平行四边形单元检测含答案
八年级数学下册《平行四边形》单元测试卷(附答案)
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
八年级数学(下)第十八章《平行四边形》单元测试卷含答案
八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。
第五单元平行四边形和梯形 单元测试(含答案)2024-2025学年四年级上册数学人教版
第五单元平行四边形和梯形(单元测试)-2024-2025学年四年级上册数学人教版一、单选题1.下面各组线中,互相平行的是( )。
A.B.C.D.2.一个长方形木框拉成一个平行四边形,它的( )不变.A.面积B.高C.周长D.周长和面积3.只有一组对边平行的四边形是( )。
A.长方形B.正方形C.梯形D.平行四边形4.把一个平行四边形任意分割成两个梯形,这两个梯形的( )总是相等的。
A.面积B.“上底+下底”的和C.高D.周长5.把木条做成的长方形框架拉成平行四边形(如下图),下面说法正确的是( )A.周长不变,面积变B.周长和面积都不变C.周长和面积都变D.周长变,面积不变二、判断题6.当梯形的两腰相等时,这个梯形叫等腰梯形。
( )7.平行四边形只有一组对边平行。
( )8.长方形的两条对角线垂直。
( )9.两条平行线长都是5厘米。
()10.电动伸缩门利用了平行四边形的易变性。
( )三、填空题11.如下图,过点A向直线画四条线段,长度分别是3、4、5、6厘米,长度为3厘米的是线段 。
12.平行四边形的对边互相平行,且长度 ,对角 。
13.长方形的对边是互相 的,相邻的两条边是互相 的。
14.上面图形中, 是平行四边形, 是梯形。
15.把一个圆沿着它的半径平均分成若干份,拼成一个近似的平行四边形。
如果这个圆的半径是3cm,那么这个平行四边形的高是 cm,底是 cm。
16.如图,李大爷家有一块在长方形菜地ABCD,从A点到CD边的距离是 米。
四、作图题17.请画出以下图形底所对应的高。
(1)(2)五、解决问题18.盖房子时。
怎样判断封面和地面是垂直的?19.公园里有一个花坛的形状是平行四边形,它的周长是38米,其中一条边长为4米,其余三条边的长分别是多少米?20.下图中,直线a和直线b互相平行,测量∠1和∠2的度数,并比较这两个角的大小。
21.一个梯形的下底的长度是上底的4倍,如果将上底延长21厘米就成了一个平行四边形,则这个梯形的上底是多少厘米?下底是多少厘米?22.福州东部花海公园要开辟一块平行四边形的地用来种植向日葵以供市民观赏。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
北师大八年级下数学《平行四边形》单元检测卷含答案
单元检测卷:平行四边形(基础卷)一、选择题(每小题3分,共30分)1.一个多边形从一个顶点出发共引7条对角线,那么这个多边形对角线的总数为 ( ) A 、70 B 、35 C 、45 D 、50 【答案】B 【解析】试题分析:根据从一个顶点出发共引7条对角线可得:多边形的边数为10,则对角线的总条数=27102)3(⨯=-n n =35、 2。
已知,ABCD 中,若∠A+∠C=120°,则∠B 的度数是( )A 、100°B 、120°C 、80°D 、60° 【答案】B 【解析】试题分析:根据平行四边形的性质可得∠A=∠C=60°,则∠B=180°-60°=120°、 3.在下列性质中,平行四边形不一定具有的是( )A 。
对边相等 B.对边平行 C 。
对角互补 D 。
内角和为360° 【答案】C4.若一个多边形的每个内角都为135°,则它的边数为( ) A.8 B.9 C 。
10 D 。
12 【答案】A 【解析】试题分析:由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案。
解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°﹣135°=45°, ∴这个多边形的边数为:360°÷45°=8, 故选:A.5。
用下列图形不能进行平面镶嵌的是( )A 、正三角形和正四边形B 、正三角形和正六边形C 、正四边形和正八边形D 、正四边形和正十二边形 【答案】D6。
A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有( )A、3种B、4种C、5种D、6种【答案】B【解析】试题分析:根据一组对边平行且相等、两组对边分别平行、两组对边分别相等来进行判定、则正确的选法为:①③、②④、①②、③④四种判定方法、7。
平行四边形单元测试题含答案
平行四边形单元测试题含答案Chapter 18 Test on "Parallelogram"I。
Multiple Choice (4 points x 8)1.Which of the following is not a characteristic of a parallelogram。
A。
Diagonals are equalB。
Two sets of opposite angles are equalC。
Two sets of opposite sides are parallelD。
The sum of r angles is 360 degrees2.What is the maximum number of parallelograms that XXX-isosceles triangles that XXX。
A。
1B。
2C。
3D。
43.XXX:A。
AcuteB。
RightC。
ObtuseD。
Cannot be determined4.In parallelogram ABCD。
XXX can be:A。
2:3:4:5B。
2:2:3:3C。
2:3:2:3D。
2:3:3:25.If one side of parallelogram ABCD is 10 cm。
what can be the lengths of the two diagonals。
A。
24 and 12B。
26 and 4C。
24 and 4D。
12 and 86.In parallelogram ABCD (as shown in the figure)。
P is an arbitrary point inside it。
and the areas of triangles ABP。
BCP。
CDP。
and DAP are S1.S2.S3.and S4.respectively。
Which of the following must be true。
八年级数学下册《第18章平行四边形》单元评价检测试卷含解析.doc
单元评价检测(三)(第十八章)(45分钟100分)一、选择题(每小题4分,共28分)1.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的対角线相等D.平行四边形是轴对称图形【解题指南】由菱形的判定方法得岀选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项0正确;由平行四边形的性质得出选项D错误;即可得出结论.【解析】选C.对角线互相垂直且平分的四边形是菱形,故A错;两边及其夹角对应相等的两个三角形全等, 故B错;矩形的对角线相等,故C正确;平行四边形是屮心对称图形,故D错.【变式训练】下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,乂是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其屮真命题的个数是()A.1B. 2C. 3D.4【解析】选C.平行四边形的对边相等,①正确;对角线相等的平行四边形是矩形,②错误;正方形既是轴对称图形,又是中心对称图形,③正确;一条对角线平分一组对角的平行四边形是菱形,④正确,所以有3个真命题.2.(2017 •黔东南州模拟)如图,在口ABCD中,AD=8,点E, F分别是BD, CD的中点,则EF等于()【解析】选C.・・•四边形ABCD 是平行四边形,・・・BC 二AD 二8.・・•点E, F 分别是BD, CD 的中点,1 1AEF =2BC =2X 8=4.3. (2017・衢州中考)如图,矩形纸片ABCD 中,AB=4, BC=6,将△ ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F,则DF 的反等于() 3 5A. 5B. 3【解题指南】根据折亞的性质得到AE 二AB, ZE 二ZB 二90° ,易证Rt AAEF^Rt ACDF,即可得到结论EF 二DF;易 得 FC 二FA,设 FA 二x,则 FC 二x, FD 二6-x,在RtACDF 中利用勾股定理得到关于x 的方程X 2=42+(6-X )2,解方程求出x.【解析】选B.・・•矩形ABCD 沿对角线AC 对折,使AABC 落在AAEC 的位置,AAE=AB, ZE=ZB=90° ,又・・•四边形ABCD 为矩形,・・・AB 二CD,・・・AE 二DC,而 ZAFE 二 ZCFD, •・•在AAEF 与Z\CDF 中,(Z-AFE = Z-CFD, 厶E = e IAE = CD, AAAEF^ACDF(AAS),・•・ EF 二 DF.E.A. 2B. 3C.4D. 5・・•四边形ABCD为矩形,・・・AD二BC二6, CD二AB二4,VRtAAEF^RtACDF, ・・・FC二FA,设 FA=x,则 FC=x, FD二6-x,在 RtACDE 中,C『二CD'+DF;13即X2=42+(6-X)2,解得 x二3 ,5则 FD二6-x=>4.(2017・北流市一模)如图,四边形ABCD是菱形,A(3, 0) ,B(0, 4),则点C的坐标为( )A. (-5, 4)B. (-5, 5)C. (-4, 4)D. (-4, 3)【解析】选 A. J A (3, 0), B(0, 4),・・・ 0A=3, OB=4,・・・AB二J%' + °B2二5,・・•四边形ABCD是菱形,・・・BC=AD=AB=5, A点C的坐标为(-5, 4).5.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D. 菱形【解析】选D.如图,E, F, G, H 为矩形各边的屮点,连接AC, BD.根据三角形屮位线定理, 1得 EF 〃AC, EF=2AC ,HG 〃AC,1 1HG 二2A C, EH 二2BD .・・・EF 〃HG, EF 二HG, ・・・四边形EFGH 为平行四边形.又TAOBD, ・・・EF 二EH.・・・四边形EFGH 为菱形.6. (2017・威海模拟)在矩形ABCD 中,AB 二2, AD 二4, E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上 一点,当ZPAE=ZDAE 时,AP 的长为 (179 A.4 B. 4 C. 2【解析】选 B. VAD/7BC, A ZDAE=ZF,又 V ZPAE=ZDAE, A ZPAE^ZF,・・・PA 二PF. TE 为DC 中点,・・・DE 二CE.又T ZAED=ZFEC,AAADE^AFCE, .\CF=AD=4,设 CP=x, PA 二PF 二x+4, BP 二4-x,在直角 AABP 中,22+(4-X )2=(X +4)2,1解得:x=4,17・・・AP 的长为4.【变式训练】如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B'处,若AE=2, DE 二6, ZEFB 二60° ,则矩形ABCD 的面积是( )DGC【解析】选D.由两直线平行内错角相等,知ZDEF=ZEFB=60° , A ZAEF=8二16\/37. 如图所示,R, F 分别是正方形ABCD 的边CD, AD 上的点,且CE=DF, AE, BF 相交于点0,下列结论①AE 二BF;② AE 丄 BF;③AO 二0E ; ®S A AOB =S 四边形DEOF 中,错误的有( )【解析】选A. T 四边形ABCD 是正方形「.CD 二AD. VCE=DF, ADE=AF,又TAD 二AB, ZBAF=ZD, AAADE^ABAF, •••①AE 二BF, S AADE =S ABAF ,ZDEA-ZAFB, ZEAD-ZFBA,@S AAOB -S 四边形 DEOI :・•••ZABF+ZAFB 二ZDAE+ZDEA 二90° ,A ZAFB+ZEAF=90° ,・••②AE 丄BF —定成立.错误的结论是:③A0二0E.二、填空题(每小题5分,共25分)8. (2017 •徐州中#) AABC 中,点D,E 分别是AB, AC 的中点,DE 二7,则BC= ____【解析1 VD, E 分别是AABC 的边AB 和AC 的中点,DE 是AABC 的中位线,VDE=7, ABC=2DE=14.A. 1个 ,ZK 9 EF=120° …••ZA'EIT =60° , A , E-AE-2,求得 A'B',・・・AB 二矩形//CD 的面积为S=2\^ X B .2个C ・3个D.4个2 11 c JDA\答案:149. 已知矩形的对角线AC 与BD 相交于点0,若A0二1,那么BD 二【解析】在矩形ABCD 中, ・・•对角线AC 与BD 相交于点0, A0=l, ・•・ A0二CO 二B0二DO 二 1, A BD=2. 答案:210. (2017・连云港中考)如图,在口ABCD 中,AE 丄BC 于点E,AF 丄CD 于点F.若ZEAF 二56°,则ZB 二 _【解析】TAE 丄BC,AF 丄CD,A ZAEC=ZAFC=90° ,在四边形 AECF 中,ZC=360° -ZEAF-ZAEC-ZAFC=360° -56° -90° -90° =124° , 在Q ABCD 中,ZB=180° -ZC=180° -124° 二56° .答案:56°11. (2017・乌鲁木齐中考)如图,在菱形ABCD 中,ZDAB=60° ,AB=2,则菱形ABCD 的面积为—【解析】•・•菱形 ABCD, AAD=AB, OD=OB, 0A=0C, V ZDAB=60° , A AABD 为等边三角形,ABD=AB=2, A0D=l,在_________ 1RtAAOD 中,根据勾股定理得:A0二「.AC 二则S 菱形磁尸?AC ・BD=2A^.D答案:2&12.(2017 •安顺中考)如图所示,正方形ABCD的边长为6, AABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为___________・【解析】设BE与AC交于点P,连接BD,・・•点B与D关于AC对称,・・・PD二PB,・・・PD+PE二PB+PE二BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;•・•正方形ABCD的边长为6,・・・AB二6.乂•••△ABE是等边三角形,ABE=AB=6.故所求最小值为6.答案:6 D三、解答题(共47分)13.(10分)如图,在口ABCD中,DE丄AB, BF丄CD,垂足分别为E, F.⑴求证:△ADE9ACBF.⑵求证:四边形BFDE为矩形.【证明】(1) VDE丄AB,BF丄CD,A ZAED=ZCFB=90° ,・・•四边形ABCD为平行四边形,・・・AD=BC, ZA=ZC,(/-AED =乙CFB,厶1 = zC,在Z\ADE 和Z\CBF 屮,I A。
人教版数学八年级第十八章平行四边行单元测试精选(含答案)5
人教版数学八年级第十八章平行四边行单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.453.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().A.1个B.2个C.3个D.4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等5.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD 的两条对角线的和是()A .18B .28C .36D .466.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .727.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16-83B .-12+83C .8-43D .4-23 8.如图,▱ABCD 中,AB=3,BC=5,BE 平分∠ABC 交AD 于点E 、交AC 于点F ,则AF FC的值为( )A .53B .35C .32D .239.下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB CD ∥,AD BC ∥B .AB CD ∥,AD BC = C .AB CD ∥,AB CD = D .AB CD =,AD BC =10.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是( )A.4 B.4.6 C.4.8 D.511.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形12.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是().A.16 B.12 C.8 D.413.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4 B.3 C.2 D.114.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°15.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG与FH交于点O,则图中的菱形共有()A.4个B.5个C.6个D.7个16.在Y ABCD中,AC,BD是对角线,如果添加一个条件,即可推出Y ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD 17.如图,△ABC中,D为AB中点,BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5 B.5.5 C.6 D.6.518.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角线是否垂直D.测量其内角是否有三个直角19.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB 20.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE ,过点E 作//EF BC ,分别交,BD CD 于,G F 两点.若,M N 分别是,DG CE 的中点,则MN 的长为( )A .3B .23C .13D .421.如图,在△ABC 中,CD ⊥AB 于点D ,BE ⊥AC 于点E ,F 为BC 的中点,DE=5,BC=8,则△DEF 的周长是( )A .21B .18C .15D .1322.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB=CD ;③BC=AD ;④BC ∥AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )A .3种B .4种C .5种D .6种 23.如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .924.菱形、矩形、正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.123D.163α=︒,若26.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角30 8AC=,6BD=,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.1227.如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC 上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为( )A.1cm2B.1.5cm2C.2cm2D.3cm2评卷人得分二、填空题28.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.29.在平面直角坐标系中,四边形AOBC是菱形,若点A的坐标是(3,4),则菱形的周长为___,点C的坐标是____;30.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.31.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB 和∠CBA,若AD=5,AP=8,则△APB的周长是.32.如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=13 CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=_____,S2=_____.33.已知一个菱形的两条对角线的长分别为5cm和8cm,该菱形的面积为______cm2.34.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=_____°.35.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为_____,面积为_____.36.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,•当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.37.如图,在矩形ABCD 中,AB 4=,BC 6=,点E 为BC 的中点,将ABE V 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为________.38.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .39.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB =90°,OC =BC ,则点C 关于y 轴对称的点的坐标是 ___。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)
人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
第4章平行四边形单元测试卷(含解析)
浙教版八年级数学下册单元测试卷第四章平行四边形姓名:___________班级:___________学号:___________一、选择题(本大题共10小题,共30.0分)1.小斌家买了一套新房正在进行装修,星期天小斌陪父母一起到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设客厅地面(需无缝),则购买的瓷砖形状不可以是()A. 三角形地砖B. 正方形地砖C. 正六边形地砖D. 正五边形地砖2.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A. 35°B. 40°C. 50°D. 30°3.已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个4.学习了平行四边形的相关知识后,小明采用下列方法钉制了一个平行四边形框架:如图,将两根木条AC、BD的中点重叠并用钉子固定,然后用木条将AB、BC、CD、DA分别钉起来.此时四边形ABCD即为平行四边形,这样做的依据是()A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A. 2B. 5C. 7D. 96.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A. 有一个内角小于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 每一个内角都大于60°7.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3√3,则B′D的长度为()A. 6√3B. 9√3C. 6D. 98.已知点D与点A(−5 , 0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A. 172√2 B. 132√2 C. 13 D. 129.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为ℎ1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为ℎ2,则下列结论正确的是A. ℎ1 =ℎ2 B. ℎ1=2ℎ2 C. 2ℎ1 =ℎ2 D. ℎ1.ℎ2大小不确定10.如图,在平行四边形ABCD中,∠C=120º,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A. 1B.C.D.二、填空题(本大题共8小题,共24.0分)11.一个多边形的内角和与某一个外角的度数总和为1350°,则这个多边形的边数是________。
第四章 平行四边形单元测试(试卷答案)
第四章平行四边形班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10小题,每小题3分,共30分)1.七边形的外角和为()A.180°B.360°C.900°D.1260°2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.93.如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.如图,在平行四边形ABCD中,AD=4,AB=3,AE平分∠BAD交BC于点E,则线段BE,EC的长分别为()A.2与2B.3与1C.3与2D.1与35.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.6.下列命题的逆命题错误的是()A.平行四边形的对角线互相平分B.两组对角相等的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形7.已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法证明这个结论,可假设()A.∠A=∠B B.AB=AC C.∠B=∠C D.∠A=∠C 8.如图,E,F分别是□ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A .6B .12C .18D .249. 如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB 边上一动点,以P A ,PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为( ) A .6 B .8 C .2 2 D .4 210.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ;③AF =CE ;④∠AEB =∠CFD 中,选择一个条件添加,使四边形DEBF 是平行四边形,可添加的条件有( )A .①②③B .①②④C .①③④D .②③④二、填空题(本题有8小题,每小题3分,共24分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数为__________.12.平行四边形的两邻边之比是2︰3,周长是30cm ,则较短的一边长为__________cm .13.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为__________.14.请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是整数”是假命题,你举的反例是x =__________(写出一个x 的值即可).15.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________.ABCEF16.如图,在8×8的方格纸中,每一个小正方形的边长均为1,则格点多边形的面积为__________.17.如图,在□ABCD 中,E ,F 分别是AB ,DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16 cm 2,S △BQC =25 cm 2,则图中阴影部分的面积为__________cm 2. 错误!未找到引用源。
人教版-八下数学第十八章《平行四边形》单元测试题及答案
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.
北师大版八下第6章 《平行四边形》单元质量监测卷 (解析版)
北师大版数学八年级下册第六章《平行四边形》单元质量监测卷(解析版)(全卷满分100分,时间45分钟)班级: 姓名: 学号: 成绩:一、选择题(每小题3分共30分,请将答案填在下列表格中)1.平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C . 对角线相等D .相邻两角互补 【答案】C【解析】平行四边形具有的性质是对角线互相平分,对边相等且平行,再由平行可得相邻两角互补,平行四边形没具有“对角线相等”的性质.故不具有的应该是C ,故答案选C . 【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的性质 【试题难度】★☆☆☆☆2.平行四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比有可能是( ) A .1∶2∶3∶4 B .2∶2∶3∶3 C .2∶3∶2∶3 D .2∶3∶3∶2 【答案】C【解析】由“平行四边形组对角相等”,即有∠A=∠C 、∠B=∠D,那么相等的角所占的比例也相同,因此选C .【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的性质 【试题难度】★☆☆☆☆3.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC =3,则EC 的长( )A . 1B . 2C . 1.5D . 3 【答案】B【解析】由平行四边形有AB ∥CD ,再得∠DEA=∠EAB ,再由角平线得到∠EAB=∠DAE ,因此有DE=DA=BC=3,所以EC=5-3=2,因此选B . 【题型】单选题【一级知识点】四边形第3题图【二级知识点】平行四边形【三级知识点】平行四边形的性质【试题难度】★★☆☆☆4.能确定平行四边形的大小和形状的条件是()A.已知平行四边形的两邻边B.已知平行四边形的两邻角C.已知平行四边形的两条对角线D.已知平行四边形的两边及夹角【答案】D【解析】可将平行四边形的问题转化为三角形问题(对角线把平行四边形分割成两个全等的三角形,讨论其中一个三角形a的特征即可知结果,A项中,如果内角不确定,则三角形a的确定条件不充分;B 项中,没有一条边的条件,不能确定三角形a的大小;C项中,如果对角线的夹角不维一,三角形a大小形状不维一.因此选D.【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的判定【试题难度】★★☆☆☆5.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=BD C.AB∥CD,AD=BC D.AB=CD,AD=BC 【答案】D【解析】根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”可知D是正确的,故答案选D.【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的判定【试题难度】★☆☆☆☆6.下列两个图形,能组成平行四边形的是()A.两个全等三角形B.两个直角三角形C.两个锐角三角形D.两个等腰三角形【答案】A【解析】A中“两个全等三角形”得到对应边相等,对应角相等,再进一步根据平行四边形的判定得到平行四边形.而B、C、D中的“两个直角三角形”、“两个锐角三角形”、“两个等腰三角形”中不一定全等,即没有边等,角等,因而得不到平行四边形的判定方法,可知A是正确的,故答案选A.【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的判定【试题难度】★☆☆☆☆7.已知一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】由多边形的内角和与外角和公式:,360180)2(︒=︒⨯-n 得4=n ,是四边形.因此选B . 【题型】单选题【一级知识点】几何初步 【二级知识点】多边形【三级知识点】多边形的内角和与外角和 【试题难度】★☆☆☆☆8.在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A .2cm <OA <5cm B .2cm <OA <8cm C .1cm <OA <4cm D .3cm <OA <8cm 【答案】C【解析】在△ABC 中,根据三角形的三边关系可得到2cm <AC <8cm ,再根据平行四边形的性质“对角线互相平分”得到1cm <OA <4cm .因此选C . 【题型】单选题【一级知识点】几何初步、四边形 【二级知识点】平行四边形、三角形【三级知识点】平行四边形的性质、三角形的三边关系 【试题难度】★★☆☆☆9.下列说法中,①一组对角相等;②两条对角线互相垂直;③两条对角线互相平分;④一组邻角互补;⑤两组对边都相等;⑥两组对边分别平行.这些说法中能判定四边形是平行四边形的有( )个 A .5 B .4 C .3 D .2 【答案】C【解析】根据平行四边形的判定方法直接得到③⑤⑥是正确的,而①只是“一组对角相等”不能得到平行四边形.④“一组邻角互补”间接得到一组对边平行也不能得到平行四边形.因此选C . 【题型】单选题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的判定 【试题难度】★★☆☆☆10.四边形四条边长分别是a ,b ,c ,d ,其中a ,b 为对边,且满足a 2+b 2+c 2+d 2=2ab +2cd ,则这个四边形是 ( )A .任意四边形B .平行四边形C . 对角线相等的四边形D .对角线垂直的四边形 【答案】B【解析】由a 2+b 2+c 2+d 2=2ab +2cd ,得到d c b a d c b a d cd c b ab a ===-+-=+-++-,,0)()(,022222222有,再根据平行四边形的判定方法直接得到.因此选B . 【题型】单选题【一级知识点】四边形、代数式【二级知识点】平行四边形、整式的乘除【三级知识点】平行四边形的判定、完全平方公式 【试题难度】★★☆☆☆二、填空题(每小题4分,共24分)11.平行四边形ABCD 中,∠A + ∠C =100゜,则∠B = . 【答案】130°【解析】 由平行四边形的性质得到∠A =∠C =50゜, ∠A+∠B =180o ,得到∠B=130o【题型】填空题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的性质 【试题难度】★☆☆☆☆12.已知平行四边形的两邻边比为2︰3,周长为20cm ,则这个平行四边形的较长边为 cm . 【答案】6【解析】 设两邻边分别为x x 3,2,由平行四边形的周长公式有22032÷=+x x ,,2=x 所以6323=⨯=x .【题型】填空题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形的性质 【试题难度】★☆☆☆☆13.已知□ABCD 的面积是4,点O 为对角线的交点,则△AOB 的面积是 . 【答案】1【解析】平行四边形两条对角线分成的四个三角形的面积相等,故有△AOB 的面积=144=÷.【题型】填空题【一级知识点】四边形、几何初步 【二级知识点】平行四边形、三角形【三级知识点】平行四边形的性质、三角形的面积公式 【试题难度】★☆☆☆☆14.一个正多边形的内角和为720°,则这个正多边形的每一个内角等于_______. 【答案】120°【解析】根据多边形的内角和公式有:,720180)2(︒=︒⨯-n 得6=n ,再由正多边形每个内角相等有︒=÷︒1206720,故每一个内角为120°.第15题图A BCD E【题型】填空题 【【一级知识点】几何初步【二级知识点】多边形的概念与性质【三级知识点】多边形的内角与外角、多边形的内角和与外角和 【试题难度】★★☆☆☆15.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 的距离,但绳子不够,一位同学帮他想了一个注意:先在地上取一个可以直接达到A 的点C ,找到AC ,BC 的中点D ,E ,并且DE 的长为15米,则A ,B 两点间的距离是 米. 【答案】30【解析】根据三角形中位线性质定理可得到302==DE AB . 【题型】填空题【一级知识点】几何初步 【二级知识点】三角形【三级知识点】三角形中位线 【试题难度】★☆☆☆☆16.已知:如图,在□ABCD 中,对角线AC 、BD 相交于点O ,∠CAB=90°,BD=12cm ,AC=6cm , 则CD = cm .□ABCD 的面积为 2cm . 【答案】318,33【解析】ABCD 中,3AO OC ==,6BO OD ==,由勾股定理得,AB =平行四边形的面积=1122622AB AC ⨯⨯=⨯⨯⨯【题型】填空题【一级知识点】四边形、解直角三角形 第16题图 【二级知识点】平行四边形、勾股定理 【三级知识点】平行四边形的性质勾股定理的应用三、解答题(17—18题各6分,19题—20题各8分,21—22题9分,共46分)17.如图,□ABCD 中,点E 、F 分别在AD 、BC 上,且ED=BF ,EF 与AC 相交于点O . 求证:OA=OC .【答案】解:在□ABCD 中,AD ∥BC ,AD=BC∴∠OAE=∠OCF ,∠OEA=∠OFC ,DACBO又ED=BF∴AD-ED = BC-BF∴AE = CF∴△AOE≌△COF∴OA =OC.【解析】由平行四边形的性质有AD∥BC,AD=BC,再由AD∥BC得内错角∠OAE=∠OCF,∠OEA=∠OFC,再由已知ED=BF,有AD-ED = BC-BF∴AE = CF,得△AOE与△COF全等,从而得知OA =OC【题型】解答题【一级知识点】四边形、全等与相似【二级知识点】平行四边形、图形的全等【三级知识点】平行四边形的性质、全等三角形的判定与性质【试题难度】★☆☆☆☆18.在图中,AC=BD, AB=CD=EF,CE=DF.图中有哪些互相平行的线段?为什么?【答案】答:AC∥BD,AB∥CD∥EF,CE∥DF∵AC=BD,AB=CD∴四边形ABCD是平行四边形∴AC∥BD,AB∥CD∵CD=EF,CE=DF∴四边形CDF E是平行四边形∴CD∥EF,CE∥DF即AC∥BD,AB∥CD∥EF,CE∥DF.【解析】根据平行四边形的判定方法“两组对边分别平行的四边形是平行四边形”得四边形ABCD、CDFE是平行四边形,再根据平行四边形的性质,从而有AC∥BD,AB∥CD有AD∥BC,CD∥EF,CE∥DF.【题型】解答题【一级知识点】四边形【二级知识点】平行四边形【三级知识点】平行四边形判定与性质【试题难度】★☆☆☆☆19.如图, 平行四边形ABCD中,AB=5,AD=8,∠A、∠D的平分线分别交BC于E、F,求EF的长.【答案】解:∠A、∠D的平分线分别交BC于E 、F,即∠BAE=∠DAE ,∠CDF=∠ADF.在□ABCD中,AD∥BC,AB=CD=5,AD=BC=5∴∠DAE =∠BEA ,∠ADF =∠CFD∴∠BAE =∠BEA ,∠CDF =∠CFD∴BE=AB=5,CF=CD=AB=5∴BF=BC-CF=8-5=3∴EF=BE-BF=5-3=2【解析】根据平行四边形的性质与角平分线的性质得到等腰三角形ABE与DCF,再得到BE=AB=5,CF=CD=AB=5 ,从而有BF=BC-CF=8-5=3,故有EF=BE-BF=5-3=2.【题型】解答题【一级知识点】四边形、几何初步【二级知识点】平行四边形、三角形、角【三级知识点】平行四边形的性质、等腰三角形的判定角平分线的定义【试题难度】★★☆☆☆20.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s 的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?【答案】解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6-2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6-2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,综上所述,2秒后四边形ABQP是平行四边形.【解析】由运动时间为x秒,则AP=x,QC=2x,而四边形ABQP是平行四边形,所以AP=BQ,则得方程x=6-2x求解.【题型】解答题【一级知识点】四边形、方程与方程组【二级知识点】平行四边形、一元一次方程【三级知识点】平行四边形的判定、列一元一次方程、解一元一次方程【试题难度】★★☆☆☆21.平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分.【答案】∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∵M、N分别是AB、CD的中点,∴DN=CN=12DC,AM=BM=12AB,∴DN∥BM,DN=BM,∴四边形DMBN是平行四边形,∴PM∥NQ,Q C同理:PN ∥MQ ,∴四边形PNQM 为平行四边形, ∴PQ 与MN 互相平分.【解析】证明四边形PNQM 为平行四边形,再根据平行四边形的性质:对角线互相平分即可证明由平行四边形的性质与中点定义得之.【题型】解答题【一级知识点】四边形、几何初步 【二级知识点】平行四边形、线段【三级知识点】平行四边形的判定与的性质、线段的中点 【试题难度】★★★☆☆22.如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF . (1)求证:四边形ABDF 是平行四边形.(2)若AB=6,BD=2DC ,求四边形ABDF 的面积.【答案】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ABC=∠ACB,∵CD=CE,∴△DEC 是等边三角形;∴∠AEF=∠CED=60°,∵EF=EA ,∴△AEF 为等边三角形,∴∠AFE=∠FDC=60°∴AF ∥BD ,∵∠ABC=∠FDC=︒60,∴AB ∥DF;∴四边形ABDF 为平行四边形;(2)过点A 作AH ⊥BC 于H ,在Rt △ABH 中,∠BAH=90°-∠ABH=30°,∴362121=⨯==AB BH ,33362222=-=-=BH AB AH ,∵△ABC 是等边三角形,AB=6,BD=2DC ,∴BD=4,∴四边形ABDF 的面积=312334=⨯=⨯AH BD ;【解析】(1)由∠AEF=∠CED=60°,EF=EA ,得出△AEF 为等边三角形,由内错角相等,两直线平行得出AF ∥BD ,得出AF=BD ,由平行四边形的判定定理即可得出结论;(2)过点A 作AH ⊥BC 于H ,得出∠BAH=30°,利用含30°直角三角形的性质,得出362121=⨯==AB BH ,利用勾股定理可得出AH ,根据AB=6,BD=2DC ,求出BD ,即可得出结论.【题型】解答题【一级知识点】四边形、几何初步、解直角三角形 【二级知识点】平行四边形、三角形、勾股定理【三级知识点】平行四边形的性质与判定、等边三角形的定义与性质、含30度角的直角三角形的性质 勾股定理的应用 【试题难度】★★★★☆。
人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)
人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
浙教版八年级下数学《第四章平行四边形》单元检测卷含答案
第四章平行四边形单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、单选题(共11小题;每小题3分,共33分)1.一个多边形的每个外角是60°,则该多边形边数是()A. 5B. 6C. 7D. 82.已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 12C. 24D. 283.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A. 12cmB. 9cmC. 6cmD. 3cm4.一个多边形的内角和与外角和相等,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形5.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°6.不能判定一个四边形是平行四边形的条件是()A. 两组对边分别平行B. 一组对边平行且相等C. 一组对边平行,另一组对边相等D. 两组对边分别相等7.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A. 菱形B. 矩形C. 正方形D. 对角线互相垂直的四边形8.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,D,E分别是△ABC的边AC和BC的中点,已知DE=2,则AB=()A. 1B. 2C. 3D. 410.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A. OA=OC,OB=ODB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. AB∥DC,AD=BC11.用一种正多边形铺满地面时,不能铺满地面的是()A. 正三边形B. 正八边形C. 正六边形D. 正四边形二、填空题(共10题;共40分)12.已知点A(a﹣2b,﹣2)与点A′(﹣6,2a+b)关于坐标原点对称,则3a﹣b=________ .13. 如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为 ________.14.已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=________.15.n边形共有________ 条对角线.16.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H;过点H作HM∥BC交AB于M.则下列结论:①AG平分∠DAB,②S△ADH=S四边形ABCH,③△ADH是等腰三角形,④四边形ADHM为菱形.其中正确的是________17.已知一个多边形的内角和是外角和的,则这个多边形的边数是________.18.若▱ABCD的三条边分别为8cm,(x﹣2)cm,(x+3)cm,则该▱ABCD的周长是________ cm.19.四边形ABCD中,若∠DAC=∠BCA,∠DCA=∠BAC,且∠D=52°,则∠B=________.20.要做一个平行四边形框架,只要将两根木条AC、BD的中点重叠并用钉子固定,这样四边形ABCD就是平行四边形,这种做法的依据是________.21.在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有________ 个.三、解答题(共3题;共27分)22.用反证法证明:如图,D、E分别是△ABC的边AB.AC上的点,连接CD,BE.求证:CD与BE不能互相平分.23.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等.求代数式h•(m﹣k)n的值.24.如图3,在□ABCD中,点E、F在对角线AC上,且AE=CF .请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并说明它和图中已知的某一线段相等(只需说明一组线段相等即可).(1)连接________.(2)猜想:________=________.(3)试说明理由.参考答案一、选择题B BC AD C D A D D B二、填空题12.8 13.20 14.115.n(n﹣3)16.①③④ 17.518.22或42 19.52°20.两条对角线分别平分的四边形是平行四边形21.2三、解答题22.证明:假设CD和BE互相平分.连接DE.∵CD和BE互相平分,∴四边形BCED是平行四边形,∴BD∥CE,与D、E是△ABC上的边AB、AC上的点相矛盾.故CD和BE不能互相平分.23.解:∵n边形从一个顶点发出的对角线有n﹣3条,∴m=7+3=10,∵n边形没有对角线,∴n=3,∵k边形有k条对角线,∴,解得k=5,∵正h边形的内角和与外角和相等,∴h=4;则h•(m﹣k)n=4×(10﹣5)3=500.故代数式h•(m﹣k)n的值为500.24.(1)BF或DF(2)BF或DF;DE或BE(3)理由:BF=DE时∵四边形ABCD是平行四边形,∴AD=BC ,AD∥BC ,∵AE=CF∴△ADE≌△CBF ,∴BF=DE.DF=BE时,∵四边形ABCD是平行四边形,∴AB=CD ,AB∥CD ,∵AE=CF∴△ABE≌△CDF ,∴BE=DF.。
人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
第18章 平行四边形《四清导航》单元检测(含答案)
检测内容:第18章平行四边形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,CE⊥AB,E为垂足,如果∠A=125°,则∠BCE=( ) A.55°B.35°C.25°D.30°第1题图第2题图第3题图第4题图2.如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为( ) A.6 B.9 C.12 D.153.如图,在▱ABCD中,两条对角线AC,BD相交于点O,则与△ABO面积相等的三角形(△ABO除外)有()A.1个B.2个C.3个D.4个4.如图,在▱ABCD中,下列结论一定正确的是( )A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C5.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是( )A.4 B.4.5 C.5 D.5.56.如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )A.∠HGF=∠GHE B.∠GHE=∠HEFC.∠HEF=∠EFG D.∠HGF=∠HEF第6题图 第7题图 第9题图 第10题图7.如图,在▱ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( )A .4B .3 C.52 D .28.下列选项中不能判定四边形ABCD 是平行四边形的是( )A .两组对边分别平行B .一组对边平行,另一组对边相等C .两组对角分别相等D .两组对边分别相等9.如图,在平行四边形ABCD 中,E 是AD 边上的中点,若∠ABE =∠EBC ,AB =2,则平行四边形ABCD的周长是( )A.8 B.10 C.12 D.1410.如图,l1∥l2,BE∥CF,BA⊥l1于点A,DC⊥l2于点C,下面的四个结论:①AB=DC;②BE=CF;③S△ABE=S△DCF;④S▱ABCD=S▱BCFE,其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为____.第11题图第12题图第13题图第16题图12.如图,在▱ABCD中,BE⊥CD于点E,BF⊥AD于点F,∠EBF=60°,则∠C=____.13.如图所示,O为▱ABCD两对角线的交点,E,F分别是OA,OC的中点,图中的全等三角形有____对.14.四边形ABCD中,任意的邻角都互补,则四边形ABCD一定是____________.15.已知,△ABC的周长为50 cm,中位线DE=8 cm,中位线EF=10 cm,则另一条中位线DF的长是__.16.如图,在平行四边形ABCD中,E,F分别是BC,AD的中点,则四边形AECF是平行四边形,用的判别方法是__ _.17.如图所示,在△ABC中,AB=BC,AB=12 cm,F是AB边上一点,过点F作FE∥BC 交AC于点E,过点E作ED∥AB交BC于点D,则四边形BDEF的周长是__.18.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC 沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为____.三、解答题(共66分)19.(6分)如图,D为△ABC边BC上的一点,DE∥AC,DF∥AB,连结AD,EF,求证:AD,EF相互平分.20.(7分)如图,在△ABC中,AB=AC,点P为BC上任意一点,PE∥AC,PF∥AB分别交AB,AC于点E,F,请你猜想线段PE,PF,AB之间有什么数量关系?并说明理由.21.(7分)如图,在▱ABCD中,∠BCD的平分线CE交边AD于点E,∠ABC的平分线BG 交CE于点F,交AD于点G.求证:AE=DG.22.(8分)如图,AB∥CD,AB=CD,点E,F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以点A,F,D,E为顶点的四边形是平行四边形.23.(8分)如图,在▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.24.(8分)已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,DC =EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.25.(10分)已知:如图,▱ABCD中,AD=3 cm,CD=1 cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3 cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1 cm/s,连结并延长QP交BA的延长线于点M.设运动时间为t(s)(0<t<1).当t为何值时,四边形AQDM是平行四边形?26.(12分)已知任意四边形ABCD,且线段AB,BC,CD,DA,AC,BD的中点分别是E,F,G,H,P,Q.(1)若四边形ABCD如图①,判断下列结论是否正确.(正确的在括号里填“√”,错误的在括号里填“×”)甲:顺次连结EF,FG,GH,HE一定得到平行四边形;( √ )乙:顺次连结EQ,QG,GP,PE一定得到平行四边形.( √ )(2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD如图②,请你判断(1)中的两个结论是否成立?参考答案一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,CE⊥AB,E为垂足,如果∠A=125°,则∠BCE=( B ) A.55°B.35°C.25°D.30°第1题图第2题图第3题图第4题图2.如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为( C ) A.6 B.9 C.12 D.153.如图,在▱ABCD中,两条对角线ACBD相交于点O,则与△ABO面积相等的三角形(△ABO 除外)有( C )A.1个B.2个C.3个D.4个4.如图,在▱ABCD中,下列结论一定正确的是( B )A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C5.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是( D )A.4 B.4.5 C.5 D.5.56.如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( D )A.∠HGF=∠GHE B.∠GHE=∠HEFC.∠HEF=∠EFG D.∠HGF=∠HEF第6题图 第7题图 第9题图 第10题图7.如图,在▱ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( B )A .4B .3C .52 D .28.下列选项中不能判定四边形ABCD 是平行四边形的是( B )A .两组对边分别平行B .一组对边平行,另一组对边相等C .两组对角分别相等D .两组对边分别相等9.如图,在平行四边形ABCD 中,E 是AD 边上的中点,若∠ABE =∠EBC ,AB =2,则平行四边形ABCD的周长是( C )A.8 B.10 C.12 D.1410.如图,l1∥l2,BE∥CF,BA⊥l1于点A,DC⊥l2于点C,下面的四个结论:①AB=DC;②BE=CF;③S△ABE=S△DCF;④S▱ABCD=S▱BCFE,其中正确的个数是( A )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为__21__.第11题图第12题图第13题图第16题图12.如图,在▱ABCD中,BE⊥CD于点E,BF⊥AD于点F,∠EBF=60°,则∠C=__60°__.13.如图所示,O为▱ABCD两对角线的交点,E,F分别是OA,OC的中点,图中的全等三角形有__7__对.14.四边形ABCD中,任意的邻角都互补,则四边形ABCD一定是__平行四边形__.15.已知,△ABC的周长为50 cm,中位线DE=8 cm,中位线EF=10 cm,则另一条中位线DF的长是__7_cm__.16.如图,在平行四边形ABCD中,E,F分别是BC,AD的中点,则四边形AECF是平行四边形,用的判别方法是__一组对边平行且相等的四边形是平行四边形__.17.如图所示,在△ABC中,AB=BC,AB=12 cm,F是AB边上一点,过点F作FE∥BC 交AC于点E,过点E作ED∥AB交BC于点D,则四边形BDEF的周长是__24_cm__.18.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC 沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为__2__.三、解答题(共66分)19.(6分)如图,D为△ABC边BC上的一点,DE∥AC,DF∥AB,连结AD,EF,求证:AD,EF相互平分.解:证明:∵DE∥AC,DF∥AB,∴四边形DFAE是平行四边形,∴AD,EF相互平分20.(7分)如图,在△ABC中,AB=AC,点P为BC上任意一点,PE∥AC,PF∥AB分别交AB,AC于点E,F,请你猜想线段PE,PF,AB之间有什么数量关系?并说明理由.解:PE+PF=AB.∵PE∥AC,PF∥AB,所以四边形AEPF是平行四边形,所以PF =AE,又∵AB=AC,∴∠B=∠C.而PE∥AC,∴∠BPE=∠C,∴∠BPE=∠B,故PE=BE,所以PE+PF=BE+AE=AB21.(7分)如图,在▱ABCD中,∠BCD的平分线CE交边AD于点E,∠ABC的平分线BG 交CE于点F,交AD于点G.求证:AE=DG.解:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠GBC=∠BGA,∠BCE=∠CED.又∵BG平分∠ABC,CE平分∠BCD,∴∠ABG=∠GBC,∠BCE =∠ECD,∴∠ABG=∠BGA,∠ECD=∠CED,∴AB=AG,CD=DE,∴AG=DE,∴AG-EG=DE-EG,即AE=DG22.(8分)如图,AB∥CD,AB=CD,点E,F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以点A,F,D,E为顶点的四边形是平行四边形.解:(1)证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =CD ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (2)∵△ABE ≌△DCF ,∴AE =DF ,∠AEB =∠CFD ,又∵∠AEB +∠AEF =180°,∠CFD +DFE =180°,∴∠AEF =∠DFE ,∴AE ∥DF .∴四边形AFDE 为平行四边形23.(8分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若AE 平分∠DAB ,∠EAC =25°,求∠AED 的度数.解:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠EAD,∵AB =AE,∴∠ABC=∠AEB,∴∠ABC=∠EAD.∵AD=BC,∴△ABC≌△EAD(SAS)(2)∵AE平分∠DAB,∴∠BAE=∠EAD,由(1)知∠EAD=∠ABC=∠BEA,∴∠ABC=∠AEB=∠BAE,∴△BAE是等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°24.(8分)已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,DC =EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.解:证明:(1)∵△ABC是等边三角形,∴∠B=60°,∵∠EFB=60°,∴EF∥DC,又∵DC=EF,∴四边形EFCD是平行四边形(2)连结BE,∵BF=EF,∠EFB =60°,∴△EFB是等边三角形,∴EB=EF,∠EBF=60°,∵DC=EF,∴EB=DC,∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD25.(10分)已知:如图,▱ABCD中,AD=3 cm,CD=1 cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3 cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1 cm/s,连结并延长QP交BA的延长线于点M.设运动时间为t(s)(0<t<1).当t为何值时,四边形AQDM是平行四边形?解:∵四边形AQDM 是平行四边形,∴PA =PD ,即3t =3-3t ,解得t =12.答:当t=12时,四边形AQDM 是平行四边形26.(12分)已知任意四边形ABCD ,且线段AB ,BC ,CD ,DA ,AC ,BD 的中点分别是E ,F ,G ,H ,P ,Q .(1)若四边形ABCD 如图①,判断下列结论是否正确.(正确的在括号里填“√”,错误的在括号里填“×”)甲:顺次连结EF ,FG ,GH ,HE 一定得到平行四边形;( √ ) 乙:顺次连结EQ ,QG ,GP ,PE 一定得到平行四边形.( √ ) (2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?解:(2)证明(1)中对甲的判断,连结EF ,FG ,GH ,HE ,∵E ,F 分别是AB ,BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,∴EF 綊HG ,∴四边形EFGH 是平行四边形 (3)类似于(1),甲、乙两个结论都成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形单元检测
一、选择题
1.下列性质中,平行四边形具有而非平行四边形不具有的是().
A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,则∠B、∠C的度数分别是().
A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().
①平行四边形内角和为360°;②平行四边形对角线相等;
③平行四边形对角线互相平分;④平行四边形邻角互补.
A.1 B.2 C.3 D.4
4.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().
A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm
=15cm2,则AB与BC的值可能是().5.在ABCD中,AB+BC=11cm,∠B=30°,S
ABCD
A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm
6.在下列定理中,没有逆定理的是().
A.有斜边和一直角边对应相等的两个直角三角形全等;
B.直角三角形两个锐角互余;
C.全等三角形对应角相等;
D.角平分线上的点到这个角两边的距离相等.
7.下列说法中正确的是().
A.每个命题都有逆命题 B.每个定理都有逆定理
C.真命题的逆命题是真命题 D.假命题的逆命题是假命题
8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().
A.1:2:1 B.12 1 C.1:4:1 D.12:1:2
9.一个三角形的三条中位线把这个三角形分成面积相等的三角形
有()个.
A.2 B.3 C.4 D.5
10.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().
A.2 B.2.5 C.3 D.3.5
二、填空题
11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.
12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.
13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若ABCD•的周长为38cm,△ABD的周长比ABCD的周长少10cm,则ABCD的一组邻边长分别为______.14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则ABCD的各内角度数分别为_________.
15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.
16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.
17.命题“两直线平行,同旁内角互补”的逆命题是_________.
18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.
19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.
20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.
三、解答题
21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.
22.如图所示,在ABCD中,E、F是对角线BD上的两点,且BE=DF.
求证:(1)AE=CF;(2)AE∥CF.
23.如图所示,ABCD的周长是AB的长是,DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.
24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).
25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).
求证:∠C=90°.
=60,•26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S
△ABE 求∠C的度数.
27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.
29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢
30.如图所示,E是ABCD的边AB延长线上一点,DE交BC于F,求证:S
△ABF =S
△EFC
.
答案:
一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C
二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130° • •15.10 16.结论题设 17.同旁内角互补,两直线平行
18.5.13 直角
三、21.ABCD的周长为20cm 22.略
23.(1)∠C=45°(2) 24.略
25.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm
28.提示:连结BD,取BD•的中点G,连结MG,NG
29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略。