概率论全部
概率论(仅供参考)
前言由于汤老师不给力,下面由刘老师来为你们划重点 内部使用,仅供参考,不承当任何后果。
参考: 课本 课件第一章该章概型和公式比较多,每个都配上了一个例题便于理解第一节重点:德·摩根律公式交换律:A ∪B=B ∪A ,AB=BA 结合律(A ∪B)∪C=A ∪(B ∪C )(A∩B)∩C=A∩(B∩C )分配律:A∩(B ∪C) = (A∩B)∪( A∩C )A ∪(B∩C) = (A ∪B)∩(A ∪C ) 德·摩根律A B AB A B A B ==第二节频率性质1. 样本任意一事件概率不小于0(非负性)2. 样本事件概率和为1(规范性)3. 如果AB 互斥 ()()()n n n f A B f A f B =+4. 如果AB 不排斥 ()()()()n n n n f A B f A f B f A B =+-⋂5. ()1().P A P A =-第三节 古典概型性质1. 样本空间中样本点有限,既事件有限2. 样本点概率等可能发生3. ()==k A P A n 中所含的基本事件数基本事件总数例题排列组合问题(要是考应该不会太难)几何概型求法:1.求出状态方程2.根据定义域画图3.求概率=阴影面积/总面积第四节条件概型公式:()()()() (|).()()()()AB AB P AB P A BB B P BμμμΩμμμΩ===条件概率满足概率的一切性质既非法性,规范性,可加性例题11()()()()n ni i i i i P B P BA P A P B A ====∑∑例题 书 p251()(|)(|)()(|)i i i ni ii P A P B A P A B P A P B A ==∑第五节独立性如果AB事件独立P AB P A P B()()()若多事件相互独立,理论仍然成立贝努利概型既服从二项分布模型抽取n次的组合次数第二章重点章节,几大分布都是后几章的基础第二节 离散型随机变量及其分布律1. 两点分布、0﹣1分布既随机变量 X 只可能取0或1两个值,事件执行一次只有两种情况,例如抛硬币 记为 X~b (1,p ) p 表示事件的概率,样本点个数为1, 并且1-p 表示相反事件概率 2. 二项分布(应用于上章的贝努利概型)与0-1分布类似,事件执行n 次,记为 X~b (n ,p ) p 表示事件的概率 样本点个数为n 3. 泊松分布{}e ,0,1,2,,!kP X k k k λλ-===⋅⋅⋅记为 X~π(λ),如果出题,应该会标明是泊松分布,或者给出明确的λ二项分布X~b (n ,p )当n 充分大,p 充分小时,对于任意固定的非负整数k ,与泊松分布概率近视相等,并且λ=nb (数学期望相等) 4. 几何分布既抽取问题中可放回情况,该分布具有无记忆性-1{}(1),1,2,k P X k p p k ==-=5. 超几何分布既抽取问题不放回情况12{},0,1,2,k n k N N nNC C P X k k C-===第三节 随机变量及其分布随机变量分布(感觉这个知识点必考,虽然不知道会是什么题) 求事件概率公式,p511. 已知分布函数求分布律,并求事件概率(习题2第一题)根据公式000{}(0)(0)P X x F x F x ==+--求出各个点的概率,并画出分布表,求事件概率可以不会套公式,可以直接看表。
第六章 概率论基础知识
• 事实上,若事件A相对于事件B是独立的,即P(A|B)=P(A),那么,当
P(A)>0时,有P(B|A)= 独立的。
P( AB) P( A)
=
P( A) P( B) =P(B)即事件B相对于事件A也是 P( A)
• 若两事件A,B满足P(AB)=P(A)P(B),则称A,B相互独立。若四对事件
{A,B},{ A ,B},{A, B },{ A , B }中有一对是相互独立的,则另外三对 也是相互独立的。任意两个事件A、B,满足下列条件之一,就称为相 互独立的随机事件: ⑴P(A|B)=P(A)且P(B)>0; ⑵P(B︱A)=P(B)且P(A)>0。 对任意两个相互独立的事件A、B,有 P(AB)=P(AB)=P(A|B)P(B)=P(A)P(B)
P A 乙 P 乙
0.08 0.5714 0.14
• 4.随机事件的独立性
设A,B是两个事件,一般而言P(A)P(A|B),这表示事件B的发生对事件 A的发生的概率有影响,只有当P(A)=P(A|B)时才可以认为B的发生与 否对A的发生毫无影响,就称两事件是独立的.其直观意义也比较明确: 若无论事件B的发生与否,对事件A的概率都没有影响,那么,事件A对于 事件B是独立的。由于从“A相对于B独立”,推导出“B相对于A独 立”,所以,只要P(A|B)= P(A)成立,我们就说,A与B是相互独立的。
表6-2 分布计算表
离散型随机变量
X的取值
-1
2
3
X的概率 1/6
1/2
1/3
2.离散随机变量的累积概率
P(X≤x)的概率,称为随机变量X(小于等于x)的累积概率,在例1中,随机 变量X≤2的累积概率为P(X≤2)=2/3。
概率论的基本概论
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机试验。
例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1随机试验以上试验的共同特点是:1.试验可以在相同的条件下重复进行;2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发生哪一个可能结果在试验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。
我们把满足上述三个条件的试验叫随机试验,简称试验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω,即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中试验E1--- E7E1:S1={H,T}HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把试验 E 的全部可能结果中某一确定的部分称为随机事件。
概率的全部知识点总结
概率的全部知识点总结一、定义概率是指某一随机现象发生的可能性大小的度量。
通常用P(A)表示事件A发生的概率。
概率的取值范围是0到1之间,即0 ≤ P(A) ≤ 1。
当概率为0时,表示事件不可能发生;当概率为1时,表示事件一定发生;当概率为0.5时,表示事件发生的可能性为50%。
二、事件在概率论中,事件是指随机试验的某一结果,用大写字母A、B、C等表示。
事件可以包含一个或多个基本事件,基本事件是随机试验的最小基本单位,用小写字母a、b、c等表示。
例如,掷一枚硬币的结果可以是正面(基本事件H)或反面(基本事件T),而事件可以是“出现正面”或“出现反面”。
三、概率的性质1. 非负性:对任意事件A,有P(A) ≥ 0。
2. 规范性:对样本空间Ω中的事件,有P(Ω) = 1。
3. 互斥事件的加法规则:对互斥事件A和B,有P(A ∪ B) = P(A) + P(B)。
4. 对立事件的性质:对对立事件A和A',有P(A) + P(A') = 1。
四、古典概率古典概率是指在样本空间有限且等可能的情况下,根据事件发生的可能性来计算概率。
例如,掷一枚硬币得到正面的概率为1/2,掷一个骰子得到点数为3的概率为1/6。
古典概率的计算公式为P(A) = n(A) / n(Ω),其中n(A)表示事件A包含的基本事件个数,n(Ω)表示样本空间Ω中基本事件的总数。
五、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率的计算公式为P(B|A) = P(A ∩ B) / P(A),表示在事件A发生的条件下,事件B发生的概率。
条件概率的性质包括P(B|A) ≥ 0,P(B|A)P(A) = P(A ∩ B) = P(A|B)P(B),以及全概率公式和贝叶斯公式等。
六、贝叶斯公式贝叶斯公式是根据条件概率和全概率公式推导出来的一种计算概率的方法。
贝叶斯公式的计算公式为P(A|B) = P(B|A)P(A) / P(B),表示在事件B发生的条件下,事件A发生的概率。
概率论的基本概论
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或实验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机实验。
例:有一位科学家,他通晓现有的所有学科,如果对一项实验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1 随机实验以上实验的共同特点是:1.实验可以在相同的条件下重复进行;2.实验的全部可能结果不止一个,并且在实验之前能明确知道所有的可能结果;3.每次实验必发生全部可能结果中的一个且仅发生一个,但某一次实验究竟发生哪一个可能结果在实验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机实验,它一定满足以上三个条件。
我们把满足上述三个条件的实验叫随机实验,简称实验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω, 即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中实验E 1--- E 7 E 1:S 1={H,T}E 2:S 2={ HHH,HHT,HTH,THH,HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把实验 E 的全部可能结果中某一确定的部分称为随机事件。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论第一章
在相同的条件下,多次抛一枚均匀的硬币,设事件 A =“正面朝上” , 观察 n 次试验中 A 发生的次数.
试验者 德.摩根 蒲丰 费勒 K.皮尔逊 K.皮尔逊
n
2048 4040 10000 12000 24000
nA
1061 2048 4979 6019 12012
f n ( A)
0.5181 0.5069 0.4979 0.5016 0.5005
第五章 大数定律和中心极限定理
第六章 数理统计的基本概念 第七章 参数估计 第八章 假设检验
第一章 概率论的基本概念
§1.1 随机事件及其运算
§1.2
§1.3 §1.4 §1.5
概率的定义及其性质
古典概型与几何概型 条件概率 独立性
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类: 一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现 象成为随机现象。 如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况;
E2: 掷一颗骰子,观察出现的点数;
E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差; E6: 在区间 0, 1 上任取一点,记录它的坐标。
例1-5 设A,B为两个随机事件, P(A)=0.5, P(AB)=0.8, P(AB)=0.3, 求P(B). 解 由P(AB)=P(A)+P(B)-P(AB),得 P(B)=P(AB)-P(A)+P(AB)=0.8-0.5+0.3=0.6.
概率论整理
第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。
说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。
例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。
概率论习题讲解
x e
x!
(x =0,1,2, …,)
N→∞, H (n, M , N ) B(n, p). p M ,
N
n →∞, B(n, p) P() np
1
§2.5 随 机 变 量 旳 分 布 函 数
一.定义
F(x) P(X x)
二.分布函数 旳性质:
(1) 0 F ( x) 1, ( x )
若 不是整数,则当 m [ ]时,P( X m)最大。
13
9. 一本书中每页印刷错误旳个数X 服从泊松分布P0.2,
写出X 旳概率分布,并求一页上印刷错误不多于1个旳概率。
解 X旳概率分布为:PX k 0.2k e0.2
k!
查表求
PX 1 PX 0 PX 1 0.8187 0.1638 0.9825
6设随机变量X 服从二项分布 Bn, p 当x 为何值时,概率
PX x取得最大值。
解
PX
=
x
=
C
x n
pxqn-x
PX x PX x 1
1
n 1p
xq
x
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
FX
x
x dx f x, ydy
f x, ydy
FY y F , y
y dy f x, ydx
fY y
d dy
FY
y
f x, ydx
§2.11 随机变量旳独立性
一. 离散型随机变量旳独立性 p xi , y j pX xi pY y j
二. 连续随机变量旳独立性
概率论ppt课件
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
概率论
1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。
一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。
我们把这一类型现象称之为确定性现象或必然现象。
如在一个大气压下,水在100度时会沸腾等。
一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。
这一类型的现象我们称之为偶然性现象或随机现象。
如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。
二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。
基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。
则样本点有6个。
若记,16i i i ω=≤≤,i ω即为样本点。
样本空间为123456{,,,,,}ωωωωωωΩ=。
记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。
B 为一个复合事件。
三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。
概率论1.4全概率公式与贝叶斯公式
1.4.2贝叶斯公式
设 A1 , A2 , L , An 是一完备事件组, 则对 任一事件 B, P ( B ) 0, 有
P ( Ai B ) = P ( Ai B ) P( B)
P ( Ai ) P ( B Ai )
å
n
i = 1, 2,L , n
P ( Aj ) P ( B Aj )
j= 1
由此可以形象地把全概率公式看成为 “由原因推结果”,每个原因对结果的发 生有一定的“作用”,即结果发生的可能 性与各种原因的“作用”大小有关 . 全概 率公式表达了它们之间的关系 . A3
A1 A2
A5
A6 A8
B A4 A7
诸Ai是原因 B是结果
例 一袋中有10个球,其中3个黑球7个白球,从中不
例如,某地发生了一个案件,怀疑对象有 甲、乙、丙三人. 在不了解案情细节(事件B) 偏小 之前,侦破人员根据过去 丙 乙 甲 的前科,对他们作案的可 P(A1) P(A2) P(A3) 能性有一个估计,设为 但在知道案情细 节后, 这个估计 就有了变化.
知道B 发生后 P(A1 | B) P(A2 | B) P(A3 | B) 最大
例18 某村麦种放在甲,乙,丙三个仓库保管,保管量分别占 总量的40%,35%,25%,发芽率分别为0.95,0.92, 0.90,现将 三个仓库的麦种全部混合,求其发芽率。 解:设A1={甲仓库保管的麦种}, A2 ={乙仓库保管的麦种}, A3 ={丙仓库保管的麦种},B={发芽的麦种},依题意有 P(A1)=0.4 , P(A2)=0.35 , P(A3 )=0.25, P(B|A1)=0.95 , P(B|A2)=0.92 , P(B| A3 )=0.90 ,
现在来分析一下结果的意义.
概率论习题全部
习题一 1习题一1. 用集合的形式写出以下随机试验的样本空间与随机事件A :〔1〕掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;〔2〕记录某 总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;〔3〕从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面.〔1〕试写出该试验的样本空间;〔2〕试写出以下事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面};〔3〕如记i A ={第i 枚硬币出现正面}〔i =1,2,3〕,试用123,,A A A 表示事件A ,B ,C .3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问以下运算表示什么事件:〔1〕A B ;〔2〕AB ;〔3〕AC ;〔4〕AC ;〔5〕C A ;〔6〕B C ;〔7〕A C -.4. 在区间上任取一数,记112A x x ⎧⎫=<≤⎨⎬⎩⎭,1342B x x ⎧⎫=≤≤⎨⎬⎩⎭,求以下事件的表达式:〔1〕A B ;〔2〕AB ;〔3〕AB ,〔4〕A B .5. 用事件A ,B ,C 的运算关系式表示以下事件:〔1〕A 出现,B ,C 都不出现;〔2〕A ,B 都出现,C 不出现;〔3〕所有三个事件都出现;〔4〕三个事件中至少有一个出现;〔5〕三个事件都不出现;〔6〕不多于一个事件出现;〔7〕不多于二个事件出现;〔8〕三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示以下各个事件:〔1〕第一次、第二次中至少有一次抽到废品;〔2〕只有第一次抽到废品;〔3〕三次都抽到废品;〔4〕至少有一次抽到合格品;〔5〕只有两次抽到废品.7. 接连进行三次射击,设={第i 次射击命中}〔i =1,2,3〕,试用表示下述事件:〔1〕A ={前两次至少有一次击中目标};〔2〕B ={三次射击恰好命中两次};]2,0[i A i i A i A 321,,A A A工程数学 概率统计简明教程〔第二版〕2 〔3〕C ={三次射击至少命中两次};〔4〕D ={三次射击都未命中}.8. 盒中放有a 个白球b 个黑球,从中有放回地抽取r 次〔每次抽一个,记录其颜色,然后放回盒中,再进行下一次抽取〕.记={第i 次抽到白球}〔i =1,2,…,r 〕,试用{}表示下述事件:〔1〕A ={首个白球出现在第k 次};〔2〕B ={抽到的r 个球同色},其中1k r ≤≤.*9. 试说明什么情况下,以下事件的关系式成立:〔1〕ABC =A ;〔2〕A B C A =.i A i A习题二 3习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:〔1〕第一次、第二次都取到红球的概率;〔2〕第一次取到红球、第二次取到白球的概率;〔3〕两次取得的球为红、白各一的概率;〔4〕第二次取到红球的概率.3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求: 〔1〕最小号码是3的概率;〔2〕最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求以下事件的概率:〔1〕2只都是合格品;〔2〕1只是合格品,一只是不合格品;〔3〕至少有1只是合格品.5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求以下事件的概率:〔1〕点数之和为7;〔2〕点数之和不超过5;〔3〕点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求以下事件的概率: 〔1〕事件A ={其中恰有一位精通英语};〔2〕事件B ={其中恰有两位精通英语};〔3〕事件C ={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:〔1〕)(A P ;〔2〕)(B P ;〔3〕()P A B ;〔4〕)(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6 h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.31工程数学 概率统计简明教程〔第二版〕4 14. 已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求:〔1〕)(),(B P A P ;〔2〕()P A B ;〔3〕)(AB P ;〔4〕)(),(B A P A B P ;〔5〕)(B A P .15. 设A ,B 是两个事件,已知P 〔A 〕,P 〔B 〕,()P A B ,试求:P 〔A -B 〕与P 〔B -A 〕.*16. 盒中装有标号为1~r 的r 个球,今随机地抽取n 个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m 个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k 个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为,购买股票的概率为,两项投资都做的概率为. 〔1〕已知他已投入基金,再购买股票的概率是多少?〔2〕已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,假设不是白球则放回盒中,再随机抽取下一个;假设是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以以下出的6种类型:如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求以下事件的概率:〔1〕随机地取一只袋,再从该袋中随机地取一只球,该球是红球;〔2〕合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,〔1〕求抽取的产品是次品的概率;〔2〕已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运发动参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运发动的药物检查结果是阳性,求这名运发动确实使用违禁药品的概率. 10. 发报台分别以概率和发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率和收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率和收到信号“—”和“*”.求:〔1〕收报台收到信号“*”的概率;〔2〕当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立.13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求以下事件的概率:工程数学 概率统计简明教程〔第二版〕 6 (),(),().P A B P A B P A B 14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 15. 三个人独立破译一密码,他们能独立译出的概率分别为,,,求此密码被译出的概率.16. 设六个相同的元件,如以下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. 〔配对问题〕房间中有n 个编号为1~n 的座位.今有n 个人〔每人持有编号为1~n 的票〕随机入座,求至少有一人持有的票的编号与座位号一致的概率.〔提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A ,有 1121111111()()(1)()(1)().)k k n nk k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤⎛⎫=-+⎪⎝⎭+-++-∑∑∑ *18. 〔波利亚〔Pólya 〕罐子模型〕罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为a a b+〔1k ≥为整数〕.〔提示:记{}k A k =第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.〕 19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为,机器发生故障时全天停止工作.假设一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为,求:〔1〕在此时刻所有电梯都在运行的概率;〔2〕在此时刻恰好有一半电梯在运行的概率;〔3〕在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.假设已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P . *24. 设双胞胎中为两个男孩或两个女孩的概率分别为a 及b .今已知双胞胎中一个是男孩,求另一个也是男孩的概率.25. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为及,而以后每次射击的命中率相应递增,如在第3次射击首次中靶,求是第一名射手首先进习题三7行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机〔不放回〕抽取n个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可区分的球随机落入编号1~4的四个盒子,〔1〕求恰有两空盒的概率;〔2〕已知恰有两空盒,求有球的盒子的最小编号为2的概率.工程数学 概率统计简明教程〔第二版〕8 习题四1. 以下给出的数列,哪些可作为随机变量的分布律,并说明理由.〔1〕15i i p =(0,1,2,3,4,5)i =; 〔2〕6)5(2i p i -=(0,1,2,3)i =; 〔3〕251+=i p i (1,2,3,4,5)i =. 2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:〔1〕(2)P X >;〔2〕1522P X ⎛⎫<< ⎪⎝⎭;〔3〕(3)F 〔其中F 〔·〕为X 的分布函数〕. 3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为,求击中目标的次数X 的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在以下三种情形下,分别求出直到取得正品为止所需次数X 的分布律:〔1〕每次取出的产品立即放回这批产品中再取下一件产品;〔2〕每次取出的产品都不放回这批产品中;〔3〕每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X ),6(~p B ,已知)5()1(===X P X P ,求p 与)2(=X P 的值.8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上〔包括9道〕题的概率.9. 市120接听中心在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为t 的泊松分布,而与时间间隔的起点无关〔时间以小时计算〕:求:〔1〕某天中午12点至下午3点没有收到紧急呼救的概率;〔2〕某天中午12点至下午5点至少收到1次紧急呼救的概率.10. 某商店出售某种物品,根据以往的经验,每月销售量X 服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X 服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y 为观察到的鸡蛋数,即Y 的分布与给定>0X 的条件下X 的分布相同,今求Y 的分布律.习题四 9 〔提示:()(0),1,2,.P Y k P X k X k ===>=对于〕13. 袋中有n 把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:〔1〕有放回抽取;〔2〕不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ⎧=⎨⎩0,x A <<其他,试求:〔1〕常数A ;〔2〕)5.00(<<X P . 17. 设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:〔1〕系数A ;〔2〕)10(<<X P ;〔3〕X 的分布函数.18. 证明:函数22e ,0,()0,0,xc x x f x c x -⎧⎪≥=⎨⎪<⎩〔c 为正的常数〕可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X 〔单位:min 〕是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ⎧--<<⎪=⎨⎪⎩其他. X 为负值表示火车早到了.求火车至少晚点2 min 的概率.20. 设随机变量X 的分布函数为0()1(1)e x F x x -⎧=⎨-+⎩,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X 〔单位:min 〕是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -⎧⎪=⎨⎪⎩,0,,x >其它.某顾客在窗口等待服务,假设超过10 min ,工程数学 概率统计简明教程〔第二版〕10 他就离开.〔1〕设某顾客某天去银行,求他未等到服务就离开的概率;〔2〕设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率.24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间〔单位:min 〕,X 的分布函数是0.21e ,0,()0,x x F x -⎧->=⎨⎩其他. 求:〔1〕X 的密度函数;〔2〕P 〔至多等待2 min 〕;〔3〕P 〔至少等待4 min 〕;〔4〕P 〔等待2 min 至4 min 之间〕;〔5〕P 〔等待至多2 min 或至少4 min 〕.25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:〔1〕常数A ,B ;〔2〕(1)P X <;〔3〕随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:〔1〕)2.2(<X P ;〔2〕)76.1(>X P ;〔3〕)78.0(-<X P ;〔4〕)55.1(<X P ;〔5〕)5.2(>X P ;〔6〕确定a ,使得99.0)(=<a X P .27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:〔1〕)44.2(<X P ;〔2〕)5.1(->X P ;〔3〕)8.2(-<X P ;〔4〕)4(<X P ;〔5〕)25(<<-X P ;〔6〕)11(>-X P ;〔7〕确定a ,使得)()(a X P a X P <=>.28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X 〔单位:min 〕,已知上班时间是8:30.他每天7:50分出门,求:〔1〕某天迟到的概率;〔2〕一周〔以5天计〕最多迟到一次的概率.习题五11习题五1. 二维随机变量),(Y X 只能取以下数组中的值:〔0,0〕,〔-1,1〕,11,3⎛⎫- ⎪⎝⎭,〔2,0〕,且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:〔1〕X 与Y 的联合分布律;〔2〕()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求〔1〕二维随机变量),(Y X 的联合分布律:〔2〕给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:⎩⎨⎧=10X ,,若第一次取出正品,若第一次取出次品,⎩⎨⎧=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况〔1〕放回抽样,〔2〕不放回抽样.求:〔1〕二维随机变量),(Y X 的联合分布律; 〔2〕关于X 及关于Y 的边缘分布律;〔3〕X 与Y 是否独立,为什么?6. 设二维随机变量),(Y X的联合密度函数为01,01,(,)0,x y f x y <<<<=⎩其他.求:〔1〕关于X 及关于Y 的边缘密度函数;〔2〕110,022P X Y ⎛⎫≤≤≤≤ ⎪⎝⎭. 7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:〔1〕),(Y X 的联合密度函数;〔2〕110,044P X Y ⎛⎫-<<<< ⎪⎝⎭;〔3〕关于X 及关于Y 的边缘密度函数;〔4〕X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-工程数学 概率统计简明教程〔第二版〕121,x -y =1,x -y =-1围成的区域.求:〔1〕关于X 及关于Y 的边缘密度函数;〔2〕()P X Y ≤;〔3〕X 与Y 是否独立,为什么?9. 设随机变量X ,Y 是相互独立且分别具有以下分布律:写出表示),(Y X 的联合分布律.10. 设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p 〔0<p <1〕,X 为进入邮局的男性人数,Y 为女性人数,求:〔1〕关于X 及关于Y 的边缘分布律;〔2〕X 与Y 是否独立,为什么?11. 设X 与Y 是相互独立的随机变量,X 服从[0,0.2]上的均匀分布,Y 服从参数为5的指数分布,求:),(Y X 的联合密度函数及)(Y X P ≥.12. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+⎧=⎨⎩,0,0,x y >>其他,求:〔1〕系数k ;〔2〕)20,10(≤≤≤≤Y X P ;〔3〕证明X 与Y 相互独立.13. 已知二维随机变量),(Y X 的联合密度函数为⎩⎨⎧-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,〔1〕求常数k ;〔2〕分别求关于X 及关于Y 的边缘密度函数;〔3〕X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:且53)01(===X Y P ,求:〔1〕常数a ,b 的值;〔2〕当a ,b 取〔1〕中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律.习题五13*16. 对于第7题中的二维随机变量),(Y X 的分布,求:〔1〕1110442P X Y ⎛⎫-<<<< ⎪⎝⎭;〔2〕当102X x x ⎛⎫=-<< ⎪⎝⎭时Y 的条件密度函数()Y X f y x . *17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=⎰其中()Y f 为Y 的边缘密度函数.工程数学 概率统计简明教程〔第二版〕14习题六1. 设随机变量的分布律为求出:〔1〕2+X ;〔2〕1+-X ;〔3〕2X 的分布律.2. 设随机变量服从参数1=λ的泊松分布,记随机变量⎩⎨⎧=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量的分布密度为⎩⎨⎧=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:〔1〕X 2;〔2〕1+-X ;〔3〕2X .4. 对圆片直径进行测量.测量值服从上的均匀分布,求圆片面积的密度函数.5. 设随机变量服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y f Y .6. 设随机变量服从参数1=λ的指数分布,求随机变量函数e X Y =的密度函数)(y f Y .7. 设随机变量服从,证明:服从,其中为两个常数且.8. 设随机变量在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量的分布律:X X X X )6,5(Y X X X )1,0(N a X +σ),(2σa N σ,a 0>σX ),(Y X习题六15求以下随机变量的分布律:〔1〕;〔2〕;〔3〕;〔4〕. 10. 设随机变量,相互独立,且11,4XB ⎛⎫ ⎪⎝⎭,11,4Y B ⎛⎫ ⎪⎝⎭, 〔1〕记随机变量,求的分布律; 〔2〕记随机变量,求的分布律.从而证实:即使,服从同样的分布,与的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二项分布〔0<p <1,k 为非负整数〕.求:〔1〕Y 的分布律;〔2〕X -Y 的分布律;〔3〕证明:Y 与X -Y 相互独立. 〔提示:()()(),0,1,.k yP Y y P Y y X k P X k y +∞=======∑〕12. 设二维随机变量X ,Y 的联合分布律为:求:〔1〕max(,)U X Y =的分布律; 〔2〕),min(Y X V =的分布律; 〔3〕(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:〔1〕U 的密度函数;〔2〕V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y 相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于电脑接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .〔1〕其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.〔2〕假设这两个保险丝同时Y X +Y X -X 2XY X Y Y X Z +=Z X U 2=U X Y Y X +X 2工程数学 概率统计简明教程〔第二版〕16独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间〔0,1〕上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间〔0,1〕上的均匀分布,求XZ Y=的密度函数.〔提示:使用1()()()()d ()d Z Y F z P Z z P Z z Y y f y y P X yz y =≤=≤==≤⎰⎰,其中用到X 与Y 的独立性.〕习题七17习题七1. 设随机变量的分布律为求:〔1〕()E X ;〔2〕)1(+-X E ;〔3〕)(2X E ;〔4〕()D X .2. 设随机变量服从参数为λ的泊松分布〔0>λ〕,且已知((2)(3))2E X X --=,求λ的值.3. 设表示10次独立重复射击命中目标的次数,每次射中目标的概率为,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000]〔单位:吨〕上服从均匀分布.假设每售出一吨,可得外汇3万美元,假设销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为,,.假设各部件的状态相互独立,以表示同时需要调整的部件数,试求的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .〔提示:由幂级数逐项求导的性质可知211011k k k k kq q q ∞∞-=='⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑∑ ,21(1)k k k k q∞-=-=∑3012)11k k q q q q ∞=''''⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∑ 7. 设随机变量的密度函数为1()e 2x f x -=,求:〔1〕()E X ;〔2〕)(2X E 的值.8. 某商店经销商品的利润率的密度函数为2(1)0,x -⎧=⎨⎩,01,x <<其他,求()E X ,()D X .9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.X X X X X X X )(x f工程数学 概率统计简明教程〔第二版〕1810. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求()E Y .*11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n M N n -⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭====∧⎛⎫ ⎪⎝⎭,其中min(,)n M n M ∧=.12(1):.12(1)n n n n n n m m m m m m ⎛--⎫⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,假设有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).ni i i i j i n n ni j i j i=1i j j i X i n X X E X E X X X X D X D X X X =-==+⎛⎧=== ⎨ ⎩⎝⎫+⎪⎭∑∑∑∑第封信配对,提示记有先求其他及使用公式13. 设随机变量的概率密度为1e ,0,()0,0,x x f x x -⎧>=⎨≤⎩求()E X ,)2(X E ,2(e )X E X -+,()D X .14. 设随机向量的联合分布律为:求,(),(),(2),(3),(),(),cov(,),.X Y E X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球数和黑球数,求X 与Y 之间的相关系数Y X ,ρ.16. 设随机变量相互独立,它们的密度函数分别为22e ()0x X f x -⎧=⎨⎩,0,,0,x x >≤44e ()0y Y f y -⎧=⎨⎩,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,n X X 独立,具有公共的〔0,1〕上的均匀分布,令1min ,i i nY X ≤≤=求(),()E Y D Y .X ),(Y X Y X ,习题七19*18. 设随机变量X 有密度函数1e ,0,()()0,xx x f x ααλλα--⎧>⎪=Γ⎨⎪⎩其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d y y y αα∞--Γ⎰=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+= .今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y 与Z 相互独立,ZW Y=,求()E W 1:()().Z E W E E Z E Y Y ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭提示使用独立性,有 *19. 设随机变量X 服从参数为〔a ,b 〕的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+⎧-<<⎪ΓΓ=⎨⎪⎩其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--⎛⎫ΓΓ=- ⎪Γ⎝⎭⎰()()提示已知贝搭函数有关系式(,)=(+) 20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰及按公式()()d E X xf x x +∞-∞=⎰算得的()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰()d xf x x +∞-∞=⎰21. 设二维随机变量服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:〔1〕()E X ;〔2〕)23(Y X E +-;〔3〕)(XY E 的值.22. 设随机变量的联合密度函数为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他.求()E X ,()E Y , ()E XY ,22()E X Y +,()D X ,()D Y .23. 设随机变量相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:〔1〕22(),()E X E Y ;〔2〕)(XY D .24. 袋中有2n个外形完全相同的球,其中n k ⎛⎫⎪⎝⎭个标有数字k 〔k =0,1,…,n 〕,从中不放回抽取m 次〔每次取1个〕,以X 表示取到的m 个球上的数字之和,求E 〔X 〕.),(Y X ),(Y X Y X ,。
概率论与数理统计(全部公式整理)
2°
P(1 )
P( 2
)
P( n
)
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(9)几何 概型
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。
概率论习题全部
概率论习题全部1习题一习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰子,观察朝上面的点数,事件A表示“点数之和为7”;(2)记录某电话总机一分钟内接到的呼唤次数,事件A表示“一分钟内呼唤次数不超过3次”;(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A表示“寿命在2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={至少出现一个正面},B={出现一正、二反},C={出现不多于一个正面};(3)如记A={第i枚硬币出现正面}(i=1,2,i3),试用123A A A表示事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小习题一 2 于5},问下列运算表示什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取一数,记112A x x ⎧⎫=<≤⎨⎬⎩⎭,1342B x x ⎧⎫=≤≤⎨⎬⎩⎭,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. 用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中至少有一个出现;(5)三个事件都不出现;(6)不多于一个事件出现;(7)不多于二个事件出现;(8)三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题一3 (4)至少有一次抽到合格品;(5)只有两次抽到废品.7. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件: (1)A ={前两次至少有一次击中目标};(2)B ={三次射击恰好命中两次}; (3)C ={三次射击至少命中两次}; (4)D ={三次射击都未命中}.8. 盒中放有a 个白球b 个黑球,从中有放回地抽取r 次(每次抽一个,记录其颜色,然后放回盒中,再进行下一次抽取).记={第i 次抽到白球}(i =1,2,…,r ),试用{}表示下述事件:(1)A ={首个白球出现在第k 次};(2)B ={抽到的r 个球同色},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成立:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题二 3习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:(1)第一次、第二次都取到红球的概率;(2)第一次取到红球、第二次取到白球的概率;(3)两次取得的球为红、白各一的概率;(4)第二次取到红球的概率.3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:(1)最小号码是3的概率;(2)最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,一只是不合格品;(3)至少有1只是合格品.4习题二5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有一位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,习题二 5 现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.14. 已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题二15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,若不是白球则放回盒中,再随机抽取下一个;若是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运动员参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使用违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立. 13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个人(每人持有编号为1~n 的票)随机入座,求至少有一人持有的票的编号与座位号一致的概率.(提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤⎛⎫=-+ ⎪⎝⎭+-++-∑∑∑ *18. (波利亚(Pólya )罐子模型)罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为a a b+(1k ≥为整数).(提习题三 9 示:记{}k A k 第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为0.2,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;(2)在此时刻恰好有一半电梯在运行的概率;(3)在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个女孩的概率分别为a及b.今已知双胞胎中一个是男孩,求另一个也是男孩的概率.25. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为0.4及0.5,而以后每次射击的命中率相应递增0.05,如在第3次射击首次中靶,求是第一名射手首先进行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机(不放回)抽取n个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可辨别的球随机落入编号1~4的四个盒子,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒子的最小编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =; (2)6)5(2i p i -=(0,1,2,3)i =; (3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ⎛⎫<< ⎪⎝⎭;(3)(3)F (其中F (·)为X 的分布函数).3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的9习题四次数X的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数X的分布律:(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中心在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,而与时间间隔的起点无关(时间以小时计算):习题四10 求:(1)某天中午12点至下午3点没有收到紧急呼救的概率;(2)某天中午12点至下午5点至少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每月销售量X服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提示:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.习题四11 14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ⎧=⎨⎩0,x A <<其他,试求:(1)常数A ;(2))5.00(<<X P .17. 设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<<X P ;(3)X 的分布函数. 18. 证明:函数22e ,0,()0,0,xc x x f x c x -⎧⎪≥=⎨⎪<⎩(c 为正的常数)可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X(单位:min )是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ⎧--<<⎪=⎨⎪⎩其他.X 为负值表示火车早到了.求火车至少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -⎧=⎨-+⎩,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X (单位:min )是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -⎧⎪=⎨⎪⎩,0,,x >其它.某顾客在窗口等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率.24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -⎧->=⎨⎩其他.求:(1)X 的密度函数;(2)P (至多等待习题四13 2 min );(3)P (至少等待4 min );(4)P (等待2 min 至4 min 之间);(5)P (等待至多2 min 或至少4 min ).25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:(1)常数A ,B ;(2)(1)P X <;(3)随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:(1))2.2(<X P ;(2))76.1(>X P ;(3))78.0(-<X P ;(4))55.1(<X P ;(5))5.2(>XP ;(6)确定a ,使得99.0)(=<a X P .27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:(1))44.2(<X P ;(2))5.1(->X P ;(3))8.2(-<X P ;(4))4(<X P ;(5))25(<<-X P ;(6))11(>-X P ;(7)确定a ,使得)()(a X P a X P <=>. 28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X (单位:min ),已知上班时间是8:30.他每天7:50分出门,求:(1)某天迟到的概率;(2)一周(以习题四14 5天计)最多迟到一次的概率.习题五11 习题五1. 二维随机变量),(Y X 只能取下列数组中的值:(0,0),(-1,1),11,3⎛⎫- ⎪⎝⎭,(2,0),且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:(1)X 与Y 的联合分布律;(2)()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,习题五12每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:⎩⎨⎧=10X ,,若第一次取出正品,若第一次取出次品,⎩⎨⎧=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况(1)放回抽样,(2)不放回抽样.求:(1)二维随机变量),(Y X 的联合分布律; (2)关于X 及关于Y 的边缘分布律; (3)X 与Y 是否独立,为什么? 6. 设二维随机变量),(Y X的联合密度函数为01,01,(,)0,x y f x y <<<<=⎩其他.求:(1)关于X 及关于Y 的边缘密度函数;(2)110,022P X Y ⎛⎫≤≤≤≤ ⎪⎝⎭.7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:(1)),(Y X 的联合密度函数;(2)110,044P X Y ⎛⎫-<<<< ⎪⎝⎭;(3)关于X 及关于Y 的边缘密度函数;(4)X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-1,x -y =1,x -y =-1围成的区域.求:(1)关于X 及关于Y 的边缘密度函数;13习题五(2)()≤;P X Y(3)X与Y是否独立,为什么?9. 设随机变量X,Y是相互独立且分别具有下列分布律:写出表示),(Y X的联合分布律.10.设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p (0<p<1),X为进入邮局的男性人数,Y为女性人数,求:(1)关于X及关于Y的边缘分布律;(2)X与Y是否独立,为什么?11. 设X与Y是相互独立的随机变量,X服从[0,0.2]上的均匀分布,Y服从参数为5的指数分布,求:),(Y X的联合密度函数及)P≥.(YX习题五1412. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+⎧=⎨⎩,0,0,x y >>其他,求:(1)系数k ;(2))20,10(≤≤≤≤Y X P ;(3)证明X 与Y 相互独立.13. 已知二维随机变量),(Y X 的联合密度函数为⎩⎨⎧-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,(1)求常数k ;(2)分别求关于X 及关于Y 的边缘密度函数;(3)X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:且53)01(===X Y P ,求:(1)常数a ,b 的值;(2)当a ,b 取(1)中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律.*16. 对于第7题中的二维随机变量),(Y X 的分习题五15 布,求:(1)1110442P X Y ⎛⎫-<<<< ⎪⎝⎭;(2)当102X x x ⎛⎫=-<< ⎪⎝⎭时Y 的条件密度函数()Y Xf y x .*17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=⎰其中()Yf为Y 的边缘密度函数.习题六14习题六1. 设随机变量的分布律为求出:(1)2+X ;(2)1+-X ;(3)2X 的分布律.2. 设随机变量服从参数1=λ的泊松分布,记随机变量⎩⎨⎧=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量的分布密度为⎩⎨⎧=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:(1)X 2;(2)1+-X ;(3)2X .4. 对圆片直径进行测量.测量值服从上的均匀分布,求圆片面积的密度函数.5. 设随机变量服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y fY.6. 设随机变量服从参数1=λ的指数分布,求随机变量函数e XY =的密度函数)(y fY.7. 设随机变量服从,证明:服从,其中为两个常数且.8. 设随机变量在区间]2,1[-上服从均匀分X X X X )6,5(Y X X X )1,0(N a X +σ),(2σa N σ,a 0>σX习题六15 布,随机变量⎪⎩⎪⎨⎧-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量的分布律:求以下随机变量的分布律:(1);(2);(3);(4).10. 设随机变量,相互独立,且11,4XB ⎛⎫ ⎪⎝⎭,11,4YB ⎛⎫⎪⎝⎭,(1)记随机变量,求的分布律; (2)记随机变量,求的分布律. 从而证实:即使,服从同样的分布,与的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二),(Y X Y X +Y X -X 2XY X Y Y X Z +=Z X U 2=U X Y YX +X 2习题六16项分布(0<p <1,k 为非负整数).求:(1)Y 的分布律;(2)X -Y 的分布律;(3)证明:Y 与X -Y 相互独立.(提示:()()(),0,1,.k y P Y y P Y y X k P X k y +∞=======∑)12. 设二维随机变量X ,Y 的联合分布律为:求:(1)max(,)U X Y =的分布律; (2)),min(Y X V =的分布律; (3)(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:(1)U 的密度函数;(2)V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.习题六17 16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于计算机接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .(1)其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.(2)若这两个保险丝同时独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,求X Z Y =的密度函数.(提示:使用10()()()()d ()d Z YF z P Z z P Z z Y y f y y P X yz y =≤=≤==≤⎰⎰,其中用到X与Y 的独立性.)习题七17习题七1. 设随机变量的分布律为求:(1)()E X ;(2))1(+-X E ;(3))(2X E ;(4)()D X . 2. 设随机变量服从参数为λ的泊松分布(0>λ),且已知((2)(3))2E X X --=,求λ的值.3. 设表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000](单位:吨)上服从均匀分布.若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3.假设各部件的状态相互独立,以表示同时X X X X习题七18 需要调整的部件数,试求的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .(提示:由幂级数逐项求导的性质可知211011k k k k kq q q ∞∞-=='⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑∑,21(1)k k k k q∞-=-=∑3012)11k k q q q q ∞=''''⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∑7. 设随机变量的密度函数为1()e 2xf x -=,求:(1)()E X ;(2))(2X E 的值.8. 某商店经销商品的利润率的密度函数为2(1)0,x -⎧=⎨⎩,01,x <<其他,求()E X ,()D X . 9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.10. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求()E Y .*11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n MN n -⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭====∧⎛⎫ ⎪⎝⎭,其中min(,)n M n M ∧=.X X X )(x f习题七1912(1):.12(1)n n n n n n m m m m m m ⎛--⎫⎛⎫⎛⎫⎛⎫-== ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,若有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).ni i i i j i nn ni j i ji=1i j j i X i n X X E X E X X X X D X D X X X=-==+⎛⎧=== ⎨ ⎩⎝⎫+⎪⎭∑∑∑∑第封信配对,提示记有先求其他及使用公式13. 设随机变量的概率密度为1e ,0,()0,0,x x f x x -⎧>=⎨≤⎩求()E X ,)2(X E ,2(e )XE X -+,()D X .14. 设随机向量的联合分布律为:求,(),(),(2),(3),(),(),cov(,),.X YE X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球X ),(Y X习题七20 数和黑球数,求X 与Y 之间的相关系数YX ,ρ.16. 设随机变量相互独立,它们的密度函数分别为22e ()0x X f x -⎧=⎨⎩,0,,0,x x >≤44e ()0y Y f y -⎧=⎨⎩,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,nX X 独立,具有公共的(0,1)上的均匀分布,令1min ,ii nY X ≤≤=求(),()E Y D Y .*18. 设随机变量X 有密度函数1e ,0,()()0,xx x f x ααλλα--⎧>⎪=Γ⎨⎪⎩其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d yy y αα∞--Γ⎰=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+=.今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y 与Z 相互独立,ZW Y=,求()E W1:()().Z E W E E Z E Y Y ⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭提示使用独立性,有*19. 设随机变量X 服从参数为(a ,b )的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+⎧-<<⎪ΓΓ=⎨⎪⎩其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--⎛⎫ΓΓ=- ⎪Γ⎝⎭⎰()()提示已知贝搭函数有关系式(,)=(+)20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x+∞+∞-∞-∞=⎰⎰及按公式()()d E X xf x x+∞-∞=⎰算得的Y X ,习题七21()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰()d xf x x +∞-∞=⎰21. 设二维随机变量服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:(1)()E X ;(2))23(Y X E +-;(3))(XY E 的值.22. 设随机变量的联合密度函数为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他.求()E X ,()E Y ,()E XY ,22()E XY +,()D X ,()D Y .23. 设随机变量相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:(1)22(),()E XE Y ;(2))(XY D .24. 袋中有2n个外形完全相同的球,其中n k⎛⎫⎪⎝⎭个标有数字k (k =0,1,…,n ),从中不放回抽取m 次(每次取1个),以X 表示取到的m 个球上的数字之和,求E (X ).(提示:记iX =第i 次抽到的球上的数字,则11,()().mmi i i i X X E X E X ====∑∑)25. 设()25D X =,()36D Y =,4.0),(=Y X ρ,求:(1))(Y X D +;(2))(Y X D -.),(Y X ),(Y X YX ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.設正態總體X~N(μ,σ2),σ2未知, ,S2是樣本平均值和樣本方差,給定顯著性水準α,檢驗假設Ho:σ2= ,H1:σ2≠ 應使用的檢驗用統計量是(A: )。
11、設X~b(3,0.5),則P(X≥1)的值是(D:0.875)。
12、已知(X ,Y )的分佈律為
0
1
1
0
1/6
2
1/12
1/6
3
1/2
1/12
則X的邊緣分佈律為(C:
X
0
1
P
13、設連續型隨機變數X的分佈函數為F(x)= 則A的值為(C:0.5)。
14、設X的分佈律為
則E(X)=(C:0.8)
53.设X1,X2,…Xn是总体X的一个样本,g(X1,X2,…Xn)是X1,X2,…Xn的函数,若g是连续函数,且g中不含任何未知参数,则称g(X1,X2,…Xn)是一个统计量。
54.设A与 互为对立事件,则 。
55.若二维随机变量(X,Y)在平面区域D中的密度函数为 其中A为D的面积,则称(X,Y)在区域D上服从均匀分布。
19.设随机测得某化工产品得率的5个样本观察值为82,79,80,78,81,则样本平均值 80。
20.设总体X~N(μ,σ2),x1,x2,…,xn是来自总体X的样本,则σ2已知时,μ的1-a置信区间为 。
21.假设检验可能犯的两类错误是弃真错误和纳伪错误。
22.设总体X~N(μ,σ2),对假设 做假设检验时,所使用的统计量是 它所服从的分布是 。
X
0
1
P
0.2
0.8
15、已知X~b(n, 0.2)則E(X) =(D:0.2n)
16、設X為隨機變數,則E(3X-5)=(A:3E(X)-5)
17、設X~N(μ,σ2)則E(X) =(D: )
X
0
1
P
7/12
5/12
18.設X~N(μ,σ2)則E(X) =(A:σ2)
19.設X在(0,5)上服從均勻分佈,則E(X) =(B:25/12)
56.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是 。
57.设A,B为随机事件,当A<B时,P(B-A)=P(B)-P(A)。
58.A,B,C,是三个随机事件,用A,B,C表示三个事件,都不发生的事件为 。
59.设X1,X2,…Xn是来自总体Z的一个样本,则样本K阶原点矩是 。
26.在每次试验中都不会发生的事件称为不可能事件。
27.设X为随机变量,则其分布函数为 { },x为任意实数。
28.设随机事件A与B相互独立,且 ,则P(A∪B)=0.6。
29.设X是个具有分布函数F的随机变量,若X1,X2,…Xn具有同一分布函数的相互独立的随机变量,则称X1,X2,…Xn为从总从X得到的容量为n的简单随机样本。
20.設X為隨機變數,則D(4X-3) =(D:16D(X))
21.設總體X~N(μ,42)μ未知,x1, x2…, xn是來自總體X的樣本,則μ的1-α置信區間是(C: , )
22.設總體X的數學期望E(X)=θ,θ未知x1, x2, x3是來自總體X的容量的3的樣本,則下面的統計量中是θ的無偏估計量的是(A:1/4x1+1/4 x2+1/4 x3)
12、随机变量:設E是随机试验,它的樣本空间是S=﹛e﹜。如果对于每一个e S,有一个实数X(e)与之对应,就得到一个定义在S上的单值实值函數X=X(e),稱為随机变量。
13、分布函數:設X是一个随机变量,χ是任意实数,函數F(χ)=P(X≤χ)稱為X的分佈函數。
14、随机变量的相互独立性:設(χ,у)是二維随机变量,如果对于任意实数χ,у,有F(χ,у)=Fx(χ)·Fy(у)或f (χ,у)= fx(χ)·fy(у)成立。則称为X与Y相互獨立。
2.随机事件A与B都不发生的事件是 。
3.将一枚硬币掷两次,观察两次出现正反面的情况,则样本空间S=(正正)(正反)(反正)(反反)。
4.设随机事件A与B互不相容,且 , 0。
5.设随机事件A与B相互独立,且 ,则 。
6.盒子中有4个新乒乓班,2个旧乒乓球,甲从中任取一个用后放回(此球下次算旧球),乙再从中取一个,那么乙取到新球的概率是 。
76.设总体X~N(μ,σ2),其中σ2已知,μ未知,X1,X2,…Xn为来自总体容量为n的样本,对于给定的显著性水平x(0<x<1)参数u的置信度为1-x的置信区间是
77.设X1,X2,…Xn是来自总体X的样本,总体的期望未知,对总体方差D(X)进行估计时,常用的无偏估计量是 78.设总体X服从正态分布N(μ,σ2),方差σ2未知对假设H0:μ=μ0;H1:μ≠μ0,进行假设检验时,通常采用的统计量是 。
74.设X~N(μ,σ2)Y~N(μ2,σ2)X与Y独立,μ1与μ2均未知,σ2已知,对假设μ0:μ1-μ2=δ;H1:μ1-μ2≠δ进行检验时,通常采用的统计量是
(其中n1和n2为Z和Y的容量)
75.设总体X~N(μ,σ2),X1,X2,…Xn是来自总体X的容量为n的样本,μ与σ2均未知,则总体方差σ2的矩估计量 。
60.设随机变量Z具有数学期望E(Z)和方差D(Z),则对任意正数ε有 。
61.设随机变量X1,X2,…Xn相互独立,并且分布函数分别为F1(x),F2(x),…Fn(x)极大值 的分布函数 。
62.设袋中有9个球,其中4个白球,5个黑球现从中任取两个,两个球皆为白球的概率是 。
63.设A,B,C是三个随机事件,试用A,B,C表示,A,B,C至少有一个发生A∪B∪C。
19、χ2(n)分布:設χ1,χ2…,χn是來自总体N(0,1)的樣本,则称統計量
χ2= ,服从自由度為n的χ2分布,记为χ2~χ2(n).
20、无偏估计量:若估計量θ=θ(χ1,χ2…,χn)的數學期望E(θ)存在,且对任意θ (H)有E(θ)=θ,則稱θ是θ的無偏估計量。
二、填空
1.随机事件A与B恰有一个发生的事件是 。
36.设X1,X2,…Xn是来自总体X的样本,则样本平均值 。
37."概率很小的事件在一次试验中几乎是不会发生的"这一论断称为实际推断原理。
38.公式 称为概率的乘法定理。
39.设X1,X2是任意两个随机变量,则 。
40.随机试验E的所有可能结果组成的集合,称为E的样本空间。
41.已知X~b(n,p),则 。
69.若Z服从参数为λ的指数分布则D(Z)= 。
70.设(X,Y)的联合概率密度为P(x,y),则(X,Y)的联合分布函数为:
71.设A,B为二相互独立事件,P(A∪B)=0.6,P(A)=0.4,P(B)= 。
72.已知N(μ,σ2)则P(X)= (其中P(x)为概率密度函数)
73.已知随机变量Z的概率密度是 ,则E(Z)=0。
X
0 1 2
概率
1/2 1/4 1/4
則P(X≤1)的值是(B:3/4)
7、設X在(0.5)上均勻分佈,則P(2< X≤3)的值是(D:1/5)。
8、下列結果中,構成概率分佈的是(B:
X
0 1 2
P
0.3 0.2 1/2
9、若X的概率密度是f( X )= 則其分佈函數是(B:F(x) ).
10、已知X~N(0,4),則X的概率密度函數是(C: )。
30.若随机变量X为正态分布,X~N(μ,σ2),则 。
31.若随机事件A与B有P(AB)=P(A)P(B)时,则称A与B是相互独立的。
32.随机试验E的样本空间S的子集,称为E的随机事件。
33.设随机变量X的分布律为
则 。
34.设(X,Y)为二维随机变量,则其联合分布函数 { }, 为任意实数。
35.设随机变量X~N(0,1)(标准正态分布),则其概率密度函数 。
48.随机事件A与B至少一个发生的概率为P(A∪B)。
49.随机事件A与B都发生的事件为AB。
50.已知X~N(μ,σ2),即X服从参数μ,σ2的正态分布,则
51.设A,B是两个事件,且P(A)>0,则 称为事件A发生的条件下,事件B发生的条件概率。
52.若估计量 (X1,X2,…Xn)的数学期望存在,且对任意 ,则称 的无偏估计量。
概率论习题
一、概念題
1、样本空间:随机试验E的所有可能結果組成的集合,称为E的样本空间。
2、随机事件:试验E的样本空间S的子集,称为E的随机事件。
3、必然事件:在每次試驗中總是發生的事件。
4、不可能事件:在每次試驗中都不會發生的事件。
5、概率加法定理:P(A∪B)=P(A)+P(B)-P(AB)
6、概率乘法定理:P(AB)=P(A)P(B│A)
42.随机事件A与B至少一个发生的事件是A∪B。
43.假设检验可能犯的两类错误是取伪错误和弃真错误。
44.设总体X~N(μ,σ2),则样本平均值 服从的分布是 )。
45.在每次试验中总是发生的事件称为必然事件。
46.设X与Y是两个随机变量,则 (a,b为常数)。
47.设总体X~N(μ,σ2),X1,X2,…Xn是X的样本,S2是样本方差,则 服从的分布是x2(n-1)。
15、方差:E﹛〔X-E(χ)〕2﹜
16、數学期望:E(χ)= (或)=
17、简单随机样本:設X是具有分布函數F的随机变量,若χ1,χ2…,χn是具有同一分布函数F的相互獨立的随机变量,則称χ1,χ2…,χn为从总体X得到的容量为n的简单随机样本。
18、統计量:設χ1,χ2…,χn是來自总体X的一个样本,g(χ1,χ2…,χn)是χ1,χ2…,χn的函數,若g是连续函數,且g中不含任何未知參數,则称g(χ1,χ2…,χn)是一統计量。