|x≤﹣1}61.全集U=R,集合A={x|xx−4≤0},集合B={x|log2(x﹣1)>2},图中阴影部分所表示的集合为()A.(﹣∞,0]∪[4,5]B.(﹣∞,0)∪(4,5]C.(﹣∞,0)∪[4,5]D.(﹣∞,4]∪(5,+∞)62.已知全集U=Z,M={x∈Z|x2+2x﹣3≤0},N={x∈R|x2=2﹣x},则M∩(∁U N)=()A.{﹣3,﹣1,2}B.{﹣3,﹣1,0}C.{﹣3,0,1}D.{﹣3,1,2} 63.已知集合A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},则C(A∪B)(A∩B)=()A.(﹣1,2)B.(﹣2,4)C.[﹣2,﹣1]∪[2,4]D.[﹣2,﹣1)∪(2,4]64.已知集合P=已知集合P={x|2x<1,x∈R},Q={x|x2−x−2<0,x∈R},则P∩Q=()A.∅B.(1,2)C.(﹣1,0)D.(2,+∞)65.已知集合A={﹣1,0,1,2},B={y|y=2x},M=A∩B,则集合M的子集个数是()A.2B.3C.4D.866.已知集合A={x|x2﹣2x﹣3>0,x∈Z},集合B={x|x>0},则集合∁Z A∩B的真子集个数为()A.3B.4C.7D.8A.[0,1)B.(0,2)C.(﹣∞,1]D.[0,1]68.已知全集U=R,集合A={x|x2﹣3x+2≤0},B={x|3x﹣1≥1},(∁U A)∩B=()A.[1,2]B.(2,+∞)C.[1,+∞)D.(﹣∞,1)69.已知集合A={x|x>0},B={y|y=2|x|},则∁A B=()A.{x|x<0}B.{x|0<x<1}C.{x|0≤x≤1}D.{x|1≤x≤2} 70.已知集合A={x|2≤x≤4},B={x|x>1},则A∩B=()A.(1,2]B.[2,4]C.(4,+∞)D.(2,4)71.已知集合A={1,3,5},B={x∈Z|(x﹣1)(x﹣4)<0},则A∪B=()A.{3}B.{1,3}C.{1,2,3,5}D.{1,2,3,4,5}72.已知集合A={x∈Z|x2≤4},B={x|﹣4<x<2},则A∩B=()A.B={x|﹣2≤x<2}B.B={x|﹣4<x≤2}C.{﹣2,﹣1,0,1,2}D.{﹣2,﹣1,0,1}73.已知全集I={1,2,3,4,5,6,7,8,9},集合A={3,4,5,6},集合B={5,6,7,8},则图中阴影部分所表示的集合为()A.{3,4,7,8}B.{3,4,5,6,7,8}C.{1,2,9}D.{5,6}74.已知全集U={﹣1,0,1,2,3,4},集合A={x∈N|x2﹣4x+3≤0},集合B={x∈N+|y=√−x2+x+2},则∁U(A∪B)=()A.{﹣1,0,1,2,3}B.{﹣1,0,4}C.{4}D.{﹣1,0,3,4}75.已知集合A={(x,y)|y=2x﹣1},B={(x,y)|y=x2},则A∩B=()A.∅B.{1}C.{(1,1)}D.{(1,﹣1)} 76.设集合P={x|x+2≥x2},Q={x∈N||x|≤3},则P∩Q=()A.[﹣1,2]B.[0,2]C.{0,1,2}D.{﹣1,0,1,2}77.已知集合A ={x |a +1≤x ≤3a ﹣5},B ={x |3<x <22},且A ∩B =A ,则实数a 的取值范围是( )A .(﹣∞,9]B .(﹣∞,9)C .[2,9]D .(2,9) 78.已知集合A ={x |12<2x ≤2},B ={x |x 2﹣2x +34≤0},则A ∩(∁R B )=( )A .∅B .(﹣1,12)C .(12,1) D .(﹣1,1] 79.已知集合A ={x||x|⋅(1−x)≤0},B ={x|1−1x >0},则A ∪B =( )A .{x |x ≥1}B .{x |x ≥1,或x <0}C .{x |x ≥1,或x ≤0}D .{x |x ≥1,或x =0}80.设集合U ={x ∈Z |1<x <6},A ={3,5},B ={x |x 2﹣3x ﹣4<0},∁U (A ∩B )=( )A .{2,4}B .{2,4,5}C .{2,3,4,5}D .{2,3,4,6} 81.设集合A ={x ∈N ||x |<4},B ={x |2x ≤4},则A ∩B =( )A .{x |x ≤2}B .{x |﹣4<x ≤2}C .{0,1,2}D .{1,2}82.已知全集U =R ,集合A ={x |3x 2﹣13x <0},B ={y |y =3x +1},则A ∩(∁U B )=( )A .[1,133)B .(0,1]C .(1,133)D .(0,1)83.已知集合A ={2a ﹣1,a 2,0},B ={1﹣a ,a ﹣5,9},且A ∩B ={9},则( )A .A ={9,25,0}B .A ={5,9,0}C .A ={﹣7,9,0}D .A ∪B ={﹣7,9,0,25,﹣4}84.已知集合A ={x |x 2+2x ﹣3<0},B ={y |y =1﹣sin x ,x >0},则A ∩B =( )A .[﹣3,1)B .[0,1)C .[1,2]D .(﹣3,2)85.已知集合S ={x |2x =1},T ={x |ax =1}.若S ∩T =T ,则常数a 的值为( )A .0或2B .0或12C .2D .12 86.已知集合A ={x |x−1x−2≤0},B ={y |y =√4−x 2},则A ∩B =( ) A .∅ B .(﹣∞,2] C .[1,2) D .[0,2]87.已知全集U =R ,集合A ={x |x 2>x },则∁U A =( )A .[0,1]B .(0,1)C .(﹣∞,1]D .(﹣∞,1) 88.已知A ={x |x ≤1},B ={x |x−2x−a ≤0},若A ∪B ={x |x ≤2},则实数a 的取值范围是( ) A .[2,+∞) B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]89.设集合A ={x ∈Z |x 2﹣3x ﹣4≤0},B ={x |e x ﹣2<1},则A ∩B =( ) A .{﹣1,0,1,2} B .[﹣1,2) C .{﹣1,0,1} D .[﹣1,2]90.已知集合M ={x ∈N |log 2x <2},Q ={0,a ,3},且M ∪Q ={0,1,2,3,4},则M ∩Q =( )A .{3}B .{0,3,4}C .{0,1,3}D .{1,2,3}91.已知集合U ={x ∈Z |﹣3<x <8},∁U M ={﹣2,1,3,4,7},N ={﹣2,﹣1,2,4,5,7},则M ∩N 的元素个数为( )A .1B .2C .3D .4 92.设集合A ={x ∈Z |x 2﹣3x ﹣4>0},B ={x |e x ﹣2<1},则以下集合P 中,满足P ⊆(∁R A )∩B 的是( )A .{﹣1,0,1,2}B .{1,2}C .{1}D .{2} 93.已知集合A ={x |x (x +1)<0},B ={x |12x >1},则∁B A =( ) A .(﹣1,0] B .(﹣1,0) C .(﹣∞,﹣1] D .(﹣∞,0]94.设集合A ={x |y =√x −3},B ={y |y =2x ,x ≤3},则集合(∁R A )∩B =( )A .{x |x <3}B .{x |x ≤3}C .{x |0<x <3}D .{x |0<x ≤3}95.已知全集U =R ,集合A ={x |x 2﹣3x ﹣4<0},B ={x |x ﹣1≤0},则集合A ∩∁U B =( )A .{x |﹣4<x <1}B .{x |﹣1<x ≤1}C .{x |﹣1<x <4}D .{x |1<x <4}96.已知集合A ={x |2x 2+x ﹣1<0),B ={x |ln (3x ﹣1)<0},则A ∩B =( )A .(﹣1,23)B .(13,12)C .(13,23)D .(﹣1,13) 97.设集合P ={x ||x |>3},Q ={x |x 2>4},则下列结论正确的是( )A .Q ⫋PB .P ⫋QC .P =QD .P ∪Q =R98.已知集合A ={x |x >1},B ={x |ax >1},若B ⊆A ,则实数a 的取值范围为( )A .(0,1)B .(0,1]C .[0,1]D .[0,1)99.已知集合A ={x |log 2x <1},集合B ={x ∈N ||x |<2},则A ∪B =( )A .{x |0<x <1}B .{x |0≤x <2}C .{x |﹣2<x <2}D .{0,1}100.已知集合A ={x ∈N|y =√4−x},B ={x |x =2n ,n ∈Z },则A ∩B =( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]101.若集合A ={1,2},B ={1,2,3,4,5},则满足A ∪X =B 的集合X 的个数为( )A .2B .3C .4D .8102.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.2103.设集合A={﹣1,0,1,2,3,4},B={x|x∈A且2x∈A},则集合B中元素的个数为()A.1B.2C.3D.4104.已知集合A={x∈N*|0≤x<2},则集合A的子集的个数为()A.2B.3C.4D.8105.设A={1,2,3},B={x|x2﹣x﹣1<0},则A∩B=()A.{1,2}B.{1,2,3}C.{2,3}D.{1}106.已知集合A={x|x2﹣x﹣2>0},集合B={x|y=√x−2},则A∩B=()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,+∞)107.已知集合A={y|y=1﹣x2,x∈[﹣1,1]},B={x|y=√x+2},则A∩B=()A.[0,1]B.[﹣1,1]C.(0,1)D.∅108.已知集合A={a|a⊆{1,2,3}},则A的真子集个数为()A.7B.8C.255D.256109.M={α|α=kπ4+π2,k∈Z},N={β|β=kπ2+π4,k∈Z},则有()A.M=N B.M⊆N C.M⫌N D.M⫋N110.已知集合M={y|y=3x,x>0},N={x|y=lg(3x﹣x2)},则M∩N为()A.∅B.(1,+∞)C.[3,+∞)D.(1,3)111.已知集合M={x|x2≤4},N={﹣a,a},若M∩N=N,则a的取值范围是()A.[2,+∞)B.(﹣∞,﹣2]∪[2,+∞)C.[﹣2,0)∪(0,2]D.[﹣2,2]112.已知集合A={x|x2﹣x﹣2<0},B={x|a﹣2<x<a},若A∩B={x|﹣1<x<0},则A∪B=()A.(﹣1,2)B.(0,2)C.(﹣2,1)D.(﹣2,2)113.已知集合A={x|x2<4},B={x|(12)x<2},则()A.A∩B={x|﹣2<x<1}B.A∩B={x|1<x<2} C.A∪B={x|x>﹣2}D.A∪B={x|x<1}114.设集合M={(x,y)|x29+y27=1},N={(x,y)|y=2x},则M∩N的子集的个数是()A.8B.4C.2D.0115.若全集U=R,集合A={0,1,2,3,4,5},B={x|x<3},则图中阴影部分表示的集合为()A.{0,1,2,3}B.{0,1,2}C.{3,4,5}D.{4,5} 116.已知集合A={y|y=1﹣2x},B={x|x2﹣2x﹣3>0},则A∩∁R B=()A.∅B.[﹣1,1)C.(1,3]D.[﹣3,1)117.已知A={x|y=√x−1},B={x|4x<2x+1},则A∩B=()A.(0,1)B.(0,1]C.R D.∅118.设集合A={x|(x+2)(x﹣3)≤0},B={a},若A∪B=A,则a的最大值为()A.﹣2B.2C.3D.4119.定义集合的商集运算为AB={x|x=mn,m∈A,n∈B},已知集合S={2,4,6},T={x|x=k2−1,k∈S},则集合ST∪T中的元素个数为()A.5B.6C.7D.8120.如图,已知R是实数集,集合A={x|y=√2−x},B={x|1<x<4},则阴影部分表示的集合是()A.[2,4]B.(2,4)C.[2,4)D.(2,4]121.设集合S={(x,y,z)|x y=y z=z x,实数x,y,z均大于1,且它们互不相等},则S中()A.元素个数为0B.元素个数为3C.元素个数为6D.含有无穷个元素122.设集合M={−1,1},N={x|1x<2},则下列结论正确的是()A .N ⊆MB .M ⊆NC .N ∩M =∅D .M ∩N =R123.若集合A ={x |x <0},且B ⊆A ,则集合B 可能是( ) A .{x |x >﹣1} B .R C .{﹣2,﹣3} D .{﹣3,﹣1,0,1}124.已知集合A ={x |﹣1≤x ≤1},B ={x |x ﹣a ≤0},若A ⊆B ,则实数a 的取值范围是( ) A .(﹣∞,1] B .[﹣1,+∞)C .(﹣∞,﹣1]D .[1,+∞)125.已知集合P ={x ||2x−13x−2|=2x−13x−2,x ∈R },则下列集合中与P 相等的是( ) A .{x |2x−13x−2>0,x ∈R }B .{x |(2x ﹣1)(3x ﹣2)≥0,x ∈R }C .{x |y =lg2x−13x−2}D .{x |y =√(2x −1)(3x −2)+(3x ﹣2)0}126.设全集U 是实数集R ,M ={x |x 2<4},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |﹣2<x <1}B .{x |﹣2<x <2}C .{x |2≤x <3}D .{x |1<x <2}127.集合A ={x |sin x +lg cos x =1}是( ) A .∅B .单元素集C .二元素集D .无限集128.已知全集U =R ,集合A ={x |x 2﹣2x ﹣3≤0},集合B ={x |log 2x ≤1},则A ∩(∁U B )=( ) A .(2,3] B .∅ C .[﹣1,0)∪(2,3] D .[﹣1,0]∪(2,3]129.若集合A ={−1,0,12,1,2},集合B ={y |y =2x ,x ∈A },则集合A ∩B =( ) A .{−1,12,1,2} B .{0,12,1}C .{12,1,2}D .{﹣1,0,1}130.满足M ⊆{a ,b ,c ,d ,e },且M ∩{a ,c ,e }={a ,c }的集合M 的个数是( ) A .1B .2C .3D .4131.已知全集U =R ,P ={x ||x |+|x ﹣1|<3},Q ={x ||2x ﹣1|<3},则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P =QD .集合P 是集合Q 的补集的真子集132.设a ∈R ,若{x |x 2﹣2ax +a +2≤0}⊆[1,3],则a 的取值范围是( ) A .(﹣1,3] B .[3,+∞)C .[2,115]D .(−1,115]133.集合M ={x |x =k 2−14,k ∈Z },N ={x |x =k 4+12,k ∈Z },则( ) A .M =NB .M ⫋NC .N ⫋MD .M ∩N =∅134.已知A ={x |x 2﹣1≥0},B ={y |y =e x },则A ∩B =( ) A .(0,+∞) B .(﹣∞,1]C .[1,+∞)D .(﹣∞,﹣1]∪[1,+∞)135.集合M ={x |2x 2﹣x ﹣1<0},N ={x |2x +1<0},U =R ,则M ∩∁U N =( ) A .[−12,1)B .(−12,1)C .(﹣1,−12)D .(﹣1,12]136.已知集合A ={(x ,y )|x 2+y 2≤√3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .4B .5C .8D .9137.设集合A ={x|x+2x−1≤0},B ={x |y =log 2(x 2﹣2x ﹣3)},则A ∩B =( ) A .{x |﹣2≤x <﹣1} B .{x |﹣1<x ≤1} C .{x |﹣2≤x <1} D .{x |﹣1≤x <1}138.设集合A ={x ∈N ||x |≤2},B ={y |y =1﹣x 2},则A ∩B 的子集个数为( ) A .2B .4C .8D .16139.已知集合A ={x |0<log 4x <1},B ={x |e x ﹣2≤1},则A ∪B =( ) A .(﹣∞,4)B .(1,4)C .(1,2)D .(1,2]140.设集合A ={x|(√x +1)(√x −2)<0},B ={x |﹣1<x <2},则( ) A .A ∩B ={x |﹣1<x <2} B .A ∪B ={x |0≤x <4} C .A ∩B ={x |0≤x <2} D .A ∪B ={x |﹣1<x <2}141.已知集合M ={x |x−3x−1≥0},N ={x |y =√2−x },则(∁R M )∩N =( )A .(1,2]B .[1,2]C .(2,3]D .[2,3]142.已知集合U =N ,A ={x |x =2n ,n ∈N *},B ={x |1<x ≤6},则(∁U A )∩B =( )A.{2,3,4,5,6}B.{2,4,6}C.{1,3,5}D.{3,5} 143.已知全集U=R,集合A={x|log2x≤1},B={x|x2+x﹣2≤0},则A∩B=()A.(0,1]B.(﹣2,2]C.(0,1)D.[﹣2,2] 144.已知集合P={0,1,2},Q={x|x<2},则P∩Q=()A.{0}B.{0,1}C.{1,2}D.{0,2} 145.已知集合A={x|x2<x+2},B={x|x<a},若A⊆B,则实数a的取值范围为()A.(﹣∞,﹣1]B.(﹣∞,2]C.[2,+∞)D.[﹣1,+∞)146.已知全集U=R,集合M={x|2x<1},集合N={x|log2x>1},则下列结论中成立的是()A.M∩N=M B.M∪N=N C.M∩(∁U N)=M D.(∁U M)∩N=N147.已知集合A={(x,y)|y=2x},B={(x,y)|y=x2−1x+1},则A∩B为()A.∅B.{﹣1,﹣2}C.{(1,2)}D.{(﹣1,﹣2)} 148.已知集合A={y|y=2x,x>0},B={x|y=log2(x﹣2)},则A∩(∁R B)=()A.[0,1)B.(1,2)C.(1,2]D.[2,+∞)149.已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f(x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)150.已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2}B.{3}C.{2,3}D.{0,2,3}1.A;2.B;3.A;4.D;5.A;6.A;7.D;8.B;9.B;10.D;11.A;12.B;13.D;14.D;15.D;16.C;17.D;18.B;19.D;20.C;21.D;22.B;23.B;24.C;25.D;26.C;27.B;28.B;29.B;30.D;31.D;32.C;33.D;34.D;35.D;36.A;37.A;38.D;39.A;40.A;41.C;42.A;43.D;44.B;45.D;46.C;47.C;48.B;49.B;50.A;51.C;52.D;53.D;54.C;55.A;56.B;57.D;58.B;59.B;60.C;61.C;62.B;63.D;64.C;65.C;66.C;67.D;68.B;69.B;70.B;71.C;72.D;73.A;74.B;75.C;76.C;77.B;78.B;79.C;80.B;81.C;82.B;83.C;84.B;85.A;86.C;87.A;88.D;89.C;90.A;91.C;92.C;93.C;94.C;95.D;96.B;97.B;98.C;99.B;100.B;101.C;102.A;103.C;104.A;105.D;106.B;107.A;108.C;109.C;110.D;111.C;112.D;113.C;114.B;115.C;116.B;117.D;118.C;119.B;120.B;121.A;122.B;123.C;124.D;125.D;126.C;127.A;128.D;129.C;130.D;131.C;132.D;133.B;134.C;135.B;136.B;137.A;138.B;139.A;140.C;141.B;142.D;143.A;144.B;145.C;146.C;147.A;148.C;149.A;150.D;1.已知集合A={x|x−3x−6≤0},B={x|x2﹣3x﹣10<0},则∁R(A∩B)=()A.(﹣∞,3)∪[5,+∞)B.(﹣∞,3]∪(5,+∞)C.(﹣∞,3)∪(5,+∞)D.(﹣∞,3]∪[5,+∞)【考点】1H:交、并、补集的混合运算.【答案】A【分析】可以求出集合A,B,然后进行交集和补集的运算即可.【解答】解:∵A={x|3≤x<6},B={x|﹣2<x<5},∴A∩B={x|3≤x<5},∁R(A∩B)=(﹣∞,3)∪[5,+∞).故选:A.【点评】本题考查了分式不等式和一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.2.(2019秋•顺义区校级期中)下列叙述错误的是()A.{x|x>1}⊆{x|x≥1}B.集合N中的最小数是1C.方程x2﹣6x+9=0的解集是{3}D.{4,3,2}与{3,2,4}是相同的集合【考点】11:集合的含义;18:集合的包含关系判断及应用.【答案】B【分析】通过集合的包含关系判断A,自然数集元素的大小判断B;方程的解判断C;集合的基本性质判断D.【解答】解:{x|x>1}⊆{x|x≥1},满足集合的包含关系,所以A正确;集合N中的最小数是0,不是1,所以B不正确;方程x2﹣6x+9=0的解集是{3},所以C正确;{4,3,2}与{3,2,4}是相同的集合,满足集合的基本性质,所以D正确;故选:B.【点评】本题考查集合的基本性质,集合的包含关系,是基本知识的考查.3.(2020•浙江模拟)已知集合A={1,2,3},B为A所有子集组成的集合,则下列不是集合B的子集的是()A.A B.B C.∅D.{∅}【考点】16:子集与真子集.【答案】A【分析】解:先求集合B,再求集合B的子集.【解答】解:A={1,2,3},A的子集为{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅;集合B为{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅},则B,∅,{∅},为B的子集,故选:A.【点评】本体考查了集合的真子集,属于基础题.4.(2020•汕头校级三模)设U=A∪B,A={1,2,3,4,5},B={10以内的素数},则∁U (A∩B)=()A.{2,4,7}B.∅C.{4,7}D.{1,4,7}【考点】1H:交、并、补集的混合运算.【答案】D【分析】可以求出集合B,然后进行交集、并集和补集的运算即可.【解答】解:∵A={1,2,3,4,5},B={2,3,5,7},∴U=A∪B={1,2,3,4,5,7},A∩B={2,3,5},∴∁U(A∩B)={1,4,7}.故选:D.【点评】本题考查了列举法的定义,交集、并集和补集的运算,考查了计算能力,属于基础题.5.(2020•南岗区校级四模)已知集合A={x|y=√x+1},B={y|y=ln(x2+1)},则A∪B =()A.[﹣1,+∞)B.[0,+∞)C.(﹣1,0)D.[﹣1,0]【考点】1D:并集及其运算.【答案】A【分析】可以求出集合A,B,然后进行并集的运算即可.【解答】解:∵A={x|x≥﹣1},B={y|y≥0},∴A∪B=[﹣1,+∞).故选:A.【点评】本题考查了描述法、区间的定义,对数函数的单调性,并集的运算,考查了计算能力,属于基础题.6.(2020•红岗区校级模拟)已知集合A={x|0<log2(x+4)<2},B={y|y=√x−2+√2−x},则A∩B=()A.∅B.{0}C.{2}D.{x|﹣3<x<0}【考点】1E:交集及其运算.【答案】A【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|1<x+4<4}={x|﹣3<x<0},B={0},∴A∩B=∅.故选:A.【点评】本题考查了描述法、列举法的定义,对数函数的单调性,交集的运算,考查了计算能力,属于基础题.7.(2020•新华区校级模拟)设集合A={x∈Z|y=lg(﹣x2+3x+4)},B={x|2x≥4},则A∩B =()A.[2,4)B.{2,4}C.{3}D.{2,3}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:A={x∈Z|﹣x2+3x+4>0}={x∈Z|﹣1<x<4}={0,1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:D.【点评】本题考查了对数函数的定义域,一元二次不等式的解法,描述法和列举法的定义,交集的运算,考查了计算能力,属于基础题.8.(2020•雨花区校级模拟)已知集合M={x|0<x+1<2},P={x|2x2−x<1},则M∩P=()A.(﹣∞,1)B.(0,1)C.(﹣1,0)D.(﹣1,1)【考点】1E:交集及其运算.【答案】B【分析】可以求出集合M ,P ,然后进行交集的运算即可.【解答】解:∵M ={x |﹣1<x <1},P ={x |x 2﹣x <0}={x |0<x <1}, ∴M ∩P =(0,1). 故选:B .【点评】本题考查了描述法、区间的定义,指数函数的单调性,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.9.(2020•杜集区校级模拟)设集合A ={x |lgx <0},B ={x|12<2x <2},则( ) A .A =BB .A ⊆BC .B ⊆AD .A ∩B =∅【考点】18:集合的包含关系判断及应用. 【答案】B【分析】先根据函数的单调性分别解对数不等式和指数不等式,将集合A 、B 化简,再根据集合的关系,可得本题的答案.【解答】解:对于集合A ,lgx <0得0<x <1,所以A ={x |0<x <1}, 而集合B ,解不等式12<2x <2,得﹣1<x <1,所以B ={x |﹣1<x <1}, 所以A ⊆B . 故选:B .【点评】本题给出含有指数和对数的不等式构成的集合,求集合的关系,着重考查了指、对数不等式的解法和集合的关系等知识,属于基础题.10.(2020•新华区校级模拟)已知集合A ={x ∈Z|y =√4x −x 2−3},B ={a ,1},若A ∩B =B ,则实数a 的值为( ) A .2B .3C .1或2或3D .2或3【考点】1E :交集及其运算. 【答案】D【分析】可求出A ={1,2,3},而根据A ∩B =B 可得出B ⊆A ,然后即可求出实数a 的值.【解答】解:A ={x ∈Z |4x ﹣x 2﹣3≥0}={x ∈Z |1≤x ≤3}={1,2,3},且B ={a ,1}, 由A ∩B =B ,知B ⊆A ∴实数a 的值为2或3.故选:D .【点评】本题考查了描述法、列举法的定义,一元二次不等式的解法,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.11.(2020•河南模拟)已知集合A ={x |x 2+2>3x },B =(a ,a +2],若A ∪B =R ,则实数a 的取值范围为( ) A .[0,1)B .(1,2)C .(﹣∞,0]D .(1,+∞)【考点】1D :并集及其运算. 【答案】A【分析】可以求出A ={x |x <1或x >2},然后根据A ∪B =R 即可得出{a <1a +2≥2,然后解出a 的范围即可.【解答】解:A ={x |x <1或x >2},B =(a ,a +2], ∵A ∪B =R ,∴{a <1a +2≥2,解得0≤a <1, ∴实数a 的取值范围为[0,1). 故选:A .【点评】本题考查了一元二次不等式的解法,描述法、区间的定义,并集的定义及运算,考查了计算能力,属于基础题.12.(2020•沈河区校级模拟)已知集合M ={x |y =log 2(x ﹣5)},N ={y|y =x +1x ,x >0},则M ∪N =( ) A .(﹣∞,5)B .[2,+∞)C .[2,5)D .(5,+∞)【考点】1D :并集及其运算. 【答案】B【分析】可以求出集合M ,N ,然后进行并集的运算即可. 【解答】解:M ={x |x >5},N ={y |y ≥2}, ∴M ∪N =[2,+∞). 故选:B .【点评】本题考查了描述法、区间的定义,对数函数的定义域,基本不等式,并集的运算,考查了计算能力,属于基础题.13.(2020•武昌区校级模拟)若集合A ={x |y =ln (x 2﹣2x ﹣3)},B ={x ||2﹣x |<3},则A ∩B=()A.{x|x≤﹣1}B.{x|x>3}C.{x|﹣1<x<3}D.{x|3<x<5}【考点】1E:交集及其运算.【答案】D【分析】结合对数函数的定义域及含绝对值不等式的求解分别求A,B,进而可求.【解答】解:由x2﹣2x﹣3>0可得x>3或x<﹣1,∴A={x|y=ln(x2﹣2x﹣3)}={x|x>3或x<﹣1},B={x||2﹣x|<3}=(﹣1,5),则A∩B=(3,5).故选:D.【点评】本题以集合的运算为载体,主要考查了对数函数定义域的求解及含绝对值的不等式的求解,属于基础试题.14.(2020•吉林四模)已知集合A={x|2x>6﹣x},B={0,2,4,6},则A∩B=()A.{0}B.{0,2}C.{2,4}D.{4,6}【考点】1E:交集及其运算.【答案】D【分析】求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|2x>6﹣x}={x|x>2},B={0,2,4,6},∴A∩B={4,6}.故选:D.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.15.(2020•香坊区校级三模)已知集合M={x|y=ln(1﹣x)},N={x|x2﹣2x<0},则M∪N=()A.(0,2)B.(0,1)C.(﹣∞,1)D.(﹣∞,2)【考点】1D:并集及其运算.【答案】D【分析】求出集合M,N,由此能求出M∪N.【解答】解:集合M={x|y=ln(1﹣x)}={x|x<1},N={x|x2﹣2x<0}={x|0<x<2},∴M∪N={x|0<x<1}=(0,1).故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.16.(2020•榆林四模)设集合A={x|x2﹣2x>0},B={y|y=2x+1},则B∪(∁U A)=()A.[1,2)B.(1,+∞)C.[0,+∞)D.R【考点】1H:交、并、补集的混合运算.【答案】C【分析】可以求出集合A,B,然后进行并集和补集的运算即可.【解答】解:∁U A={x|x2−2x≤0}=[0,2],B={y|y=2x+1}=(1,+∞),∴B∪(∁U A)=[0,+∞).故选:C.【点评】本题考查了一元二次不等式的解法,并集和补集的运算,考查了计算能力,属于基础题.17.(2020春•南关区校级期末)已知非零实数a,b,c,则代数式a|a|+b|b|+c|c|表示的所有的值的集合是()A.{3}B.{﹣3}C.{3,﹣3}D.{3,﹣3,1,﹣1}【考点】15:集合的表示法.【答案】D【分析】当a,b,c都是正数时,a|a|+b|b|+c|c|=3;当a,b,c中有2个正数1个负数时,a|a|+b|b|+c|c|=1;当a,b,c中有1个正数2个负数时,a|a|+b|b|+c|c|=−1;当a,b,c都是负数时,a|a|+b|b|+c|c|=−3.由此能求出代数式a|a|+b|b|+c|c|表示的所有的值的集合.【解答】解:非零实数a,b,c,当a,b,c都是正数时,a |a|+b|b|+c|c|=3,当a,b,c中有2个正数1个负数时,a |a|+b|b|+c|c|=1,当a,b,c中有1个正数2个负数时,a |a|+b|b|+c|c|=−1,当a,b,c都是负数时,a |a|+b|b|+c|c|=−3,∴代数式a|a|+b|b|+c|c|表示的所有的值的集合是{3,﹣3,1,﹣1}.故选:D.【点评】本题考查集合的求法,考查绝对值的意义等基础知识,考查运算求解能力,是基础题.18.(2020春•汕尾期末)已知全集U=R,集合M={x|2x2+x﹣6<0}与集合N={x|x=2k﹣1,k∈Z}的关系的V enn图如图所示,则阴影部分所示的集合中的元素个数为()A.3个B.2个C.1个D.0个【考点】1J:Venn图表达集合的关系及运算.【答案】B【分析】求出集合M,再由集合N={x|x=2k﹣1,k∈Z},求出阴影部分所示的集合M∩N,由此能求出阴影部分所示的集合中的元素的个数.【解答】解:∵全集U=R,集合M={x|2x2+x﹣6<0}={x|﹣2<x<3 2},集合N={x|x=2k﹣1,k∈Z},∴阴影部分所示的集合M∩N={﹣1,1},∴阴影部分所示的集合中的元素的个数为2.故选:B.【点评】本题考查交集中元素个数的求法,考查交集定义、韦恩图的性质等基础知识,考查运算求解能力,是基础题.19.(2020春•红河州期末)设集合A={x|lnx>0},B={x|1−1x<0},则A∩B=()A.(1,+∞)B.(﹣∞,1)C.(0,1)D.∅【考点】1E:交集及其运算.【答案】D【分析】可求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|x>1},B={x|x−1x<0}={x|0<x<1},∴A∩B=∅.故选:D.【点评】本题考查了描述法的定义,对数函数的单调性,分式不等式的解法,考查了计算能力,属于基础题.20.(2020春•成都期末)已知集合A={0,1,2,3,4},B={x|3x﹣x2>0},则集合A∩B 的子集个数为()A.2B.3C.4D.8【考点】16:子集与真子集;1E:交集及其运算.【答案】C【分析】可以求出集合B,然后进行交集的运算求出A∩B,从而可得出A∩B子集的个数.【解答】解:∵A={0,1,2,3,4},B={x|0<x<3},∴A∩B={1,2},故其子集的个数是22=4.故选:C.【点评】本题考查了列举法、描述法的定义,一元二次不等式的解法,交集的运算,子集个数的计算公式,考查了计算能力,属于基础题.21.(2020春•新华区校级期末)设集合A={x|﹣4<x﹣1<5},B={x|x2>4},则A∩B=()A.{x|2<x<6}B.{x|﹣3<x<6}C.{x|﹣2<x<2}D.{x|﹣3<x<﹣2或2<x<6}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|﹣3<x<6},B={x|x<﹣2或x>2},∴A ∩B ={x |﹣3<x <﹣2或2<x <6}. 故选:D .【点评】本题考查了描述法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.22.(2020春•慈溪市期末)已知集合A ={x ∈R |x 2﹣kx +k+42≤0,k ∈R },B ={x ∈R |1≤x ≤4},若A ⊆B ,则k 的取值范围为( ) A .(4,367] B .(﹣2,367] C .(﹣∞,367] D .(﹣2,4]【考点】18:集合的包含关系判断及应用. 【答案】B【分析】由已知A ⊆B ,分A =∅和A ≠∅两种情况分类讨论,即可解得k 的取值范围. 【解答】解:因为A ⊆B ,①A =∅,则△=k 2−4⋅k+42<0,解得﹣2<k <4;②A ≠∅,则需满足△≥0,1<k2<4,f (1)≥0,f (4)≥0,解得4≤k ≤367. 综上,可得k 的取值范围为(﹣2,367].故选:B .【点评】本题主要考查集合的包含关系,分类讨论思想,属于中档题.23.(2020春•云南期末)已知集合A ={x |y =ln (x +1)},B ={x |x 2﹣4≤0},则A ∩B =( ) A .{x |x ≥﹣2}B .{x |﹣1<x ≤2}C .{x |﹣1<x <2}D .{x |x ≥2}【考点】1E :交集及其运算. 【答案】B【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【解答】解:∵A ={x |x +1>0}={x |x >﹣1},B ={x |﹣2≤x ≤2}, ∴A ∩B ={x |﹣1<x ≤2}. 故选:B .【点评】本题考查了描述法的定义,对数函数的定义域,交集的运算,考查了计算能力,属于基础题.24.(2020春•沙坪坝区校级月考)已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( )A.1B.2C.3D.4【考点】18:集合的包含关系判断及应用.【答案】C【分析】根据题意即可得出:A⊆{0,1},并且集合A≠∅,并且{0,1}的子集个数为4,从而得出满足条件的集合A的个数.【解答】解:{x∈N|x2﹣x﹣2<0}={x∈N|﹣1<x<2}={0,1},又非空集合A⊆{x∈N|x2﹣x﹣2<0},又{0,1}的子集个数为22=4个,∴满足条件的集合A的个数是3.故选:C.【点评】本题考查了描述法的定义,一元二次不等式的解法,集合子集个数的计算公式,考查了计算能力,属于基础题.25.(2020春•广州期末)已知集合A={x2﹣3x+2<0},B={x|log8x>13},则()A.A⊆B B.B⊆A C.A∩∁R B=∅D.A∩B=∅【考点】1H:交、并、补集的混合运算.【答案】D【分析】可以求出集合A,B,然后进行交集和补集的运算即可判断每个选项的正误.【解答】解:∵A={x|1<x<2},B={x|log8x>log82}={x|x>2},∴∁R B={x|x≤2},A∩∁R B≠∅,A∩B=∅.故选:D.【点评】本题考查了描述法的定义,一元二次不等式的解法,对数的运算,对数函数的单调性,考查了计算能力,属于基础题.26.(2020春•湖北期末)设全集U=R,已知集合A={x|x<3或x≥9},集合B={x|x≥a},若(∁U A)∩B≠∅,则a的取值范围为()A.a>3B.a≤3C.a<9D.a≤9【考点】1H:交、并、补集的混合运算.【答案】C【分析】可以求出∁U A={x|3≤x<9},然后根据(∁U A)∩B≠∅即可得出a的取值范围.【解答】解:∁U A={x|3≤x<9},且(∁U A)∩B≠∅,∴a<9.故选:C.【点评】本题考查了交集和补集的定义及运算,描述法的定义,考查了计算能力,属于基础题.27.(2020•鹿城区校级模拟)已知集合A={x|y=ln(x﹣1)},B={x|y=√x−1},则()A.A=B B.A⊆B C.A∩B=∅D.A∪B=R【考点】18:集合的包含关系判断及应用.【答案】B【分析】本题考查的是集合包含关系的判断及应用问题.在解答时,应先将集合A、B元素具体化,进而根据元素的范围即可获得问题的解答.【解答】解:由题意知集合A={x|x>1}(真数位置x﹣1>0);集合B={x|x≥1}(根号底下的数大于等于零);所以A⊆B故选:B.【点评】明确集合中研究的元素是谁,将集合中的元素具体化.28.(2020•沙坪坝区校级模拟)若集合A={x∈N|(x﹣3)(x﹣2)<6},则A中的元素个数为()A.3B.4C.5D.6【考点】12:元素与集合关系的判断;1A:集合中元素个数的最值.【答案】B【分析】由题意利用不等式的解法,求出集合A的结果,可得结论.【解答】解:集合A={x∈N|(x﹣3)(x﹣2)<6}={x∈N|0<x<5}={1,2,3,4},则集合A中的元素个数为4,故选:B.【点评】本题主要考查元素与集合关系的判断,不等式的解法,属于基础题.29.(2020春•海淀区校级期末)已知非空集合A,B满足以下两个条件:(i)A∪B={1,2,3,4,5},A∩B=∅;(ii)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.7B.8C.9D.10【考点】1E:交集及其运算.【答案】B【分析】利用集合A,B中含有元素的个数,分类讨论能求出结果.【解答】解:若集合A中只有1个元素,则集合B中只有4个元素,则1∉A,4∉B,∴4∈A,1∈B,此时只有C30=1;若集合A中只有2个元素,则集合B中只有3个元素,则2∉A,3∉B,∴3∈A,2∈B,此时有C31=3;若集合A中只有3个元素,则集合B中只有2个元素,则3∉A,2∉B,∴2∈A,3∈B,此时有C32=3;若集合A中只有4个元素,则集合B中只有1个元素,则4∉A,1∉B,∴1∈A,4∈B,此时有C33=1,∴有序集合对(A,B)的个数为:1+3+3+1=8.故选:B.【点评】本题考查满足条件的有序集合的个数的求法,考查交集定义等基础知识,考查运算求解能力,属于中档题.30.(2020•河南模拟)已知集合A={y|y=x2+2x,x∈R},B={x|x2+y2=2,x∈R,y∈R},则A∩B=()A.[﹣1,2]B.(﹣1,2]C.(−1,√2]D.[−1,√2]【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵y=x2+2x=(x+1)2﹣1≥﹣1,∴A={y|y≥﹣1},且B={x|−√2≤x≤√2},∴A∩B=[−1,√2].故选:D.【点评】本题考查了描述法和区间的定义,交集的定义及运算,考查了计算能力,配方求二次函数值域的方法,考查了计算能力,属于基础题.31.(2020春•渭滨区期末)已知集合A={(x,y)|x2+y2≤2,x∈N,y∈N},则集合A的子集个数为()A.4B.9C.15D.16【考点】16:子集与真子集.【答案】D【分析】可以求出集合A,并可确定集合A所含元素的个数,从而可得出A的子集个数.【解答】解:∵A={(0,0),(0,1),(1,0),(1,1)},∴集合A的子集个数为:24=16.故选:D.【点评】本题考查了描述法、列举法的定义,集合子集个数的计算公式,考查了计算能力,属于基础题.32.(2020•运城模拟)已知集合A={﹣2,﹣1,0,1,2},B={x|x2≤1},则集合A∩B的子集个数为()A.2B.4C.8D.16【考点】16:子集与真子集;1E:交集及其运算.【答案】C【分析】解出B集合,再利用集合交集的运算法则可得A∩B={﹣1,0,1},由含有n个元素的集合,其子集个数为2n个可得答案,【解答】解:易知B={x|x2≤1}={x|﹣1≤x≤1},又A={﹣2,﹣1,0,1,2},所以A∩B={﹣1,0,1}.所以集合A∩B的子集个数为23=8个.故选:C.【点评】本题主要考查利用集合交集的运算判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,考查集合的子集,属于基础题,33.(2020•辽宁三模)已知集合A={x|1<2x≤8},B={0,1,2},则下列选项正确的是()A.A⊆B B.A⊇B C.A∪B={0,1,2}D.A∩B={1,2}【考点】18:集合的包含关系判断及应用.【答案】D【分析】解出集合A,再利用集合的关系和集合的运算对每一选项做出判断即可,【解答】解:已知集合A={x|1<2x≤8},解集合A可得:0<x≤3,即A={x|1<2x≤8}={x|0<x≤3},又因为B={0,1,2},所以A∩B={1,2},故选:D.【点评】本题考查了集合的运算及集合间的关系,是基础题.34.(2020•黑龙江三模)设集合A={0,1},B={m|m=y﹣x,x∈A且y∈A},则A∩B=()A.∅B.{1}C.{0}D.{0,1}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={0,1},B={﹣1,0,1},∴A∩B={0,1}.故选:D.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.35.(2020•北海一模)已知集合A={x|y=ln(2﹣x)},B={x|﹣3<x<3},则B∩(∁R A)=()A.(﹣3,2]B.[﹣3,2)C.(2,3]D.[2,3)【考点】1H:交、并、补集的混合运算.【答案】D【分析】先求出集合A以及A的补集,从而求出其和B的交集即可.【解答】解:∵B={x|﹣3<x<3},A={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2},故∁R A={x|x≥2},∴B∩(∁R A)={x|2≤x<3}=[2,3),故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.36.(2020•葫芦岛模拟)已知集合M={x|x2+x>0},N={x|ln(x﹣1)>0},则()A.M⊇N B.M⊆N C.M∩N=(1,+∞)D.M∪N=(2,+∞)【考点】18:集合的包含关系判断及应用.【答案】A【分析】解不等式求出集合M,N,进而判断两集合间的关系.【解答】解:因为集合M={x|x2+x>0}={x|x<﹣1或x>0},N={x|ln(x﹣1)>0}={x|x >2},故选:A.【点评】本题考查解不等式和判断集合间的关系,属于基础题.37.(2020春•房山区期末)已知全集U={﹣2,﹣1,1,2,3,4},集合A={﹣2,1,2,3},集合B={﹣1,﹣2,2,4},则(∁U A)∪B为()A.{﹣1,﹣2,2,4}B.{﹣1,﹣2,3,4}C.{﹣1,2,3,4}D.{﹣1,1,2,4}【考点】1H:交、并、补集的混合运算.【答案】A【分析】利用补集运算求出∁U A,然后直接利用交集运算求解.【解答】解:因为集合A={﹣2,1,2,3},U={﹣2,﹣1,1,2,3,4},所以∁U A={﹣1,4},所以(∁U A)∪B={﹣1,4}∪{﹣1,﹣2,2,4}={﹣1,﹣2,2,4}.故选:A.【点评】本题考查了交、并、补集的混合运算,是基础的概念题.38.(2020•三模拟)已知集合A={x|log4x<1},集合B={{x|x2﹣3≥0,x∈Z}(其中Z表示整数集),则A∩(∁Z B)=()A.{1,2,3}B.{﹣1,1}C.{1,2}D.{1}【考点】1H:交、并、补集的混合运算.【答案】D【分析】求出集合A,B,然后进行交集和补集的运算即可.【解答】解:A={x|0<x<4},B={x|x≤−√3或x≥√3,x∈Z},∴∁Z B={x|−√3<x<√3,x∈Z}={﹣1,0,1},A∩(∁Z B)={1}.故选:D.【点评】本题考查了描述法、列举法的定义,交集和补集的运算,考查了计算能力,属于基础题.39.(2020•青岛模拟)已知全集U=R,集合M={x∈R|x2﹣x≤0},集合N={y∈R|y=cos x,x∈R},则(∁U M)∩N=()A.[﹣1,0)B.(0,1)C.(﹣∞,0)D.∅【考点】1H:交、并、补集的混合运算.。
高中数学选择题训练(含答案)
〔A〕 〔B〕 〔C〕 〔D〕
36.假设 ,那么以下不等式中正确的选项是
〔A〕 〔B〕 〔C〕 〔D〕
37.圆 与圆 的公切线有
〔A〕1条〔B〕2条〔C〕3条〔D〕4条
38.圆 与抛物线 的准线相切,那么 为
〔A〕1〔B〕2〔C〕3〔D〕4
39(A).如图,面ABC⊥面BCD,AB⊥BC,BC⊥CD,且AB=BC=CD,设AD与面ABC所成角为 ,AB与面ACD所成角为β,那么 与β的大小关系为
〔A〕300〔B〕450〔C〕600〔D〕900
59(B).如图,在一根长11cm,外圆周长6cm的圆柱形柱体外外表,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,那么铁丝长度的最小值为
〔A〕61cm〔B〕 cm〔C〕 cm〔D〕10 cm
60.对2×2数表定义平方运算如下:
数学高考选择题训练一
1.给定集合 { , Z}, , ,那么以下关系式中,成立的是
A. B. C. D.
2.关于函数 ,有下面四个结论:
〔1〕 是奇函数;〔2〕当 时, 恒成立;
〔3〕 的最大值是 ;〔4〕 的最小值是 .
其中正确结论的个数是
A.1个B.2个C.3个D.4个
3.过圆 内一点 〔5,3〕的 条弦的长度组成等差数列,且最小弦长为数列的首项 ,最大弦长为数列的末项 ,假设公差 [ , ],那么 的取值不可能是
〔A〕 〔B〕 〔C〕 〔D〕
69(B).有三个平面 ,β,γ,以下命题中正确的选项是
〔A〕假设 ,ββ∥γ
〔C〕假设 ⊥γ,β∩ =a,β∩γ=b,那么a⊥b
〔D〕假设 ∥β,β∩γ= ,那么 ∩γ=
人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】
二次函数在给定区间上最值问题二次函数的单调性与对称轴和开口方向有关,往往来讲,二次函数的开口方向一般是给定的,在此情况下,二次函数的单调性就和对称轴与闭区间的位置关系有关。
因而在求最值时,往往需要讨论对称轴和区间的位置关系,这类题目在后续学习中经常遇见。
例题精讲:一.选择题(共7小题)1.若函数2()5f x x mx =++在区间[1,5]上单调递增,则m 的取值范围为()A .[2-,)+∞B .(-∞,2]-C .[10-,)+∞D .(-∞,10]-2.已知函数2247y x ax =++在区间[3-,1]-上是单调函数,则实数a 的取值范围是()A .(-∞,1]B .[6,)+∞C .(-∞,2][6 ,)+∞D .(-∞,1][3 ,)+∞3.若二次函数2()21f x ax ax =++在区间[2-,3]上的最大值为6,则(a =)A .13B .13-或5C .13或5-D .13-4.若函数2()43f x x x =--在区间[n ,]m 上的值域为[7-,2],则m n -的取值范围是()A .[1,5]B .[2,7]C .[3,6]D .[4,7]5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .26.已知函数2()2(2)1f x ax a x =--+,[1x ∈-,3]是单调函数,则a 的取值范围是()A .[0,1]B .[1-,0]C .[1-,1]D .[1-,2]7.函数2()2f x x x =--在[a ,]b 上的值域是[3-,1],若1b =,则a b +的取值集合为()A .[3-,1]-B .[2-,0]C .[4-,0]D .[2-,1]二.解答题(共5小题)8.已知函数2()f x x ax=-(1)若在区间[1,)+∞上是增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.9.已知函数2()41f x x mx =-+,m R ∈.(1)若关于x 的不等式()0f x <解集为空集,求m 的取值范围;(2)若函数()f x 在区间[2-,)+∞上是单调增函数,求f (1)的最小值.10.山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.济南新旧动能转换先行区肩负着山东新旧动能转换先行先试的重任,某制造企业落户济南先行区,该企业对市场进行了调查分析,每年固定成本1000万元,每生产产品x (百件),需另投入成本()R x 万元,且210300,060()10006103000,60x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每件产品售价6万元,且全年内生产的产品当年能全部销售完.(1)求年利润()W x (万元)关于年产量x (百件)的函数解析式.(利润=销售额-成本)(2)年产量x 为多少(百件)时,企业所获利润最大?最大利润是多少?11.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax - 对任意[1x ∈,3]恒成立,求实数a 的取值范围.12.已知函数2()1f x x ax =-+.(1)求()f x 在[0,1]上的最大值;(2)当1a =时,求()f x 在闭区间[t ,1]()t t R +∈上的最小值.参考答案一.选择题(共7小题)1.【解答】解:2()5f x x mx =++ 在区间[1,5]上单调递增,12m∴-,故2m - .故选:A .2.【解答】解:函数的对称轴是x a =-,若函数在区间[3-,1]-上是单调函数,则3a -- 或1a -- ,解得:3a 或1a ,故选:D .3.【解答】解:显然0a ≠,有2()(1)1f x a x a =+-+,当0a >时,()f x 在[2-,3]上的最大值为f (3)151a =+,由1516a +=,解得13a =,符合题意;当0a <时,()f x 在[3-,2]上的最大值为(1)1f a -=-,由16a -=,解得5a =-,所以,a 的值为13或5-.故选:C .4.【解答】解:2()43f x x x =-- ,f ∴(2)7=-,(1)f f -=(5)2=,()f x 在区间[n ,]m 上的值域为[7-,2],∴当1n =-,2m =或2n =,5m =时m n -的最小值3,当1n =-,5m =时,m n -取得最大值6,故m n -的范围[3,6]故选:C .5.【解答】解:因为2()2a f x x ax =-+的开口向上,对称轴2ax =,①122a 即1a 时,此时函数取得最大值g (a )f =(1)12a=-,②当122a >即1a >时,此时函数取得最大值g (a )(0)2af ==,故g (a )1,12,12aa a a ⎧-⎪⎪=⎨⎪>⎪⎩ ,故当1a =时,g (a )取得最小值12.故选:B .6.【解答】解:当0a =时,函数()41f x x =+,为增函数,符合题意;当0a ≠时,函数2()2(2)1f x ax a x =--+的对称轴为2a x a-=,且函数在区间[1-,3]是单调函数,∴21a a -- ,或23a a- ,解得01a < 或10a -< .综上,实数a 的取值范围是[1-,1].故选:C .7.【解答】解:22()2(1)1f x x x x =--=-++,1x ∴=-时,()f x 取到最大值1,方程223x x --=-的根是3x =-或1.若1b =,则31a -- ,a b ∴+的取值集合围是:[2-,0].故选:B .二.解答题(共5小题)8.【解答】解:(1)函数()f x 的对称轴是2a x =,若在区间[1,)+∞上是增函数,则12a,解得:2a ;(2)①12a即2a 时,()f x 在[1,2]递增,故()min f x f =(1)1a =-,②122a <<即24a <<时,()f x 在[1,)2a 递减,在(2a,2]递增,故2()()24mina a f x f ==-,③22a即4a 时,()f x 在[1,2]递减,故()min f x f =(2)42a =-.9.【解答】解:(1)()0f x < 解集为空集,∴判别式△2160m m =- ,解得016m .(2)2()41f x x mx =-+,图象开口向上,对称轴8mx =,因为函数()f x 在区间[2-,)+∞上是单调增函数,所以28m- ,解得16m - ,f (1)4m =-是关于m 的减函数,所以当16m =-时,f (1)取最小值为20.10.【解答】解:(1)当060x <<时,22()600(10300)1000103001000W x x x x x x =-+-=-+-;当60x 时,10001000()600(6103000)1000102000W x x x x x x=-+--=--.2103001000,060()1000102000,60x x x W x x x x ⎧-+-<<⎪∴=⎨--+⎪⎩;(2)当060x <<时,22()10300100010(15)1250W x x x x =-+-=--+,当15x =时,()1250max W x =万元;当60x 时,()W x 单调递减,4150()(60)3max W x W ==.∴年产量x 为60(百件)时,企业所获利润最大,最大利润是41503万元.11.【解答】解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R ,即210x ax ++>解集为R ,可得△0<,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax - 对任意[1x ∈,3]恒成立,()26f x ax ∴- ,即2326x ax ax +-- 对任意[1x ∈,3]恒成立,即230x ax -+ 对任意[1x ∈,3]恒成立,3()min a x x ∴+ ,[1x ∈,3];3x x += ;当且仅当3x x=,即x =a ∴故a 的取值范围是(-∞,.12.【解答】解:(1)2()1f x x ax =-+的开口向上,对称轴2a x =,所以在区间[0,1]的哪个端点离对称轴远,则在哪个端点处取得最大值,当122a 即1a 时,()f x 取得最大值f (1)2a =-,当122a >即1a >时,()f x 的最大值(0)1f =,(2)当1a =时,2()1f x x x =-+的对称轴12x =,当12t 时,()f x 在[t ,1]t +上单调递增,所以2()()1min f x f t t t ==-+,当112t +即12t - 时,()f x 在[t ,1]t +上单调递减,2()(1)1min f x f t t t =+=++,当112t t <<+即1122t -<<时,()f x 在1(,)2t 上单调递减,在1(2,1)t +上单调递增,故13()()24min f x f ==,令()()min g t f x =,则2211,2311(),42211,2t t t g t t t t t ⎧-+⎪⎪⎪=-<<⎨⎪⎪++-⎪⎩.。
新高中数学等差数列选择题专项训练100含答案(1)
一、等差数列选择题1.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020 D .2021解析:B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】 由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B2.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .100解析:B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m +=,即()()11212m m m mk m b m m +===++, 即21212k k b --=,从而()13519113519502b b b b ++++=++++=.故选:B.3.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .465解析:B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B4.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n解析:A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A5.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( )A .7B .10C .13D .16解析:C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C6.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9C .8D .7解析:A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A7.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .103解析:D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,(2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 解析:D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.9.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .1112解析:C 【分析】 首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C10.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列解析:D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D.11.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 解析:B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B.12.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .919解析:D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯=故选:D13.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .5解析:B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S , 所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B.14.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B.二、等差数列多选题16.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}n a 是等方差数列B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n aa ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.17.题目文件丢失!18.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2 B .5C .3D .4解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=,∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 19.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S += B .27S S =C .5S 最小D .50a =解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.20.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤ D .当且仅当0nS <时,26n ≥解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.21.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n = 解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.22.已知数列{}n a 为等差数列,则下列说法正确的是( )A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项 解析:ABD【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确; C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.故选:ABD【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.23.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列 解析:AD【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题24.数列{}n a 满足11,121n n n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n =C .数列{}n a 的通项公式为21n a n =-D .数列{}n a 为递减数列 解析:ABD【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =,所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.25.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .当9n =或10时,n S 取最大值C .911a a <D .613S S = 解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
新高中数学等差数列选择题专项训练100含答案
一、等差数列选择题1.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a += B .560a a +=C .670a a +=D .890a a +=解析:B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B.2.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1 B .2C .3D .4解析:B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43nn n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14nb==,所以201220T b b b=++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=,故选:B【点睛】关键点点睛:此题考查由数列的递推式求数列的前n项和,解题的关键是由已知条件得221114n na a+-=,从而数列21na⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求na=,14nb==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题3.在等差数列{}n a中,520164a a+=,S,是数列{}n a的前n项和,则S2020=()A.2019 B.4040 C.2020 D.4038解析:B【分析】由等差数列的性质可得52012016024a aa a+==+,则()15202020202016202010102aa aaS+=⨯=⨯+可得答案.【详解】等差数列{}n a中,52012016024a aa a+==+()12020202052016202010104101040402a aa aS+===⨯=+⨯⨯故选:B4.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为()A.54钱B.43钱C.23钱D.53钱解析:C【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d-,a d-,a,a d+,2a d+,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解.【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C .5.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60 B .120C .160D .240解析:B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B6.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15 B .30C .3D .64解析:A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15,故选:A7.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25 B .11C .10D .9解析:D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D .8.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B9.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .320解析:C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学高考选择题训练一1.给定集合=M {4|πθθk =,∈k Z },}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立的是A.M N P ⊂⊂B.M N P ⊂=C.M N P =⊂D.M N P == 2.关于函数21)32(sin )(||2+-=x x x f ,有下面四个结论:(1))(x f 是奇函数; (2)当2003>x 时,21)(>x f 恒成立;(3))(x f 的最大值是23; (4))(x f 的最小值是21-.其中正确结论的个数是A.1个B.2个C.3个D.4个3.过圆01022=-+x y x 内一点P (5,3)的k 条弦的长度组成等差数列,且最小弦长为数列的首项1a ,最大弦长为数列的末项k a ,若公差∈d [31,21],则k 的取值不可能是A.4B.5C.6D.7 4.下列坐标所表示的点不是函数)62tan(π-=x y 的图象的对称中心的是(A )(3π,0) B.(35π-,0) C.(34π,0) D.(32π,0)5.与向量=l (1,3)的夹角为o 30的单位向量是A.21(1,3)B.21(3,1)C.(0,1)D.(0,1)或21(3,1)6.设实数y x ,满足10<<xy 且xy y x +<+<10,那么y x ,的取值范围是A.1>x 且1>yB.10<<x 且1<yC.10<<x 且10<<yD.1>x 且10<<y7.已知0ab ≠,点()M a b ,是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是A.//m l ,且l 与圆相交B.l m ⊥,且l 与圆相切C.//m l ,且l 与圆相离D.l m ⊥,且l 与圆相离8.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.216y x = B.28x y =- C.216y x =或28x y =- D.216y x =或28x y = 9(A).如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,则该棱柱体积的最小值为A.34B.33C.4D.3ACA 1B 11(第9(A)题图)9(B).在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 A.4条 B.6条 C.8条 D.10条10.某班级英语兴趣小组有5名男生和5名女生,现要从中选4名学生参加英语演讲比赛,要求男生、女生都有,则不同的选法有A.210种B.200种C.120种D.100种11.已知全集=I {∈x x |R },集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,∈k R },且∅=B A C I )(,则实数k 的取值范围是A.0<k 或3>kB.32<<kC.30<<kD.31<<-k12.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是 A.9 B.91 C.-9 D.-9113.设函数1)(22+++-=x x n x x x f (∈x R ,且21-≠n x ,∈x N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列B.是公比不为1的等比数列C.是常数列D.不是等差数列,也不是等比数列 14.若ππ43<<x ,则2cos 12cos 1xx -++等于 A.)24cos(2x -π B.)24cos(2x --π C.)24sin(2x -πD.)24sin(2x--π15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为A.⑴,⑵,⑶B.⑸C.⑶,⑸D.⑴,⑸16.下列不等式中,与不等式xx --23≥0同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x ≥0 D.)2lg(-x ≤0 17.曲线1y =:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是 A.(512,+∞) B.(512,3]4 C.(0,512) D.(13,3]418.双曲线22148xy-=的两条渐进线的夹角是A.arctanB.arctanC.D.19(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111A. B. C. D. (第9(A)题图) 19(B).已知四棱锥P -ABCD 的底面为平行四边形,设x =2P A 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为A.x >yB.x =yC.x <yD.不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.72021.已知集合}01211|{2<--=x x x A ,集合=B {)13(2|+=n x x ,∈n Z },则B A 等于 A.{2} B.{2,8} C.{4,10} D.{2,4,8,10} 22.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为A.0B.-1C.1D.223.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是 A.38>d B.3<d C.38≤3<d D.d <38≤324.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是 A.π98 B.π2197 C.π2199 D.π10025.下列命题中,错误的命题是A.在四边形ABCD 中,若+=,则ABCD 为平行四边形B.已知b a b a +,,为非零向量,且b a +平分a 与b 的夹角,则||||b a =C.已知a 与b 不共线,则b a +与b a -不共线D 对实数1λ,2λ,3λ,则三向量1λ-a 2λb ,2λ-b 3λc ,3λ-c 1λa 不一定在同一平面上26.四个条件:a b >>0;b a >>0;b a >>0;0>>b a 中,能使b a 11<成立的充分条件的个数是 A.1 B.2 C.3 D.4 27.点M (2,0),N 是圆221x y +=上任意一点,则线段MN 中点的轨迹是 A.椭圆 B.直线 C.圆 D.抛物线28.设椭圆22221x y a b +=的焦点在y 轴上,a ∈{1,2,3,4,5},b ∈{1,2,3,4,5,6,7},这样的椭圆共有A.35个B.25个C.21个D.20个29(A).如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为A.2V B.3V C.4V D.5VAC PQA 1B 1C 1(第9(A)题图)29(B).设长方体的三条棱长分别为a ,b ,c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则=++cba111A.411 B.114 C.211 D.11230.用10元、5元和1元面值的钞票来购买20元的商品,不同的支付方法有 A.9种 B.8种 C.7种 D.6种31.如果命题“⌝(p 或q )”为假命题,则A.p ,q 均为真命题B.p ,q 均为假命题C.p ,q 中至少有一个为真命题D.p ,q 中至多有一个为真命题 32.设ax x f x++=)110lg()(是偶函数,xx bx g 24)(-=是奇函数,那么b a +的值为(A )1 (B )-1 (C )21- (D )21 33.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是(A )1或21 (B )1或21- (C )1或31 (D )1或31-34.以下命题正确的是(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >35.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=a ,=b ,则是(A )b a 3234+ (B )b a 3432+ (C )b a 3234- (D )b a 3432- 36.若10<<a ,则下列不等式中正确的是(A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>- (D )1)1(1>-+a a37.圆221:40C x y x +-=与圆222:610160C x y x y ++++=的公切线有(A )1条 (B )2条 (C )3条 (D )4条 38.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 (A )1 (B )2 (C )3 (D )439(A).如图,已知面ABC ⊥面BCD ,AB ⊥BC ,BC ⊥CD ,且AB=BC=CD ,设AD 与面AB C 所成角为α,AB 与面ACD 所成角为β,则α与β的大小关系为ABCD(第9(A)题图)(A )α<β (B )α=β (C )α>β (D )无法确定39(B).在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外40.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有(A )25条 (B )60条 (C )80条 (D )181条41.已知0>>b a ,全集=I R ,集合}2|{b a x b x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与N M ,的关系为A.)(N C M p I =B.N M C p I )(=C.N M P =D.N M P = 42.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 (A )2 (B )2(C )22 (D )2log 343.在ABC ∆中,A tan 是以-4为第3项,4为第7项的等差数列的公差;B tan 是以31为第3项,9为第6项的等比数列的公比,则该三角形是(A )锐角三角形(B )直角三角形(C )钝角三角形(D )等腰三角形44.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于(A )3 (B )32 (C )3或 32 (D )3 45.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥ 46.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为(A )(41,+∞) (B )41[,+∞) (C )(0,21)(D )(0,]21 47.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是(A )2k >(B )32k -<< (C )3k <-或2k > (D )都不对 48.共轭双曲线的离心率分别为1e 和2e ,则1e 和2e 关系为(A )1e =2e (B )121e e⋅=(C )12111e e += (D )2212111e e += 49(A).棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为(A )33a(B )43a(C )63a(D )123a49(B).如图,长方体ABCD -A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°, 那么异面直线AD 1与DC 1所成角的大小是A.arcsin4B. 2arcsin 4C. arccos 4D. 2arccos450.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数有(A )210 (B )50 (C )60 (D )120A A 1BCDD1B 1C 1(9 B 图)51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x x f )31()(=,那么)9(1--f 的值为(A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,π2)内,使x x x tan sin cos >>成立的x 的取值范围是 (A )(4π,43π)(B )(45π,23π)(C )(23π,π2) (D )(23π,47π)55.设21,l l 是基底向量,已知向量2121213,2,l l l l kl l -=+=-=,若A ,B ,D 三点共线,则k 的值是(A )2 (B )3 (C )-2 (D )-3 56.使a x x <-+-|3||4|有实数解的a 的取值范围是(A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是(A )相交 (B )相切 (C )相离 (D )相交或相切58.设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩的中心,P 是椭圆上对应于6πϕ=的点,那么直线OP 的斜率为(A )(B(C (D59(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm60.对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d ⎛⎫++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则21201-⎛⎫ ⎪⎝⎭为 (A )1011⎛⎫ ⎪⎝⎭ (B )1001⎛⎫ ⎪⎝⎭ (C )1101⎛⎫⎪⎝⎭(D )0110⎛⎫⎪⎝⎭61.集合=P {x ,1},=Q {y ,1,2},其中∈y x ,{1,2,…,9}且Q P ⊂,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.2162.已知函数3)(x x x f --=,1x ,2x ,∈3x R ,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值(A )一定大于零(B )一定小于零 (C )等于零 (D )正负都有可能63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于(A )1 (B )43 (C )21 (D )8364.设βα,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是 (A )1tan tan <βα (B )2sin sin <+βα (C )1cos cos >+βα(D )2tan )tan(21βαβα+<+65.在四边形ABCD 中,0=⋅,=,则四边形ABCD 是(A )直角梯形 (B )菱形 (C )矩形 (D )正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是(A )ab ≤41 (B )ba 11+≥4 (C )22b a +≥21 (D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b ∈,R ,则||ab 的最小值是(A )1 (B )2 (C )4 (D )568.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为(A )22186x y+=(B )221166x y +=(C )22184x y +=(D )221164x y +=69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为 (A )33312cm π(B )33316cm π(C )3316cm π (D )3332cm π69(B).有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线(B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b(D )若α∥β,β∩γ=∅,则α∩γ=∅ 70.n xx 2)1(-展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 271.设集合=M {1|-x ≤<x 2},=N {x x |≤a },若∅≠N M ,则a 的取值范围是 A.(-∞,2)B.(-1,+∞) C.[-1,+∞) D. [-1,1]72.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则α的取值范围是(A )[0,32[)2ππ ,)π(B )[0,65[)2ππ ,)π(C )32[π,)π(D )2(π,]65π73.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为(A )12 (B )10 (C )8 (D )674.若把一个函数的图象按=a (3π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是(A )2)3cos(-+=πx y (B )2)3cos(--=πx y (C )2)3cos(++=πx y (D )2)3cos(+-=πx y75.设b a ,为非零向量,则下列命题中:①a b a b a ⇔-=+||||与b 有相等的模;②a b a b a ⇔+=+||||||与b 的方向相同;③a b a b a ⇔-<+||||||与b 的夹角为锐角;④||||||||a b a b a ⇔-=+≥||b 且a 与b 方向相反.真命题的个数是(A )0 (B )1 (C )2 (D )3 76.若y x 22log log +≥4,则y x +的最小值为(A )8 (B )24 (C )2 (D )4 77.如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么a b ,的值分别是 (A )13,6 (B )13,-6 (C )3,-2 (D )3,678.已知抛物线21:2C y x =的图象与抛物线2C 的图象关于直线y x =-对称,则抛物线2C 的准线方程是(A )18x =- (B )12x = (C )18x = (D )12x =-79(A).在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a ,则三棱锥P -BDQ 的体积为(A )3363a(B )3183a(C )3243a (D )无法确定ABC DA 1B 1C 1D 1PQ(第9(A)题图)79(B).下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PQQRR S SP PPQQRR SSPPPQQQR RSSSPP QQRRSSS(A ) (B ) (C ) (D )80.某博物馆要在20天内接待8所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校均只参观1天,则在这20天内不同的安排方法数是(A )77320A C (B )820A (C )717118A C (D )1818A81.若集合1A ,2A 满足A A A =21 ,则称(1A ,2A )为集合A 的一个分拆,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A ,1A )为集合A 的同一种分拆,则集合=A {1a ,2a ,3a }的不同分拆种数是A.27B.26C.9D.8 82.已知函数x x f 2log )(=,2)(y x y x F +=,,则F ()41(f ,1)等于(A )-1 (B )5 (C )-8 (D )383.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是(A )1997 (B )1999 (C )2001 (D )200384.将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是(A )x cos (B )x cos 2 (C )x sin (D )x sin 285.下列命题是真命题的是:①⇔b a //存在唯一的实数λ,使=a λb ;②⇔b a //存在不全为零的实数μλ,,使λ+a μ0=b ;③a 与b 不共线⇔若存在实数μλ,,使λa μ+b =0,则0==μλ;④a 与b 不共线⇔不存在实数μλ,,使λ+a μ0=b .(A )①和 (B )②和③ (C )①和② (D )③和④ 86.若02log )1(log 2<<+a a a a ,则a 的取值范围是(A )(0,1)(B )(0,21)(C )(21,1)(D )(0,1)∪(1,+∞) 87.已知⊙221:9C x y +=,⊙222:(4)(6)1C x y -+-=,两圆的内公切线交于1P 点,外公切线交于2P 点,则1C 分12PP的比为(A )12- (B )13- (C )13 (D )916-88.双曲线2216436x y-=上一点P 到它的左焦点的距离是8,那么P 到它的右准线的距离是(A )325 (B )645 (C )965 (D )128589(A).已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角B ―AC ―D 等于(A )1200 (B )900 (C )600 (D )45089(B).如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在(A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部ABA 1B 1C 1(第9(B)题图)90.25人排成5×5方阵,从中选出3人,要求其中任意3人不同行也不同列,则不同的选出方法种数为(A )600 (B )300 (C )100 (D )6091.已知集合=M {1,3},=N {03|2<-x x x ,∈x Z },又N M P =,那么集合P 的真子集共有 A.3个 B.7个 C.8个 D.9个92.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水22t 升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供 (A )3人洗澡 (B )4人洗澡(C )5人洗澡 (D )6人洗澡93.已知等差数列}{n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于 (A )38 (B )20 (C )10 (D )994.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称(A ))62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y95.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k 的值为(A )-6 (B )6 (C )3 (D )-396.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为(A )0 (B )-1 (C )1 (D )2 97.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C 挡住,则a 的取值范围是 (A )(-∞,-1)∪(-1,+∞)(B )(-∞,-2)∪(2,+∞) (C )(-∞,,+∞)(D )(-∞,-4)∪(4,+∞)98.设12F F 、是双曲线2214xy -=的两个焦点,点P 在双曲线上,且120PF PF ⋅= ,则12||||PF PF ⋅的值等于(A )2 (B )(C )4 (D )899(A).用一个平面去截正方体,所得的截面不可能...是 (A )六边形 (B )菱形 (C )梯形 (D )直角三角形99(B).已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是(A )2∶π (B )1∶2π (C )1∶π (D )4∶3π 100.在8)2(-x 的展开式中,x 的指数为正偶数的所有项的系数和为(A )3281 (B )-3281 (C )-3025 (D )3025101.已知集合=A {2|-x ≤x ≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则A.-3≤m ≤4B.-3<<m 4C.42<<mD.m <2≤4102.定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则 (A ))()(21x f x f > (B ))()(21x f x f >-(C ))()(21x f x f -< (D ))(1x f ,)(2x f 的大小与1x ,2x 的取值有关 103.设n S n n 1)1(4321--++-+-= ,则32124++++m m m S S S (∈m N *)的值为 (A )0 (B )3 (C )4 (D )随m 的变化而变化 104.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为60o ,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是(A )相切 (B )相交 (C )相离 (D )随βα,的值而定105. 方程12221log 2x x x +=+的解所在的区间是A. 1(0,)3B. 11(,)32C. 1(2D.106.已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是(A )3-<x 或2->x (B )21-<x 或31->x (C )3121-<<-x (D )23-<<-x 107.已知直线1:23l y x =+和直线23l l ,.若1l 与2l 关于直线y x =-对称,且32ll ⊥,则3l 的斜率为(A )-2 (B )12- (C )12(D )2108.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 (A )(0,+∞)(B )(0,2) (C )(1,+∞)(D )(0,1)109(A).长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(A )π27 (B )π56 (C )π14 (D )π64109(B).二面角α―AB ―β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么(A )∠CEB =∠DEB (B )∠CEB >∠DEB(C )∠CEB <∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定 110.在1003)23(+x 展开式所得的x 的多项式中,系数为有理数的项有 (A )50项 (B )17项 (C )16项 (D )15项111.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“N M =”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 112.定义在R 上的函数)1(+=x f y 的图象如图1所示,它在定义域上是 减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则 0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是 (A )②③ (B )①④(C )②④ (D )①③图1 113.在等差数列}{n a 中,公差1=d ,8174=+a a ,则20642a a a +++ (A )40 (B )45 (C )50 (D )55114.已知θ是三角形的一个内角,且21cos sin =+θθ,则方程1cos sin 22=-θθy x 表示(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 115.平面直角坐标系中,O 为坐标原点,已知两点A (2,-1),B (-1,3),若点C满足OB OA OC βα+=其中0≤βα,≤1,且1=+βα,则点C 的轨迹方程为 (A )0432=-+y x (B )25)1()21(22=-+-y x (C )0534=-+y x (-1≤x ≤2)(D )083=+-y x (-1≤x ≤2)116.z y x >>且2=++z y x ,则下列不等式中恒成立的是(A )yz xy > (B )yz xz > (C )xz xy > (D )|||||y z y x > 117.已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是(A ),1)∪(1)(B ))(C )(0,1) (D )(1)118. 已知动点(,)M x y 3411x y =+-,则点M 的轨迹是A. 椭园B. 双曲线C. 抛物线D. 两条相交直线119(A).如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为(A )29(B )5 (C )6(D )215ABCDEF(第9(A)题图)119(B).已知边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是(A )a 23 (B )a 43 (C )a 23 (D )a 43120.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为(A )240 (B )120 (C )60 (D )30121.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba11<成立的充分条件的个数是A.1B.2C.3D.3122.如果函数px nx y ++=21的图象关于点A (1,2)对称,那么(A )=p -2,=n 4 (B )=p 2,=n -4 (C )=p -2,=n -4 (D )=p 2,=n 4123.已知}{n a 的前n 项和142+-=n n S n ,则||||||1021a a a +++ 的值为(A )67 (B )65 (C )61 (D )56124.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是(A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f > (C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <125.下列命题中,正确的是(A )||||||b a b a ⋅=⋅ (B )若)(c b a -⊥,则c a b a ⋅=⋅ (C )2a ≥||a (D )c b a c b a ⋅⋅=⋅⋅)()(126.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为(A )43 (B )42(C )423(D )23127.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 (A )5 (B )3 (C )2 (D )1128.椭圆22221x y a b +=(0a b >>)的半焦距为c ,若直线2y x =与椭圆的一个交点的横坐标恰为c ,则椭圆的离心率为(A )(B (C 1 (D 1129(A).斜棱柱底面和侧面中矩形的个数最多可有(A )2个 B )3个 (C )4个 (D )6个129(B).二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900130.从10种不同的作物种子中选出6种分别放入6个不同的瓶子中展出,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有(A )48210A C 种(B )5919A C 种 (C )5918A C 种 (D )5819C C 种131.已知集合}1log |{2>==x x y y A ,,}1)21(|{>==x y y B x ,,则B A 等于A.}210|{<<y y B.}10|{<<y y C.}121|{<<y y D.∅132.设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于 (A )ab 2-(B )ab - (C )c (D )ab ac 442-133.在等比数列}{n a 中,首项01<a ,则}{n a 是递增数列的充要条件是公比 (A )1>q (B )1<q (C )10<<q (D )0<q134.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是(A )0 (B )1 (C )-1 (D ) 2135.已知n m ,是夹角为o 60的单位向量,则n m a +=2和n m b 23+-=的夹角是 (A )o 30 (B )o 60 (C )o 90 (D )o 120136.设∈c b a ,,(0,+∞),则三个数b a 1+,c b 1+,ac 1+的值 (A )都大于2(B )都小于2(C )至少有一个不大于2(D )至少有一个不小于2137.若直线240mx ny +-=(m n ∈、R )始终平分圆224240x y x y +---=的周长,则mn 的取值范围是(A )(]1,0 (B )(0,1)(C )(-∞,1) (D )(]1,∞-138.已知点P (3,4)在椭圆22221x y a b+=上,则以点P 为顶点的椭圆的内接矩形PABC 的面积是(A )12 (B )24 (C )48 (D )与a b 、的值有关139(A).在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,则AB 与β所成的角是(A )6π (B )3π (C )4π (D )2πABCMNαβ(第9(A)题图)139(B).已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 (A )4π (B )3π (C )2π (D )32π140.现从8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学分别有(A )男生5人,女生3人 (B )男生3人,女生5人 (C )男生6人,女生2人 (D )男生2人,女生6人141.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则 A.B A U = B.B A C U U )(= C.)(B C A U U = D.)()(B C A C U U 142.若函数)(x f y =存在反函数,则方程c x f =)((c 为常数)(A )有且只有一个实根 (B )至少有一个实根 (C )至多有一个实根 (D )没有实根143.下列四个数中,哪一个时数列{)1(+n n }中的一项 (A )380 (B )39 (C )35 (D )23144.若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在 (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限145.已知平面上有三点A (1,1),B (-2,4),C(-1,2),P 在直线AB 上,使||31||=,连结PC ,Q 是PC 的中点,则点Q 的坐标是 (A )(21-,2)( B )(21,1)(C )(21-,2)或 (21,1)(D )(21-,2)或(-1,2)146.若c b a >>,则下列不等式中正确的是(A )||||c b c a > (B )ac ab > (C )||||c b c a ->- (D )c b a 111<< 147.直线cos1sin130x y +-=的倾斜角是(A )1 (B )12π+ (C )12π- (D )12π-+148.椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是(A) (B(C(D149(A).空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,若1a ∥1b ,2a 与2b 交于一点,则l 和m 的位置关系为(A )一定异面 (B )一定平行 (C )异面或相交(D )平行或异面 149(B).如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C所成角的正切值为 (A )52 (B )25 (C )32 (D )23AB D A 1B 1C 11(第9(B)题图)150.若n xx )1(+展开式中第32项与第72项的系数相同,那么展开式的中间一项的系数为 A.52104C B.52103C C.52102C D.51102C参考答案。