ASM Metals HandBook Volume 4 - Heat Treating-Stainless Steels and Heat-Resistant Alloys
热处理可行性报告
热处理可行性报告一、引言热处理是一项重要的金属加工工艺,通过对材料进行加热、保温和冷却等处理过程,可以改变材料的物理性质和力学性能。
本报告旨在评估热处理在特定项目或工程中的可行性,并提供相关建议。
二、背景介绍在某工程项目中,我们面临一个关键问题:如何提高材料的强度和硬度,以满足项目对材料性能的要求。
在这种情况下,使用热处理技术可能是一个可行的解决方案。
热处理可以通过改变材料的晶格结构和组织形态,从而改善其性能。
三、热处理技术选型在进行热处理之前,我们需要选择适合该工程项目的热处理技术。
以下是几种常见的热处理技术:1. 淬火(Quenching):通过迅速冷却材料,使其达到高硬度和高强度,但可能导致脆性增加。
2. 回火(Tempering):通过在适当温度下加热材料一段时间,然后冷却,以减轻淬火后的脆性,并提高韧性。
3. 空气冷却(Air cooling):将材料从高温直接暴露在室温空气中,使其缓慢冷却,可以改变材料的组织结构,提高强度。
4. 固溶处理(Solution treatment):通过在高温下溶解材料中的一种或多种元素,然后迅速冷却,可以改善材料的均匀性和强度。
四、可行性评估基于对该项目要求的分析和热处理技术的了解,我们进行了可行性评估,总结如下:1. 材料适应性:首先,需要确定项目中所用的材料是否适合进行热处理。
某些材料,如奥氏体不锈钢和合金钢,对热处理非常敏感,能够显著改善其性能。
而其他材料,如铝合金等,可能受到热处理的限制。
2. 成本效益:其次,评估热处理所需的成本与项目预算之间的关系。
热处理通常需要专门的设备和工艺,因此在决策是否采用热处理技术时,需要综合考虑成本效益。
3. 时间要求:对于项目而言,时间可能是一个重要因素。
热处理通常需要一定的加热、保温和冷却时间,因此需要评估热处理对项目进度的影响,并确保能够按时完成。
4. 风险控制:热处理过程中存在一定的风险,如可能引起材料变形、开裂或冷间变脆。
宇航结构金属数据库(ASMD)
CINDAS LLC及其材料性能数据库介绍CINDAS出版社CINDAS是情报与数值数据分析和综合中心(the Center for Information and Numerical Data Analysis and Synthesis)的缩写。
它是普渡大学(Purdue University)的一个部门,由美国国防部资助。
它专门从事材料性能和处理领域的复杂的和系统的研究项目长达45年,承担着类似于中国的国家实验室情报处理中心的作用。
CINDAS LLC是源自普渡大学的衍生公司,它是唯一被授权发布由CINDAS收集和分析的材料性能数据的机构。
从1960年到1996年间,CINDAS为美国国防部运营着5个信息分析中心(Information Analysis Centers,IACs)。
作为美国国防部的信息分析中心,CINDAS出版了多卷关于材料的机械性能、热物理性能、光学性能和热辐射性能的数据报告和手册,涉及的材料比如金属合金、铝化合物、硅化合物、铍化合物、陶瓷基复合材料、汞、镉碲合金、特级红外窗体与屋顶材料等。
此外,从1992年开始,CINDAS还负责为美国空军(United States Air Force, USAF)更新和发布多部手册,其中最著名的就是宇航结构金属手册。
根据CINDAS LLC与美国空军的合作研发协议,CINDAS LLC负责为其进行宇航结构金属数据库的研制和开发,以及该数据库的技术维护和销售。
----------------------------------------------------------------------------------------------------------------------------------------宇航结构金属数据库(Aerospace Structural Metals Database, ASMD)ASMD是宇航结构金属手册(Aerospace Structural Metals Handbook,ASMH)的网络版。
AZ91D镁合金压铸样品仿真分析及腐蚀行为研究
AZ91D镁合金压铸样品仿真分析及腐蚀行为研究王全乐;郭艳萍;董兆博;王琳;霍少达;亢太萧;刘宝胜【摘要】通过铸造仿真软件(MAGMA)对AZ91D镁合金笔记本电脑底外壳压铸过程进行仿真分析,采用压铸方法及表面化学转化后处理制备样品.利用扫描电镜及能谱仪分析了样品的表面及亚表面的结构特征,极化曲线和盐雾实验用来研究样品的腐蚀行为.仿真分析结果表明,样品的填充时间为0.012 1 s.实验结果表明,在浇口位置附近基体微孔含量较低,而在填充远端,即排气孔位置,微孔含量明显增多.通过对样品内部气体含量的仿真分析进一步验证了这一结果.微孔主要是由熔融镁合金的高温使模具表面喷涂的脱模剂水分呈爆炸式膨胀导致的.另外,相对浇口位置样品而言,填充远端样品的耐腐蚀性严重降低,这是由于远端样品的化学转化膜不连续和不完整导致的,而这恰恰与微孔有直接的关系.【期刊名称】《铸造设备与工艺》【年(卷),期】2018(000)001【总页数】5页(P20-24)【关键词】AZ91D镁合金;压铸仿真分析;化学转化处理;腐蚀行为【作者】王全乐;郭艳萍;董兆博;王琳;霍少达;亢太萧;刘宝胜【作者单位】太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024【正文语种】中文【中图分类】TG174.4压铸工艺之所以能在镁合金、锌合金及铜合金产品中得到广泛的应用,主要是因为其可以生产出形状较复杂的产品,而且保持较高的生产率。
但是一些内部缺陷是不可避免的,例如疏松、中心孔洞、缩陷等。
有时还会出现外表面的缺陷,如冷接纹、表面流痕及裂纹、充填不饱满等[1]。
SAE J434-2004
SURFACEVEHICLESTANDARD SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report isentirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2004 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)FIGURE 1—CLASSIFICATION OF GRAPHITE SHAPE IN CAST IRONS (FROM ASTM A 247)D400D450FIGURE 2—TYPICAL MATRIX MICROSTRUCTURES (PHOTOS COURTESY OF CLIMAX RESEARCH SERVICES)SAE J434 Revised FEB2004D500D550FIGURE 2—TYPICAL MATRIX MICROSTRUCTURES (CONTINUED)(PHOTOS COURTESY OF CLIMAX RESEARCH SERVICES)--``,,`,```,``,,``,,`,,```,`,,-`-`,,`,,`,`,,`---D700D800FIGURE 2—TYPICAL MATRIX MICROSTRUCTURES (CONTINUED) (PHOTOS COURTESY OF CLIMAX RESEARCH SERVICES)7.Quality AssuranceIt is the responsibility of the manufacturer to demonstrate process capability. The specimen(s) used to do so shall be of a configuration and from a location agreed upon between the manufacturer and the purchaser. Sampling plans shall be agreed upon between the manufacturer and purchaser. The manufacturer shall employ adequate controls to ensure that the parts conform to the agreed upon requirements.8.General8.1Castings furnished to this standard shall be representative of good foundry practice and shallconform to dimensions and tolerances specified on the casting drawing.8.2Minor imperfections usually not associated with the structural functioning may occur in castings.These imperfections are often repairable; however, repairs should be made only in areas and by methods approved by the purchaser.8.3Purchaser and manufacturer may agree to additional casting requirements, such as manufactureridentification, other casting information, and special testing. These should appear as additionalproduct requirements on the casting drawing.9.Notes9.1Marginal IndiciaThe change bar (l) located in the left margin is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. An (R) symbol to the left of the document title indicates a complete revision of the report.PREPARED BY THE SAE AUTOMOTIVE IRON & STEEL CASTINGS COMMITTEE- 11 -。
PWHT defined(热处理)
What is PWHT?Postweld heat treatment (PWHT),defined as any heat treatment after welding, is often used to improve the properties of a weldment.In concept,PWHT can encompass many different potential treatments;however, in steel fabrication, the two most common pro-cedures used are post heating and stress relieving .When is it Required?The need for PWHT is driven by code and application requirements, as well as the service environment.In gener-al, when PWHT is required, the goal is to increase the resistance to brittle fracture and relaxing residual stresses.Other desired results from PWHT may include hardness reduction, and mate-rial strength enhancements.Post Heating Post heating is used to minimize thepotential for hydrogen induced crack-ing (HIC).For HIC to occur, the follow-ing variables must be present (seeFigure 1): a sensitive microstructure,a sufficient level of hydrogen, or a high level of stress (e.g., as a result ofhighly constrained connections).Inferritic steels, hydrogen embrittlementonly occurs at temperatures close tothe ambient temperature.Therefore, it is possible to avoid cracking in a sus-ceptible microstructure by diffusinghydrogen from the welded area before it cools.After welding has been com-pleted, the steel must not be allowed to cool to room temperature;instead, it should be immediately heated from the interpass temperature to the post heat temperature and held at this tem-perature for some minimum amount of time.Although various code and ser-vice requirements can dictate a variety of temperatures and hold times, 450°F (230°C) is a common post heating temperature to be maintained for 1hour per inch (25 mm) of thickness.Post heating is not necessary for most applications.The need for post heat-ing assumes a potential hydrogencracking problem exists due to a sen-sitive base metal microstructure, high levels of hydrogen, and/or high stress-es.Post heating, however, may be a code requirement.For example,ASME Section III and the NationalBoard Inspection Code (NBIC) both have such provisions.The Section III requirement for P-No.1 materials is 450 to 550°F (230 to 290°C) for a min-imum of 2 hours, while the NBICrequirement is 500 to 550°F (260 to 290°C) for a minimum of 2 hours.Furthermore, post heating is oftenrequired for critical repairs, such as those defined under the FractureControl Plan (FCP) for Nonredundant Members of the AASHTO/AWS D1.5Bridge Welding Code.The FCP provi-sion is 450 to 600°F (230 to 315°C) for “not less than one hour for each inch (25 mm) of weld thickness, or two hours, whichever is less.”When it is essential that nothing go wrong, post heating can be used as insurance against hydrogen cracking.However,when the causes of hydrogen cracking are not present, post heating is not necessary, and unjustifiable costs may result if it is done.Stress RelievingStress relief heat treatment is used to reduce the stresses that remain locked in a structure as a consequence of manufacturing processes.There are many sources of residual stresses, and those due to welding are of a magni-tude roughly equal to the yield strength of the base material.Uniformly heating a structure to a sufficiently high tem-perature, but below the lower transfor-mation temperature range, and then uniformly cooling it, can relax thesePostweldHeat TreatmentKey Concepts in Welding Engineeringby R.Scott FunderburkThe need for post heating assumes a potential hydrogen cracking problemexists...Figure 1.Criteria for hydrogeninduced cracking (HIC).residual stresses.Carbon steels are typically held at 1,100 to 1,250°F (600 to 675°C) for 1 hour per inch (25 mm) of thickness.Stress relieving offers several benefits. For example, when a component with high residual stresses is machined, the material tends to move during the metal removal operation as the stress-es are redistributed.After stress relieving, however, greater dimensional stability is maintained during machin-ing, providing for increased dimension-al reliability.In addition, the potential for stress cor-rosion cracking is reduced, and the metallurgical structure can be improved through stress relieving.The steel becomes softer and more ductile through the precipitation of iron car-bide at temperatures associated with stress relieving.Finally, the chances for hydrogen induced cracking (HIC) are reduced, although this benefit should not be the only reason for stress relieving.At the elevated temperatures associated with stress relieving, hydrogen often will migrate from the weld metal and the heat affected zone.However, as dis-cussed previously, HIC can be mini-mized by heating at temperatures lower than stress relieving tempera-tures, resulting in lower PWHT costs.Other ConsiderationsWhen determining whether or not topostweld heat treat, the alloying sys-tem and previous heat treatment of thebase metal must be considered.Theproperties of quenched and temperedalloy steels, for instance, can beadversely affected by PWHT if thetemperature exceeds the temperingtemperature of the base metal.Stressrelief cracking, where the componentfractures during the heating process,can also occur.In contrast, there aresome materials that almost alwaysrequire PWHT.For example, chrome-molybdenum steels usually needstress relieving in the 1,250 to 1,300°F(675 to 700°C) temperature range.Thus, the specific application and steelmust be considered when determiningthe need, the temperature and time oftreatment if applied, and other detailsregarding PWHT.The filler metal composition is alsoimportant.After heat treatment, theproperties of the deposited weld canbe considerably different than the “aswelded”properties.For example, anE7018 deposit may have a tensilestrength of 75 ksi (500 MPa) in the “aswelded”condition.However, afterstress relieving, it may have a tensilestrength of only 65 ksi (450 MPa).Therefore, the stress relieved proper-ties of the weld metal, as well as thebase metal, should be evaluated.Electrodes containing chromium andmolybdenum, such as E8018-B2 andE9018-B3, are classified according tothe AWS A5.5 filler metal specificationin the stress relieved condition.TheE8018-B2 classification, for example,has a required tensile strength of 80ksi (550 MPa) minimum after stressrelieving at 1,275°F (690°C) for 1 hour.In the “as welded”condition, however,the tensile strength may be as high as120 ksi (825 MPa).The objective of this article is to intro-duce the fundamentals of postweldheat treatment;it is not meant to beused as a design or fabrication guide.For specific recommendations, consultthe filler metal manufacturer and/or thesteel producer.For Further ReadingASM Handbook, Volume 6 – Welding, Brazing,and Soldering.American Society for Metals,1993.Bailey, N.Weldability of Ferritic Steels.ASMInternational/Abington Publishing, 1994.Evans, G.M.and Bailey, N.Metallurgy of BasicWeld Metal.Abington Publishing, 1997.Metals Handbook, Volume 4 – Heat Treating.9th Edition.American Society for Metals,1981.When determiningwhether or not toPWHT, the alloyingsystem and previousheat treatment of thebase metal must beconsidered。
14-稀释率对Inconel 625堆焊层成分和性能的影响
0 前言
Inconel 625 镍基合金因具有良好的成型性、 韧性、耐蚀性、抗氧化性和高强度,常被堆焊到 其他金属表面[1-8]。目前对此类合金的焊接主要采 用普通的电弧焊工艺,但是存在堆焊后稀释率较 高的问题。高的稀释率不仅降低堆焊层的耐腐蚀 性能,而且会导致堆焊层材料消耗量的增加提高 成本。为了降低焊缝稀释率,国内外的学者进行 了大量的研究,但大多集中在焊接参数研究,证 明了通过降低焊接电弧能量和增加送丝速度会有 效的降低堆焊稀释率。但是对于热输入低的新型 电弧焊方法的研究比较少,而不同的焊接方法对 焊缝金属的稀释率有较大的影响。文中尝试采用 侧 弧 熔 丝 钨 极 惰 性 气 体 保 护 焊 ( Arcing-wire GTAW)在 20G 表面堆焊 Inconel 625 镍基合金, 重点研究了堆焊接头组织以及稀释率对于堆焊层 成分和耐腐蚀性能的影响。 1 试验材料和方法 1.1 试验材料 试验母材选用 20G,焊材为镍基合金 Inconel 625(相当于 GB/T 15007-2008《耐蚀合金牌号》 中的 NS3306(0Cr22Ni60Mo9Nb4)其标准化学成 分位于表 1。
2.3 堆焊层成分分布 在 20G 表面堆焊 Inconel 625 镍基合金后, 对 堆焊层和基体接头横断面做能谱扫描分析分析 Ni、Cr、Fe、Mo、Nb 等主要元素的分布。从图 3 中可以明显看出,元素按照母材、熔合区和堆焊 层这三个区域有规律地分布。从堆焊层到母材过 渡的熔合区中,Cr 和 Ni 两元素会在一个极小的 区域内发生陡升的变化。然而,Fe 元素在这个极 小的区域发生陡降的变化。 对于 Nb 和 Mo 量元素 在焊缝中变化不是很大。按照稀释率从高到低的 原则,对试样 1、8、10 堆焊层中 Cr、Fe、Ni、 Nb、Mo 元素含量进行分析,如表 3。可以清晰看 出, 随着堆焊稀释率的增加堆焊层中 Cr、 Ni、 Nb、 Mo 元素含量不断降低,相反,Fe 元素的含量不 断增加。综上,稀释率的存在使母材和堆焊层中 的金属相互扩散,并且随着稀释率的增加这种扩 散程度也在不断的加大,母材中的金属进入到堆 焊层的含量增加,堆焊层金属纯度降低,使堆焊 层性能下降。
SAEJ(标准参考)翻译
1 范围该SAE标准涵盖了应用于汽车球墨铸铁铸件和相关的行业的铸铁试件的金相组织和最低机械性能要求。
铸件需详细说明是铸态或热处理状态。
如果铸件需热处理,需获得客户的批准。
本附录提供了在化学成分,显微组织和力学性能,铸造性能等方面面信息以及为特定条件服务的其他信息。
在此标准的SI单位是磅2.2参考文献2.1 相关出版物The following publications form a part of the specification to the extent specified herein. Unless otherwise indicated, the latest revision of SAE publications shall apply2.1.1 ASTM 国际出版物Available from ASTM INTERNA TIONAL, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959ASTM E10 –-Standard Test Method for Brinell Hardness of Metallic MaterialsASTM E23—Standard Test Methods for Notched Bar Impact Testing of Metallic Materials ASTM E111—Standard Test Method for Young's Modulus, Tangent Modulus and Chord Modulus ASTM A247—Standard Test Method for Evaluation the Microstructure of Graphite in Iron CastingsASTM A536—Standard Specification for Ductile Iron CastingsSTP-455—Gray, Ductile, and Malleable Iron Castings Current Capabilities (out-of-print)2.1.2其他出版物Metals Handbook, V ol. 1, 2, and 5, 8th Edition, American Society for Metals, Metals Park, OH Gray and Ductile Iron Castings Handbook, Gray and Ductile Iron Founder Society, Cleveland, OH H. D. Angus, Physical Engineering Properties of Cast Iron, British Cast Iron Research Association, Birmingham, England3.3 牌号机械性能和冶金描述如表1所示。
0208-材料科学与工程学科的“四要素”
0208-材料科学与⼯程学科的“四要素”材料科学与⼯程学科的“四要素”------兼顾说明组织、结构的认识邓安华认为,组织、结构是两个不同的概念。
陈明彪提到了在英语著述中,组织、结构的表述使⽤了同⼀个词:structure (结构);并且分别从组成材料的原⼦结构( structure 或architecture)、原⼦排列结构、晶粒及晶界结构组成相及其结构进⾏表述。
这显然不够简明,⽽且不如中⽂著作中使⽤“结构”(指原⼦结构或原⼦的组合结构)和“组织”(指材料组织状态)这两个不等同的概念更⽅便和合乎逻辑。
这⾥,两位特别关注了“组织、结构”的专业⼈⼠认为组织、结构是不同的;但是,⼀个认为是“不同的概念”,⼀个认为是在使⽤过程中“更⽅便和合乎逻辑”。
这两个认识虽然都认可了“组织”、“结构”的中⽂提法,但是,却是本质上的不同,⽽不是“细节上有所差异”。
我个⼈倾向于陈明彪的认识,只是需要明确的是:组织、结构在这⾥是⼀回事;之所以在不同的地⽅使⽤“组织”或者“结构”,确实是与观察的对象的尺度范围有关。
当跨越原⼦级别后,更多的采⽤“结构”的说法。
对于这⼀概念的认识,我个⼈的来源是源于⼯作中的⼀位同事兼导师。
他曾经问过我⼀个问题:我们平时总说的“⾦相组织”到底是什么?电镜观察的事物是不是“⾦相组织”?最初,我有些懵,感觉有些不好回答。
我的导师最后说明:从本质上讲,所观察到的都可以称之为“组织”;仅仅因为技术⼿段不同,分辨能⼒、表述形式上有所差异。
在《Introduction to Structures in Metals》(Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, 2004, p. 23–28)中对于structure (结构)的表述,也体现了这⼀内涵。
英语著述中的structure (结构),涵盖了整个实际、可能的从宏观、到现有技术⼿段可以达到的最微⼩的尺度范围内的。
ASM.Handbook.Dialog.Ondisc.Books
ASM HandbookSearch GuideDIALOG OnDisc® Books ASM Handbook is an authoritative source of information on the properties, processing, and applications of engineering materials. The database is the CD-ROM equivalent of the ASM Handbook (formerly Metals Handbook), published by ASM International. The series has grown from a single volume, first published in 1923, to the current 20-volume set.While the series focuses on metallic materials–with a special emphasis on steels–information is also provided on selected nonmetallic engineering materials. The ASM Handbook series is intended to be a comprehensive, reliable reference tool for engineers, students, technicians, researchers, and others who need basic information about engineered materials.The DIALOG OnDisc Books ASM Handbook is being produced in a series of four collections:•Metals Properties andPerformance Collection (Volumes1, 2, 13, and 18)•Metal Treatment, Structure and Joining Collection (Volumes 3, 4, 5,6, and 9)•Testing, Analysis, and Failure Prevention Collection (Volumes 8,10, 11, 12, and 19)•Manufacturing ProcessesCollection (Volumes 7, 14, 15, 16,and 17)In addition, a complete-set version–to enable searching across all 20 volumes of the ASM Handbook–is also being produced.Coverages Properties and selection of metals and alloys s Phase diagramss Heat treatings Surface engineerings Weldings Powder metallurgys Mechanical testings Metallography and microstructuress Materials characterizations Failure analysis and preventions Fractographys Corrosions Forming and forgings Castings Machinings Nondestructive testings Tribologys Fatigue and fractures Materials selection and designKey Featuress View the full text of each handbook, as well as accompanying tables, illustrations, andphotographs.s Use the full-text search or quick index look-up to find information.s Use search forms to focus your search on a particular kind of content, such as tables orreferencesSample Applicationss Identify the best materials for a particular applications Find in-depth processing informations Establish quality assurance and testing proceduress Locate data for analysis and prevention of corrosion and wearSample Searchusing DIALOG OnDisc BooksFor a detailed explanation of the search features available with DIALOG OnDisc Books, refer to the DIALOG OnDisc Books User’s Guide.Topic: Locate information on the properties of aluminum.Start your search for aluminum in the Article Titles across all volumes in an ASM Handbook Collection.1. Start up DIALOG OnDisc Books by clicking the DIALOG OnDisc Books icon on your desktop or fromyour program group. The Collection Window displays.2. Select an ASM Handbook Collection by clicking on its title in the Collection Window.3. Click the Inside drop-down box and select article-titles.4. Type ALUMINUM in the Find Search Panel and press Enter. The Collection window is updated withthe number of hits found in each book, as shown in the following example:Continue searching within one of the volumes using the Book Window.1. Select a volume by double-clicking its title.The Book Window displays.2. Use a Search Form to target your search to the contents of the tables within the book. ChooseSearch Forms from the Search menu.3. Click the drop-down arrow next to Search Form and click Table Contents. Notice that the previoussearch displays in the search history window.4. Type ALUMINUM AND PROPERT* in the Table Contents field. The asterisk works as a wild card tofind all words in the book with the root PROPERT, such as PROPERTY and PROPERTIES. The “AND” works as a Boolean operator to limit the search results to tables that contain both Aluminum AND words with Propert as the root.5. Click Find. The Book window updates with the first occurrence of search terms highlighted. The TOCwindow displays sections of the book where the terms appear. Click Next to move to the nextoccurrence.6. Double-click on a table icon to view a table.Other things to try:s Click the picture icon in the right-hand margin to view images linked to the text. s Sort the TOC by hits using the View menu.s Print or Export information using the File menu.s Use the Annotation Manager to write your own notes in the collection.s Create your own list of Bookmarks in the collection.Source InformationDIALOG OnDisc Books ASM Handbook is produced by ASM International. Questions concerning database content should be directed to:Scott D. HenryASM International9639 Kinsman RoadMaterials Park, OH 44073Phone 440/338-5151, ext. 5706Fax 440/338-4634************************.orgSearch ToolsThe following publications are included with DIALOG OnDisc Books ASM Handbook:DIALOG OnDisc Books User’s Guide containing detailed information on how to install the software and a Quick Tour taking you through the basics of searching and displaying.Online ReferencesClick the Help menu to access the online Reader Guide, which contains functional information about the browser and search engine used to search DIALOG OnDisc Books. Targeted subjects, such as searching and browsing, are also pulled out into separate books to make your search even faster.Click About this Collection to read information that is specific to the DIALOG OnDisc Books ASM Handbook.Frequently asked questions can also be found in the online Reader Guide and in the DIALOG OnDisc Books User’s Guide.Product DatasheetTo view the Product Datasheet for DIALOG OnDisc®Books ASM Handbook, visit http://products.dialog. com/products/oddatas/asm.html.Dialog has offices aroun d the worl d.For more information on our fullrange of products and services, call us today.For Europe, the Middle East and Africa contact:Tel:+44 20-7940-6900Fax:+44 20-7940-6800Email:**************************For the Americas contact:In U.S. Tel:180****9103Other Tel:+1 919 462 8600Fax:+1 919 468 9890Email:**************************For Asia/Pacific contact:Tel:+852 2530 5778Fax:+852 2530 5885Email:**************************©2001 Th omson Dialog. All rights reserved. All designated trademarks used herein are the property of Dialog. Registered marks areregistered by Dialog U.S. Patent andTrademark Office. All other marks are trademarks or registered trademarks of their respective owners.This document may be copied by DIALOG OnDisc Books ASM Handbook subscribers for further distribution.。
ASM Metals HandBook Volume 03 - Alloy Phase Diagrams_部分17
Co-Cr-Fe isothermal section at 1000 °C [88Ray 60].Co-Cr-Fe isothermal section at 800 °C [88Ray 60].Co-Cr-Fe isothermal section at 600 °C [88Ray 60].Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Co-Cr-Ni (Cobalt - Chromium - Nickel) Ternary Phase DiagramsCo-Cr-Ni isothermal section at 1200 °C [81Zha 42].Reference cited in this section81Zha: Jin Zhanpeng, "A Study of the Range of Stability of sigma Phase in Some Ternary Systems," Scand. J. Metall., Vol 10, 1981, p 279-287Co-Cr-Ti (Cobalt - Chromium - Titanium) Ternary Phase DiagramsCo-Cr-Ti liquidus projection [62Zak 15].Co-Cr-Ti solidus projection [62Zak 15].Co-Cr-Ti isothermal section at 1050 °C [58Liv 11].References cited in this section58Liv:B.G. Livshits and Ya.D. Khorin, "Study of Equilibrium Phase Diagram of the System Co-Cr-Ti," Russ. J. Inorganic Chem.; TR: Zh. Neorg. Khim., Vol 3 (No. 3), 1958, p 193-20562Zak: E.K. Zakharov and B.G. Livshits, "Phase Composition Diagram of the Cobalt-Chromium-Titanium Ternary System," Russ. Metall. Fuels, (No. 5), 1962, p 88-97Co-Cr-W (Cobalt - Chromium - Tungsten) Ternary Phase DiagramsCo-Cr-W isothermal section at 1350 °C [73Dra 29].Co-Cr-W isothermal section at 700 °C [73Dra 29]. Reference cited in this section73Dra: J.M. Drapier and D. Coutsouradis, Metallography, Structures and Phase Diagrams, Vol 8, Metals Handbook, 8th ed., American Society for Metals, Metals Park, OH 1973Co-Fe-Mo (Cobalt - Iron - Molybdenum) Ternary Phase DiagramsCo-Fe-Mo liquidus projection [88Ray 60].Co-Fe-Mo isothermal section at 1300 °C [88Ray 60].Co-Fe-Mo isothermal section at 1093 °C [88Ray 60].Co-Fe-Mo isothermal section at 982 °C [88Ray 60].Co-Fe-Mo isothermal section at 800 °C [88Ray 60].Co-Fe-Mo isothermal section at 20 °C [88Ray 60]. Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Co-Fe-Ni (Cobalt - Iron - Nickel) Ternary Phase DiagramsCo-Fe-Ni liquidus projection [88Ray 60].Co-Fe-Ni solidus projection [88Ray 60].Co-Fe-Ni isothermal section at 800 °C [88Ray 60].Co-Fe-Ni isothermal section at 600 °C [88Ray 60].Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Co-Fe-W (Cobalt - Iron - Tungsten) Ternary Phase DiagramsCo-Fe-W liquidus and solidus projections [88Ray 60].Co-Fe-W isothermal section at 1200 °C [88Ray 60].Co-Fe-W isothermal section at 1000 °C [88Ray 60].Co-Fe-W isothermal section at 800 °C [88Ray 60].Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Co-Mo-Ni (Cobalt - Molybdenum - Nickel) Ternary Phase DiagramsCo-Mo-Ni liquidus projection [84Gup 45].Co-Mo-Ni isothermal section at 1200 °C [52Das 7].Co-Mo-Ni isothermal section at 1100 °C [80Loo 40].References cited in this section52Das: D.K. Das, S.P. Rideout, and P.A. Beck, "Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems," Trans. AIME, Vol 194, 1952, p 1071-107580Loo: F.J.J. van Loo, G.F. Bastin, J.W.G.A. Vrolijk, and J.J.M. Hendriks, "Phase Relations in the Systems Fe-Ni-Mo, Fe-Co-Mo and Ni-Co-Mo at 1100 °C," J. Less-Common Met., Vol 72, 1980, p 225-23084Gup:K.P. Gupta, S.B. Rajendraprasad, A.K. Jena, and R.C. Sharma, "The Co-Mo-Ni System," Trans. Indian Inst. Met., Vol 37 (No. 6), 1984, p 691-697Co-Ni-Ti (Cobalt - Nickel - Titanium) Ternary Phase DiagramsCo-Ni-Ti isothermal section at 1000 °C [83Gry 43].Co-Ni-Ti isothermal section at 800 °C [80Gry 39].References cited in this section80Gry:V.I. Gryzunov and A.S. Sagyndykov, "Mutual Diffusion in the System Ti-Ni-Co," Phys. Met. Metallogr., Tr: Fiz. Met. Metalloved., Vol 49 (No. 5), 1980, p 178-18283Gry: V.I. Gryzunov, G.V. Shcherbedinskiy, Ye.M. Sokolovskaya, B.K. Aytbayev, and A.S. Sagyndykov, "Kinetics of Phase Growth During Mutual Diffusion in Ternary Multiphase Metallic Systems," Phys. Met. Metallogr.; TR: Fiz. Met. Metalloved., Vol 56 (No. 1), 1983, p 183-186Cr (Chromium) Ternary Alloy Phase DiagramsIntroductionTHIS ARTICLE includes systems where chromium is the first-named element in the ternary system. Additional ternary systems that include chromium are provided in the following locations in this Volume:•“Al-Cr-Fe (Aluminum - Chromium - Iron)”, “Al-Cr-Mn (Aluminum - Chromium - Manganese)” and “Al-Cr-Ni (Aluminum - Chromium - Nickel)” in the article “Al (Aluminum) Ternary Phase Diagrams.”•“C-Cr-Fe (Carbon - Chromium - Iron)”, “C-Cr-Mo (Carbon - Chromium - Molybdenum)”, “C-Cr-N (Carbon - Chromium - Nitrogen)”, “C-Cr-V (Carbon - Chromium - Vanadium)”, and “C-Cr-W (Carbon - Chromium - Tungsten)” in the article “C (Carbon) Ternary Phase Diagrams.”•“Co-Cr-Fe (Cobalt - Chromium - Iron)”, “Co-Cr-Ni (Cobalt - Chromium - Nickel)”, “Co-Cr-Ti (Cobalt - Chromium - Titanium)” and “Co-Cr-W (Cobalt - Chromium - Tungsten)” in the article “Co (Cobalt) Ternary Phase Diagrams.”Cr-Fe-Mo (Chromium - Iron - Molybdenum) Ternary Phase DiagramsCr-Fe-Mo liquidus projection [88Ray 60].Cr-Fe-Mo isothermal section at 1250 °C [88Ray 60].Cr-Fe-Mo isothermal section at 1100 °C [88Ray 60].Cr-Fe-Mo isothermal section at 815 °C [88Ray 60].Cr-Fe-Mo [88Ray 60].Cr-Fe-Mo [88Ray 60].Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Cr-Fe-N (Chromium - Iron - Nitrogen) Ternary Phase DiagramsCr-Fe-N liquidus projection [87Rag 57].Cr-Fe-N isothermal section at 1200 °C [87Rag 57].Cr-Fe-N isothermal section at 1000 °C [87Rag 57].Cr-Fe-N isothermal section at 700 °C [87Rag 57].Cr-Fe-N isothermal section at 567 °C [87Rag 57].Reference cited in this section87Rag:V. Raghavan, Phase Diagrams of Ternary Iron Alloys,The Indian Institute of Metals, Calcutta, India, (No. 1), 1987Cr-Fe-Ni (Chromium - Iron - Nickel) Ternary Phase DiagramsCr-Fe-Ni liquidus projection [88Ray 60].Cr-Fe-Ni solidus projection [88Ray 60].Cr-Fe-Ni isothermal section at 1300 °C [88Ray 60].Cr-Fe-Ni isothermal section at 900 °C [88Ray 60].Cr-Fe-Ni isothermal section at 650 °C [88Ray 60].Reference cited in this section88Ray:G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys,The Institute of Metals, London, (No. 4), 1988Cr-Fe-W (Chromium - Iron - Tungsten) Ternary Phase DiagramsCr-Fe-W isothermal section at 1200 °C [88Ray 60].Cr-Fe-W isothermal section at 600 °C [88Ray 60].Reference cited in this section60. 88Ray: G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys, The Institute of Metals,London, (No. 4), 1988Cr-Mo-Ni (Chromium - Molybdenum - Nickel) Ternary Phase DiagramsCr-Mo-Ni liquidus projection [90Gup 64].Cr-Mo-Ni isothermal section at 1250 °C [90Gup 64].Cr-Mo-Ni isothermal section at 1200 °C [90Gup 64].Cr-Mo-Ni isothermal section at 600 °C [90Gup 64].Reference cited in this section90Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cr-Mo-W (Chromium - Molybdenum - Tungsten) Ternary Phase DiagramsCr-Mo-W isothermal section at 2227 °C [75Kau 36].Cr-Mo-W isothermal section at 1300 °C [75Kau 36].Cr-Mo-W isothermal section at 1000 °C [75Kau 36].Reference cited in this section75Kau: L. Kaufman and H. Nesor, "Calculation of Superalloy Phase Diagrams: Part IV," Metall. Trans. A, Vol 6, 1975, p 2123-2131Cr-Nb-Ni (Chromium - Niobium - Nickel) Ternary Phase DiagramsCr-Nb-Ni liquidus projection [90Gup 64].Cr-Nb-Ni isothermal section at 1200 °C [90Gup 64].Cr-Nb-Ni isothermal section at 1175 °C [90Gup 64].Cr-Nb-Ni isothermal section at 1100 °C [90Gup 64]. Reference cited in this section90Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cr-Nb-W (Chromium - Niobium - Tungsten) Ternary Phase DiagramsCr-Nb-W isothermal section at 1500 °C [61Eng 13].Cr-Nb-W isothermal section at 1000 °C [61Eng 13].Reference cited in this section61Eng: J.J. English, "Binary and Ternary Phase Diagrams of Niobium, Molybdenum and Tungsten (1961)," Available as NTIS Document AD 257,739Cr-Ni-Ti (Chromium - Nickel - Titanium) Ternary Phase DiagramsCr-Ni-Ti liquidus projection [90Gup 64].Cr-Ni-Ti isothermal section at 1352 °C [74Kau 35].Cr-Ni-Ti isothermal section at 1277 °C [74Kau 35].Cr-Ni-Ti isothermal section at 1027 °C [74Kau 35].References cited in this section74Kau: L. Kaufman and H. Nesor, "Calculation of Superalloy Phase Diagrams: Part I," Metall. Trans., Vol 5, 1974, p 1617-162190Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cr-Ni-W (Chromium - Nickel - Tungsten) Ternary Phase DiagramsCr-Ni-W liquidus projection [90Gup 64].Cr-Ni-W isothermal section at 1250 °C [90Gup 64].Cr-Ni-W isothermal section at 1000 °C [90Gup 64].Cr-Ni-W isothermal section at 900 °C [90Gup 64].Cr-Ni-W isothermal section at 800 °C [90Gup 64].Reference cited in this section90Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cr-Ti-W (Chromium - Titanium - Tungsten) Ternary Phase DiagramsCr-Ti-W isothermal section at 800 °C [58Bag 9].Cr-Ti-W isothermal section at 750 °C [58Bag 9].Cr-Ti-W isothermal section at 600 °C [58Bag 9].Reference cited in this section58Bag: Yu.A. Bagaryatskiy, G.I. Nosova, and T.V. Tagunova, "Study of the Phase Diagrams of the Alloys Titanium-Chromium, Titanium-Tungsten, and Titanium-Chromium-Tungsten, Prepared by the Method of Powder Metallurgy, Russ. J. Inorganic Chem.; TR: Zh. Neorg. Khim., Vol 3 (No. 3), 1958, p 330-341Cu (Copper) Ternary Alloy Phase DiagramsIntroductionTHIS ARTICLE includes systems where copper is the first-named element in the ternary system. Additional ternary systems that include copper are provided in the following locations in this Volume:•“Ag-Au-Cu (Silver - Gold - Copper)”, “Ag-Cd-Cu (Silver - Cadmium - Copper)” and “Ag-Cu-Zn (Silver - Copper - Zinc)” in the article “Ag (Silver) Ternary Phase Diagrams.”•“Al-Cu-Fe (Aluminum - Copper - Iron)”, “Al-Cu-Mn (Aluminum - Copper - Manganese)”, “Al-Cu-Ni (Aluminum - Copper - Nickel)”, “Al-Cu-Si (Aluminum - Copper - Silicon)” and “Al-Cu-Zn (Aluminum - Copper - Zinc)” in the article “Al (Aluminum) Ternary Phase Diagrams.”•“Au-Cu-Ni (Gold - Copper - Nickel)” in the article “Au (Gold) Ternary Phase Diagrams.”•“C-Cu-Fe (Carbon - Copper - Iron)” in the article “C (Carbon) Ternary Phase Diagrams.”Cu-Fe-Ni (Copper - Iron - Nickel) Ternary Phase DiagramsCu-Fe-Ni liquidus projection [90Gup 64].Cu-Fe-Ni miscibility gap [90Gup 64].Cu-Fe-Ni isothermal section at 400 °C [90Gup 64].Cu-Fe-Ni isothermal section at 20 °C [90Gup 64].Cu-Fe-Ni [90Gup 64].Reference cited in this section90Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cu-Ni-Sn (Copper - Nickel - Tin) Ternary Phase DiagramsCu-Ni-Sn liquidus projection [90Gup 64].Cu-Ni-Sn solidus projection [90Gup 64].Cu-Ni-Sn isothermal section at 700 °C [90Gup 64].Cu-Ni-Sn isothermal section at 550 °C [90Gup 64].Reference cited in this section90Gup: K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, (No. 1), 1990Cu-Ni-Zn (Copper - Nickel - Zinc) Ternary Phase DiagramsCu-Ni-Zn liquidus projection [79Cha 38].Cu-Ni-Zn isothermal section at 775 °C [79Cha 38].。
镍铜合金的熔点的规律
镍铜合金的熔点的规律1. 引言镍铜合金是一种重要的工程材料,具有良好的机械性能、抗腐蚀性能和热稳定性。
其中,熔点是一个重要的热性质参数,对于合金的应用和加工具有重要影响。
本文将探讨镍铜合金的熔点规律,从原子结构和合金成分的角度分析其影响因素,并介绍常见的镍铜合金及其熔点特点。
2. 镍铜合金的原子结构镍铜合金是由镍和铜两种金属元素组成的固溶体。
镍和铜的原子半径分别为0.124 nm和0.128 nm,两者基本相近,因此形成的固溶体结构较为紧密。
合金中的镍原子和铜原子之间存在金属键,这种金属键的强度与合金的熔点密切相关。
3. 合金成分对熔点的影响合金成分是影响镍铜合金熔点的重要因素之一。
在铜含量低于30%时,镍铜合金的熔点随铜含量的增加而增加。
这是由于铜原子的加入增加了合金中的金属键数目,增加了金属键的强度,从而提高了熔点。
当铜含量超过30%时,镍铜合金的熔点开始下降。
这是因为铜原子的加入打破了合金中镍原子与镍原子之间的金属键,导致原子之间的排列更加无序,熔点降低。
4. 合金晶格结构对熔点的影响合金的晶格结构也会对熔点产生影响。
在镍铜合金中,当铜含量低于38%时,合金为面心立方结构;当铜含量超过38%时,合金为体心立方结构。
面心立方结构的合金比体心立方结构的合金具有更高的熔点,这是因为面心立方结构中金属原子之间的配位数更高,形成的金属键更强。
因此,在镍铜合金中,当铜含量低于38%时,合金的熔点较高,而超过38%后开始下降。
5. 其他因素对熔点的影响除了合金成分和晶格结构外,其他因素也会对镍铜合金的熔点产生影响。
例如,合金中的杂质元素和缺陷等对熔点的影响较小。
此外,应力和形变等也可能对合金的熔点造成一定的影响。
6. 常见的镍铜合金及其熔点特点镍铜合金广泛应用于各种工程领域,下面介绍几种常见的镍铜合金及其熔点特点:6.1. 镍90铜10合金(Cu-Ni-10)•铜含量:10%•熔点:1290℃•特点:具有良好的耐腐蚀性能和机械强度,在海洋工程和化工等领域得到广泛应用。
维氏硬度载荷力选择
维氏硬度载荷力选择简介维氏硬度测试是一种常用的金属材料硬度测试方法,用于衡量材料的抗压能力和强度。
在进行维氏硬度测试时,载荷力的选择非常重要,它直接影响到测试结果的准确性和可靠性。
本文将详细介绍维氏硬度载荷力的选择原则和方法。
维氏硬度测试原理维氏硬度测试是通过在待测材料表面施加一定载荷力下,使用钢球或钻石锥头压入材料表面形成的印痕大小来衡量材料硬度的一种方法。
载荷力越大,印痕越深,表示材料越软;反之,则表示材料越硬。
载荷力选择原则1. 材料类型不同类型的材料对于载荷力有不同的要求。
通常情况下,对于较软的材料(如铝、铜等),较小的载荷力可以得到准确可靠的测试结果;而对于较硬的材料(如钢、铁等),较大的载荷力能够更好地展现其硬度特性。
2. 材料厚度材料的厚度也会影响载荷力的选择。
对于较薄的材料,应选择较小的载荷力,以避免对材料表面造成过大的形变和损伤;而对于较厚的材料,则可以选择较大的载荷力。
3. 硬度范围根据待测材料所处硬度范围的不同,可以选择不同的载荷力。
一般来说,对于较软的材料,可选择较小的载荷力(如1kgf)进行测试;对于中等硬度的材料,可选择中等大小的载荷力(如10kgf);而对于较硬的材料,则需要选择较大的载荷力(如50kgf)。
4. 设备限制在实际测试中,设备限制也是选择载荷力的重要考虑因素。
通常情况下,维氏硬度测试机会提供多个不同大小的载荷力供用户选择。
根据设备规格和性能限制,确定可选用的最大和最小载荷力,并在此范围内进行合理选择。
载荷力选择方法在确定了适用于待测材料和测试设备的合理范围后,可以根据以下方法选择最佳的载荷力。
1.初始选择:根据材料类型和硬度范围,初步选择一个载荷力作为起始点。
可根据经验值或相关文献进行参考。
2.预测试:使用初始选择的载荷力进行一次预测试,并观察印痕的形态和大小。
如果印痕过浅或过深,则需要调整载荷力。
3.调整载荷力:根据预测试结果,逐步调整载荷力大小。
如果印痕过浅,则增加载荷力;如果印痕过深,则减小载荷力。
7075传导系数
7075传导系数简介7075铝合金是一种常用的高强度铝合金,具有优异的机械性能和耐蚀性。
在工程领域中,7075合金被广泛应用于航空航天、汽车制造、船舶建造等领域。
传导系数是衡量材料导热性能的重要指标之一,它描述了材料传递热量的能力。
本文将详细介绍7075铝合金的传导系数及其影响因素。
传导系数的定义传导系数(也称为热导率)是材料传递热量的能力的物理量。
它表示单位时间内通过单位面积、单位温度差的热量。
通常用字母λ表示,单位为W/(m·K)。
传导系数越大,材料的导热性能越好。
7075铝合金的传导系数7075铝合金具有较高的强度和硬度,但其导热性能相对较差。
根据实验数据统计,室温下7075铝合金的平均传导系数约为130 W/(m·K)。
影响7075铝合金传导系数的因素1. 合金成分7075铝合金的传导系数受其合金成分的影响。
添加不同比例的合金元素可以改变7075铝合金的导热性能。
例如,添加少量的镁和锆可以提高7075铝合金的强度,但会降低其传导系数。
2. 晶粒尺寸晶粒尺寸是影响7075铝合金传导系数的重要因素之一。
晶粒尺寸越小,晶界面积越大,热量传递阻力越大,从而降低了传导系数。
3. 冷处理状态7075铝合金经过冷处理可以获得更高的强度和硬度。
然而,冷处理过程中会引入位错和孪生等缺陷,从而对材料的导热性能产生负面影响。
4. 温度温度是影响材料传导系数的重要因素之一。
一般来说,随着温度升高,材料的传导系数也会增加。
但对于某些材料来说,在特定温度范围内可能存在导热性能下降的现象。
如何提高7075铝合金的传导系数?虽然7075铝合金的传导系数相对较低,但可以通过一些方法来提高其导热性能:1. 优化合金配方通过调整合金元素的比例来改变7075铝合金的传导系数。
例如,添加少量的铜或硅等高导热元素可以提高其导热性能。
2. 控制冷处理过程在冷处理过程中,控制温度和时间,以减少引入的缺陷,从而提高7075铝合金的传导系数。
辉光放电分析仪GDOS
、、光譜分析儀(Optical Emission Spectrometer, OES)實驗目的:瞭解光譜分析儀的構造及原理,並檢測金屬塊材(Bulk)樣品的化學組成(ChemicalComposition),藉由取得成分元素濃度百分比,以判定分析樣品的材料編碼。
、、儀器使用OXFORD 公司型號為Foundry-Master X’Pert的光譜分光儀。
圖一、OXFORD Foundry-Master X’Pert OES三、原理光譜分析儀(Optical Emission Spectrometer,OES)即是以火花放電(spark)將原子之電子激發到能量較高的軌域,當電子再返回到原軌域時,以轉換為相對射線釋放出其能量差,射線可以使用波長來區分,因每一元素原子序及結構不同,所獲得射線種類及其光譜亦不同。
光譜分析儀中所使用射線之波長介於170 nm到800 nm,約有五萬多條光譜供選擇。
將試樣激發收集到特定原子發射光譜線,利用電荷耦合元件感應此光譜線,並將影像轉變成數字信號,再以電腦系統計算出待測物元素濃度百分比,即可用以對照並判斷金屬編碼。
發射光譜的基本原理,由量子化學理論可知,每一元素均具有特定的電子能階,各元素的電子能階高低因其原子量不同而異,在常溫時,各元素的原子均位於最低能階狀態,稱為基態。
但溫度升高或受到外部能量刺激時,原子可由基態被提昇至激發態,由於激發態的原子不穩定,且停留時間甚短,而很快回到基態,並放出相當於此能階差的光譜線。
因此,將原子由基態激發到激發態是發射光譜的基本條件,而量測這發射光譜及其強度的技術是光譜分析儀的基本原理。
OES 即是以火花放電將元素的原子激發到激發態,對其特定原子發射光譜線解析,再以電荷耦合元件(Charge-Coupled Device,CCD)感應此光譜,並將影像轉變成數字信號,電腦系統計算出待測物之濃度百分比。
實驗使用的Foundry- Master X’Pert的光譜分光儀具有激發光源、光學系統與數據處理系統等三部分,如圖二所示。
金属及合金的结合键主要是
金属及合金的结合键金属是一类具有特殊物理和化学性质的物质,而合金是由两种或两种以上金属元素组成的材料。
金属及合金的结合键是指金属元素之间或金属与非金属元素之间的力量,使它们能够紧密结合在一起形成固体。
金属的结合键主要包括金属键和金属间键。
金属键是指金属原子之间的结合力。
金属的晶体结构通常为紧密堆积的球状原子,金属原子之间通过电子云的重叠产生金属键。
金属键是一种特殊的共价键,它的特点是形成的晶体结构中金属原子之间的键非常强大,而在晶体中的自由电子则被视为共享的,可以在整个晶体中自由移动。
这种特殊的结构使金属具有良好的导电性和良好的热传导性。
金属间键是指金属中不同原子间的结合力。
金属间键主要通过金属离子间的电子互相作用形成。
当金属元素中的原子失去外层电子形成阳离子时,与之相邻的金属原子将会吸引这些离子,形成金属间键。
金属间键的强度主要取决于金属原子的电荷、尺寸和排列方式。
金属和合金的结合键使得它们具有许多特殊的性质和应用。
首先,金属结合键使得金属有良好的延展性和塑性,能够通过外力改变形状而不破坏结构。
其次,金属结合键赋予了金属材料良好的导电性和热传导性,使得金属可以广泛用于电子和热能传输领域。
此外,金属结合键还使得金属具有较高的熔点和沸点,使其在高温环境下表现出良好的稳定性。
最后,合金的结合键使得合金材料具有多种特殊的性质,如增强硬度、改变熔点和腐蚀性等。
总结起来,金属及合金的结合键主要是通过金属键和金属间键形成的。
金属结合键赋予了金属及合金许多特殊的性质,使其在各个领域有广泛的应用。
我们对金属及合金结合键的深入研究有助于我们更好地理解金属材料的性质和应用,推动金属材料领域的发展。
参考文献: 1. Shiflet, G.J. (1993). Solidification and Casting. Metals Handbook, vol. 15, 9th ed. ASM Handbook. pp. 835–948. 2. Dieter, G.E. (1988). Mechanical Metallurgy. McGraw-Hill.。
热处理温度对钽粉性能的影响
2.2 实验过程
原 粉 掺 磷 后 进 行 球 化 造 粒 处 理 , 然 后 分 成 A, B, C 3 份 , 分 别 装 入 钽 制 坩 埚 内 , 在 不 同 的 温 度 下进行热处理。热处理条件见表 1。由于原粉经过 球化造粒处理, 热处理时烧结在造粒体内部进行, 而颗粒与颗粒之间只有轻微搭接。热处理后过筛 就得到团化钽粉 [8, 9]。过筛后的团化钽粉与一定量 的镁混合后在 930 ℃保温 3 h, 用无机酸酸洗, 再 进行水洗, 最后得到脱氧钽粉 FA, FB, FC, 测试钽 粉的化学成分、物理性能和电性能。
研发与应用
36 CMT 8202 微机控制电子万能试验 机 的 压 板 上 , 上 下压板对坯块径向施加压力, 直到坯块被破坏, 此时所施加的压力视为坯块强度, 其结果列于表 5。从表 5 的数据可以看出, 随着钽粉热处理温度 的提高, 钽粉压坯的强度提高。
表 5 不同温度处理的钽粉压坯强度 Table 5 Briquette s trength of tantalum powder treated at
表ment condition for tantalum powder
试样 A B C
热 处 理 温 度 /℃ 1 350 1 400 1 450
保 温 时 间 /min 30 30 30
真 空 度 /Pa <133×10- 4 <133×10- 4 <133×10- 4
收稿日期: 2007- 11- 28 作者简介: 李 慧, 女, 1973 年生, 工程师, 宁夏东方钽业股份有限公司, 宁夏 石嘴山 753000, 电话: 0952- 2098719
2008 年 27 卷第 2 期
稀有金属快报 35
3 实验结果与讨论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat Treating of Stainless SteelsRevised by Joseph Douthett, Armco Research and TechnologyIntroductionHEAT TREATING of stainless steel serves to produce changes in physical condition, mechanical properties, and residual stress level, and to restore maximum corrosion resistance when that property has been adversely affected by previous fabrication or heating. Frequently, a combination of satisfactory corrosion resistance and optimum mechanical properties is obtained in the same heat treatment.Heat Treating of Stainless SteelsRevised by Joseph Douthett, Armco Research and TechnologyAustenitic Stainless SteelsIn furnace loading, the high thermal expansion of austenitic stainless steels (about 50% higher than that of a mild carbon steel) should be considered. The spacing between parts should be adequate to accommodate this expansion. Stacking, when necessary, should be employed judiciously to avoid deformation of parts at elevated temperatures.Susceptibility to Intergranular AttackThe austenitic stainless steels may be divided into five groups:•Conventional austenitics, such as types 301, 302, 303, 304, 305, 308, 309, 310, 316, and 317•Stabilized compositions, primarily types 321, 347, and 348•Low-carbon grades, such as types 304L, 316L, and 317L•High-nitrogen grades, such as AISI types 201, 202, 304N, 316N, and the Nitronic series of alloys •Highly alloyed austenitics, such as 317LM, 317LX, JS700, JS777, 904L, AL-4X, 2RK65, Carpenter 20Cb-3, Sanicro 28, AL-6X, AL-6XN, and 254 SMOThe compositions of standard and nonstandard austenitic stainless steels are listed in Tables 1 and 2.Table 1 Compositions of standard wrought stainless steelsType UNSComposition(a), %designationC Mn Si Cr Ni P S OtherAustenitic3.5-5.5 0.06 0.03 0.25 N201 S20100 0.15 5.5-7.5 1.00 16.0-18.0202 S20200 0.15 7.5- 1.00 17.0- 4.0-6.0 0.06 0.03 0.25 NC Mn Si Cr Ni P S Other10.0 19.0205 S20500 0.12-0.25 14.0-15.51.00 16.5-18.01.0-1.750.06 0.03 0.32-0.40 N301 S30100 0.15 2.00 1.00 16.0-18.06.0-8.0 0.045 0.03 . . .302 S30200 0.15 2.00 1.00 17.0-19.0 8.0-10.00.045 0.03 . . .302B S30215 0.15 2.00 2.0-3.0 17.0-19.08.0-10.00.045 0.03 . . .303 S30300 0.15 2.00 1.00 17.0-19.0 8.0-10.00.20 0.15min0.6 Mo(b)303Se S30323 0.15 2.00 1.00 17.0-19.0 8.0-10.00.20 0.06 0.15 min Se304 S30400 0.08 2.00 1.00 18.0-20.0 8.0-10.50.045 0.03 . . .304H S30409 0.04-0.10 2.00 1.00 18.0-20.08.0-10.50.045 0.03 . . .304L S30403 0.03 2.00 1.00 18.0-20.0 8.0-12.00.045 0.03 . . .304LN S30453 0.03 2.00 1.00 18.0-20.0 8.0-12.00.045 0.03 0.10-0.16 N302Cu S30430 0.08 2.00 1.00 17.0-19.0 8.0-10.00.045 0.03 3.0-4.0 Cu304N S30451 0.08 2.00 1.00 18.0-20.0 8.0-10.50.045 0.03 0.10-0.16 N305 S30500 0.12 2.00 1.00 17.0-19.0 10.5-13.00.045 0.03 . . .308 S30800 0.08 2.00 1.00 19.0-21.0 10.0-12.00.045 0.03 . . .C Mn Si Cr Ni P S Other309 S30900 0.20 2.00 1.00 22.0-24.0 12.0-15.00.045 0.03 . . .309S S30908 0.08 2.00 1.00 22.0-24.0 12.0-15.00.045 0.03 . . .310 S31000 0.25 2.00 1.50 24.0-26.0 19.0-22.00.045 0.03 . . .310S S31008 0.08 2.00 1.50 24.0-26.0 19.0-22.00.045 0.03 . . .314 S31400 0.25 2.00 1.5-3.0 23.0-26.019.0-22.00.045 0.03 . . .316 S31600 0.08 2.00 1.00 16.0-18.0 10.0-14.00.045 0.03 2.0-3.0 Mn316F S31620 0.08 2.00 1.00 16.0-18.0 10.0-14.00.20 0.10min1.75-2.5 Mo316H S31609 0.04-0.10 2.00 1.00 16.0-18.010.0-14.00.045 0.03 2.0-3.0 Mo316L S31603 0.03 2.00 1.00 16.0-18.0 10.0-14.00.045 0.03 2.0-3.0 Mo316LN S31653 0.03 2.00 1.00 16.0-18.0 10.0-14.00.045 0.03 2.0-3.0 Mo; 0.10-0.16 N316N S31651 0.08 2.00 1.00 16.0-18.0 10.0-14.00.045 0.03 2.0-3.0 Mo; 0.10-0.16 N317 S31700 0.08 2.00 1.00 18.0-20.0 11.0-15.00.045 0.03 3.0-4.0 Mo317L S31703 0.03 2.00 1.00 18.0-20.0 11.0-15.00.045 0.03 3.0-4.0 Mo321 S32100 0.08 2.00 1.00 17.0-19.0 9.0-12.00.045 0.03 5 × %C min TiC Mn Si Cr Ni P S Other321H S32109 0.04-0.10 2.00 1.00 17.0-19.09.0-12.00.045 0.03 5 × %C min Ti330 N08330 0.08 2.00 0.75-1.5 17.0-20.034.0-37.00.04 0.03 . . .347 S34700 0.08 2.00 1.00 17.0-19.0 9.0-13.00.045 0.03 10 × %C min Nb347H S34709 0.04-0.10 2.00 1.00 17.0-19.09.0-13.00.045 0.03 8 × %C min - 1.0 max Nb348 S34800 0.08 2.00 1.00 17.0-19.0 9.0-13.00.045 0.03 0.2 Co; 10 × %C min Nb; 0.10 Ta348H S34809 0.04-0.10 2.00 1.00 17.0-19.09.0-13.00.045 0.03 0.2 Co; 8 × %C min - 1.0 max Nb; 0.10Ta384 S38400 0.08 2.00 1.00 15.0-17.0 17.0-19.00.045 0.03 . . .Ferritic405 S40500 0.08 1.00 1.00 11.5-14.5. . . 0.04 0.03 0.10-0.30 Al409 S40900 0.08 1.00 1.00 10.5-11.750.50 0.045 0.045 6 × %C min - 0.75 max Ti429 S42900 0.12 1.00 1.00 14.0-16.0. . . 0.04 0.03 . . .430 S43000 0.12 1.00 1.00 16.0-18.0. . . 0.04 0.03 . . .430F S43020 0.12 1.25 1.00 16.0-18.0 . . . 0.06 0.15min0.6 Mo(b)430FSe S43023 0.12 1.25 1.00 16.0-18.0. . . 0.06 0.06 0.15 min Se 434 S43400 0.12 1.00 1.00 16.0-. . . 0.04 0.03 0.75-1.25 MoC Mn Si Cr Ni P S Other18.0436 S43600 0.12 1.00 1.00 16.0-18.0 . . . 0.04 0.03 0.75-1.25 Mo; 5 × %C min - 0.70 maxNb439 S43035 0.07 1.00 1.00 17.0-19.00.50 0.04 0.03 0.15 Al; 12 × %C min - 1.10 Ti442 S44200 0.20 1.00 1.00 18.0-23.0. . . 0.04 0.03 . . .444 S44400 0.025 1.00 1.00 17.5-19.5 1.0 0.04 0.03 1.75-2.50 Mo; 0.035 max N; (Ti + Nb)0.20 + 4 (C + N) min; 0.80 max446 S44600 0.20 1.50 1.00 23.0-27.0. . . 0.04 0.03 0.25 N Duplex (ferritic-austenitic)329 S32900 0.20 1.00 0.75 23.0-28.0 2.50-5.000.040 0.030 1.00-2.00 MoMartensitic403 S40300 0.15 1.00 0.50 11.5-13.0. . . 0.04 0.03 . . .410 S41000 0.15 1.00 1.00 11.5-13.5. . . 0.04 0.03 . . .414 S41400 0.15 1.00 1.00 11.5-13.5 1.25-2.500.04 0.03 . . .416 S41600 0.15 1.25 1.00 12.0-14.0 . . . 0.06 0.15min0.6 Mo(b)416Se S41623 0.15 1.25 1.00 12.0-14.0. . . 0.06 0.06 0.15 min Se420 S42000 0.15min 1.00 1.00 12.0-14.0. . . 0.04 0.03 . . .C Mn Si Cr Ni P S Other420F S42020 0.15min 1.25 1.00 12.0-14.0. . . 0.06 0.15min0.6 Mo(b)422 S42200 0.20-0.25 1.00 0.75 11.5-13.50.5-1.0 0.04 0.03 0.75-1.25 Mo; 0.75-1.25 W; 0.15-0.3 V431 S43100 0.20 1.00 1.00 15.0-17.0 1.25-2.500.04 0.03 . . .440A S44002 0.60-0.75 1.00 1.00 16.0-18.0. . . 0.04 0.03 0.75 Mo440B S44003 0.75-0.95 1.00 1.00 16.0-18.0. . . 0.04 0.03 0.75 Mo440C S44004 0.95-1.20 1.00 1.00 16.0-18.0. . . 0.04 0.03 0.75 MoPrecipitation hardeningPH 13-8Mo S13800 0.05 0.20 0.10 12.25-13.257.5-8.5 0.01 0.008 2.0-2.5 Mo; 0.90-1.35 Al; 0.01 N15-5 PH S15500 0.07 1.00 1.00 14.0-15.53.5-5.5 0.04 0.03 2.5-4.5 Cu; 0.15-0.45 Nb17-4 PH S17400 0.07 1.00 1.00 15.0-17.53.0-5.0 0.04 0.03 3.0-5.0 Cu; 0.15-0.45 Nb17-7 PH S17700 0.09 1.00 1.00 16.0-18.0 6.5-7.750.04 0.04 0.75-1.5 Al(a) Single values are maximum values unless otherwise indicated.(b) OptionalTable 2 Compositions of nonstandard wrought stainless steelsComposition(b), %Designation(a)UNSdesignationC Mn Si Cr Ni P S Other Austenitic stainless steelsGall-Tough S20161 0.15 4.00-6.00 3.00-4.0015.00-18.004.00-6.000.040 0.040 0.08-0.20 N203 EZ (XM-1) S20300 0.08 5.0-6.5 1.00 16.0-18.0 5.0-6.5 0.040 0.18-0.350.5 Mo; 1.75-2.25 CuNitronic 50 (XM-19) S20910 0.06 4.0-6.0 1.00 20.5-23.511.5-13.50.040 0.030 1.5-3.0 Mo; 0.2-0.4 N; 0.1-0.3Nb; 0.1-0.3 VTenelon (XM-31) S21400 0.12 14.5-16.0 0.3-1.017.0-18.50.75 0.045 0.030 0.35 NCryogenic Tenelon (XM-14) S21460 0.12 14.0-16.01.00 17.0-19.05.0-6.0 0.060 0.030 0.35-0.50 NEsshete 1250 S21500 0.15 5.5-7.0 1.20 14.0-16.0 9.0-11.0 0.040 0.030 0.003-0.009 B; 0.75-1.25 Nb;0.15-0.40 VType 216 (XM-17) S21600 0.08 7.5-9.0 1.00 17.5-22.05.0-7.0 0.045 0.030 2.0-3.0 Mo; 0.25-0.50 NType 216 L (XM-18) S21603 0.03 7.5-9.0 1.00 17.5-22.07.5-9.0 0.045 0.030 2.0-3.0 Mo; 0.25-0.50 NNitronic 60 S21800 0.10 7.0-9.0 3.5-4.5 16.0-18.08.0-9.0 0.040 0.030 0.08-0.18 NNitronic 40 (XM-10) S21900 0.08 8.0-10.0 1.00 19.0-21.55.5-7.5 0.060 0.030 0.15-0.40 N21-6-9 LC S21904 0.04 8.00-10.00 1.00 19.00-21.505.50-7.500.060 0.030 0.15-0.40 NNitronic 33 (18-3-Mn) S24000 0.08 11.50-14.501.00 17.00-19.002.50-3.750.060 0.030 0.20-0.40 NNitronic 32 (18-2-Mn) S24100 0.15 11.00-14.001.00 16.50-19.500.50-2.500.060 0.030 0.20-0.45 NC Mn Si Cr Ni P S Other18-18 Plus S28200 0.15 17.0-19.0 1.00 17.5-19.5. . . 0.045 0.030 0.5-1.5 Mo; 0.5-1.5 Cu; 0.4-0.6 N303 Plus X (XM-5) S30310 0.15 2.5-4.5 1.00 17.0-19.07.0-10.0 0.020 0.25min0.6 MoMVMA(c)S30415 0.05 0.60 1.30 18.5 9.50 . . . . . . 0.15 N; 0.04 Ce304B4 S30424 0.08 2.00 0.75 18.00-20.00 12.00-15.000.045 0.030 0.10 N; 1.00-1.25 B304 HN (XM-21) S30452 0.04-0.10 2.00 1.00 18.0-20.08.0-10.5 0.045 0.030 0.16-0.30 NCronifer 1815 LCSi S30600 0.018 2.00 3.7-4.317.0-18.514.0-15.50.020 0.020 0.2 MoRA 85 H(c)S30615 0.20 0.80 3.50 18.5 14.50 . . . . . . 1.0 Al253 MA S30815 0.05-0.10 0.80 1.4-2.020.0-22.010.0-12.00.040 0.030 0.14-0.20 N; 0.03-0.08 Ce;1.0 AlType 309 S Cb S30940 0.08 2.00 1.00 22.0-24.0 12.0-15.00.045 0.030 10 × %C min to 1.10 maxNbType 310 Cb S31040 0.08 2.00 1.50 24.0-26.0 19.0-22.00.045 0.030 10 × %C min to 1.10 maxNb + Ta254 SMO S31254 0.020 1.00 0.80 19.50-20.50 17.50-18.500.030 0.010 6.00-6.50 Mo; 0.50-1.00 Cu;0.180-0.220 NType 316 Ti S31635 0.08 2.00 1.00 16.0-18.0 10.0-14.00.045 0.030 5 × %(C + N) min to 0.70max Ti; 2.0-3.0 Mo; 0.10 NType 316 Cb S31640 0.08 2.00 1.00 16.0-18.0 10.0-14.00.045 0.030 10 × %C min to 1.10 maxNb + Ta; 2.0-3.0 Mo; 0.10 NType 316 HQ . . . 0.030 2.00 1.00 16.00-18.25 10.00-14.000.030 0.015 3.00-4.00 Cu; 2.00-3.00 MoType 317 LM S31725 0.03 2.00 1.00 18.0-20.0 13.5-17.50.045 0.030 4.0-5.0 Mo; 0.10 NC Mn Si Cr Ni P S Other17-14-4 LN S31726 0.03 2.00 0.75 17.0-20.0 13.5-17.50.045 0.030 4.0-5.0 Mo; 0.10-0.20 NType 317 LN S31753 0.03 2.00 1.00 18.0-20.0 11.0-15.00.030 0.030 0.10-0.22 NType 370 S37000 0.03-0.05 1.65-2.350.5-1.012.5-14.514.5-16.50.040 0.010 1.5-2.5 Mo; 0.1-0.4 Ti; 0.005N; 0.05 Co18-18-2 (XM-15) S38100 0.08 2.00 1.5-2.5 17.0-19.017.5-18.50.030 0.030 . . .19-9 DL S63198 0.28-0.35 0.75-1.500.03-0.818.0-21.08.0-11.0 0.040 0.030 1.0-1.75 Mo; 0.1-0.35 Ti; 1.0-1.75 W; 0.25-0.60 Nb20Cb-3 N08020 0.07 2.00 1.00 19.0-21.0 32.0-38.00.045 0.035 2.0-3.0 Mo; 3.0-4.0 Ca; 8 ×%C min to 1.00 max Nb20Mo-4 N08024 0.03 1.00 0.50 22.5-25.0 35.0-40.00.035 0.035 3.50-5.00 Mo; 0.50-1.50 Cu;0.15-0.35 Nb20Mo-6 N08026 0.03 1.00 0.50 22.00-26.00 33.00-37.200.03 0.03 5.00-6.70 Mo; 2.00-4.00 CuSanicro 28 N08028 0.02 2.00 1.00 26.0-28.0 29.5-32.50.020 0.015 3.0-4.0 Mo; 0.6-1.4 CuAL-6X N08366 0.035 2.00 1.00 20.0-22.0 23.5-25.50.030 0.030 6.0-7.0 MoAL-6XN N08367 0.030 2.00 1.00 20.0-22.0 23.50-25.500.040 0.030 6.00-7.00 Mo; 0.18-0.25 NJS-700 N08700 0.04 2.00 1.00 19.0-23.0 24.0-26.00.040 0.030 4.3-5.0 Mo; 8 × %C min to0.5 max Nb; 0.5 Cu; 0.005Pb; 0.035 SJS-777(d). . . 0.04 2.00 1.00 19.3-23.0 24.0-26.00.045 0.035 4.0-5.0 Mo; 1.9-2.5 CuType 332 N08800 0.01 1.50 1.00 19.0-23.0 30.0-35.00.045 0.015 0.15-0.60 Ti; 0.15-0.60 AlC Mn Si Cr Ni P S Other904L N08904 0.02 2.00 1.00 19.0-23.0 23.0-28.00.045 0.035 4.0-5.0 Mo; 1.0-2.0 CuCronifer 1925 hMo N08925 0.02 1.00 0.50 24.0-26.0 19.0-21.00.045 0.030 6.0-7.0 Mo; 0.8-1.5 Cu; 0.10-0.20 NCronifer 2328 . . . 0.04 0.75 0.75 22.0-24.0 26.0-28.00.030 0.015 2.5-3.5 Cu; 0.4-0.7 Ti; 2.5-3.0 Mo2RK65 . . . 0.02 1.8 . . . 19.5 25.0 . . . . . . 4.5 Mo; 1.5 Cu Ferritic stainless steels18-2 FM (XM-34) S18200 0.08 1.25-2.50 1.00 17.5-19.5. . . 0.040 0.15min1.5-2.5 MoType 430 Ti S43036 0.10 1.00 1.00 16.0-19.50.75 0.040 0.030 5 × %C min to 0.75 max TiType 441 S44100 0.03 1.00 1.00 17.5-19.5 1.00 0.040 0.040 0.3 + 9 × (%C) min to 0.90max Nb: 0.1-0.5 Ti; 0.03 NE-Brite 26-1 S44627 0.01 0.40 0.40 25.0-27.0 0.50 0.020 0.020 0.75-1.5 Mo; 0.05-0.2 Nb;0.015 N; 0.2 CuMONIT (25-4-4) S44635 0.025 1.00 0.75 24.5-26.0 3.5-4.5 0.040 0.030 3.5-4.5 Mo; 0.2 +4 (%C +%N) min to 0.8 max (Ti +Nb); 0.035 NSea-Cure (SC-1) S44660 0.025 1.00 1.00 25.0-27.0 1.5-3.5 0.040 0.030 2.5-3.5 Mo; 0.2 + 4 (%C +%N) min to 0.8 max (Ti +Nb); 0.035 NAL 29-4C S44735 0.030 1.00 1.00 28.0-30.0 1.00 0.040 0.030 3.60-4.20 Mo; 0.20-1.00 Ti +Nb and 6 (%C + %N) minTi + Nb; 0.045 NAL 29-4-2 S44800 0.01 0.30 0.20 28.0-30.0 2.0-2.5 0.025 0.020 3.5-4.2 Mo; 0.15 Cu; 0.02 N;0.025 max (%C + %N)18 SR(c). . . 0.04 0.30 1.00 18.0 . . . . . . . . . 2.0 Al; 0.4 TiC Mn Si Cr Ni P S Other12 SR(c). . . 0.02 . . . 0.50 12.0 . . . . . . . . . 1.2 Al; 0.3 Ti406 . . . 0.06 1.00 0.50 12.0-14.00.50 0.040 0.030 2.75-4.25 Al; 0.6 Ti408 Cb . . . 0.03 0.2-0.5 0.2-0.5 11.75-12.250.45 0.030 0.020 0.75-1.25 Al; 0.65-0.75 Nb;0.3-0.5 Ti; 0.03 NALFA IV . . . 0.03 0.50 0.60 19.0-21.0 0.45 0.035 0.005 4.75-5.25 Al; 0.005-0.035 Ce;0.03 NSealmet 1 . . . 0.08 0.5-0.8 0.3-0.6 28.0-29.00.40 0.030 0.015 0.04 NDuplex stainless steels44LN S31200 0.030 2.00 1.00 24.0-26.0 5.50-6.500.045 0.030 1.20-2.00 Mo; 0.14-0.20 NDP-3 S31260 0.030 1.00 0.75 24.0-26.0 5.50-7.500.030 0.030 2.50-3.50 Mo; 0.20-0.80 Cu;0.10-0.30 N; 0.10-0.50 W3RE60 S31500 0.030 1.20-2.00 1.40-2.0018.00-19.004.25-5.250.030 0.030 2.50-3.00 Mo2205 S31803 0.030 2.00 1.00 21.0-23.0 4.50-6.500.030 0.020 2.50-3.50 Mo; 0.08-0.20 N2304 S32304 0.030 2.50 1.0 21.5-24.5 3.0-5.5 0.040 0.040 0.05-0.60 Mo; 0.05-0.60 Cu;0.05-0.20 NUranus 50 S32404 0.04 2.00 1.0 20.5-22.5 5.5-8.5 0.030 0.010 2.0-3.0 Mo; 1.0-2.0 Cu; 0.20NFerralium 255 S32550 0.04 1.50 1.00 24.0-27.0 4.50-6.500.04 0.03 2.00-4.00 Mo; 1.50-2.50 Cu;0.10-0.25 N7-Mo Plus S32950 0.03 2.00 0.60 26.0-29.0 3.50-5.200.035 0.010 1.00-2.50 Mo; 0.15-0.35 NAF 22 . . . 0.03 2.0 1.0 21-23 4.5-6.5 . . . . . . 2.5-3.5 MoC Mn Si Cr Ni P S Other Martensitic stainless steelsType 410S S41008 0.08 1.00 1.00 11.5-13.50.60 0.040 0.030 . . .Type 410 Cb (XM-30) S41040 0.15 1.00 1.00 11.5-13.5. . . 0.040 0.030 0.05-0.20 NbE4 S41050 0.04 1.00 1.00 10.5-12.50.60-1.1 0.045 0.030 0.10 NCA6NM S41500 0.05 0.5-1.0 0.60 11.5-14.03.5-5.5 0.030 0.030 0.5-1.0 Mo416 Plus X (XM-6) S41610 0.15 1.5-2.5 1.00 12.0-14.0. . . 0.060 0.15min0.6 MoType 418 (Greek Ascolloy) S41800 0.15-0.200.50 0.50 12.0-14.01.8-2.2 0.040 0.030 2.5-3.5 WTrimRite S42010 0.15-0.30 1.00 1.00 13.5-15.00.25-1.000.040 0.030 0.40-1.00 MoType 420 F Se S42023 0.3-0.4 1.25 1.00 12.0-14.0. . . 0.060 0.060 0.15 min Se; 0.6 Zr; 0.6 CuLapelloy S42300 0.27-0.32 0.95-1.350.50 11.0-12.00.50 0.025 0.025 2.5-3.0 Mo; 0.2-0.3 VType 440 F S44020 0.95-1.20 1.25 1.00 16.0-18.00.75 0.040 0.10-0.350.08 NType 440 F Se S44023 0.95-1.20 1.25 1.00 16.0-18.00.75 0.040 0.030 0.15 min Se; 0.60 MoPrecipitation-hardening stainless steelsPH 15-7 Mo (Type 632) S15700 0.09 1.00 1.00 14.0-16.06.5-7.75 0.040 0.030 2.0-3.0 Mo; 0.75-1.5 AlAM-350 (Type 633) S35000 0.07-0.110.5-1.25 0.50 16.0-17.04.0-5.0 0.040 0.030 2.5-3.25 Mo; 0.07-0.13 NC Mn Si Cr Ni P S OtherAM-355 (Type 634) S35500 0.10-0.150.5-1.25 0.50 15.0-16.04.0-5.0 0.040 0.030 2.5-3.25 Mo; 0.07-0.13 NCustom 450 (XM-25) S45000 0.05 1.00 1.00 14.0-16.05.0-7.0 0.030 0.030 1.25-1.75 Cu; 0.5-1.0 Mo; 8× %C min NbCustom 455 (XM-16) S45500 0.05 0.50 0.50 11.0-12.57.5-9.5 0.040 0.030 1.5-2.5 Cu; 0.8-1.4 Ti; 0.1-0.5 Nb; 0.5 Mo(a) XM designations in this column are ASTM designations for the listed alloy.(b) Single values are maximum values unless otherwise indicated.(c) Nominal compositions.(d) Ref 1Conventional austenitics cannot be hardened by heat treatment but will harden as a result of cold working. These steels are usually purchased in an annealed or cold-worked state. Following welding or thermal processing, a subsequent reanneal may be required for optimum corrosion resistance, softness, and ductility. During annealing, chromium carbides, which markedly decrease resistance to intergranular corrosion, are dissolved. Annealing temperatures, which vary somewhat with the composition of the steel, are given in Table 3 for wrought alloys and in Table 4 for the corresponding cast alloys. Table 5 includes compositions and typical microstructures for selected austenitic corrosion-resistant cast steels listed in Table 4.Table 3 Recommended annealing temperatures for austenitic stainless steelsTemperature(a)UNS No.Designation°C°FConventional gradesS30100 301 1010-1120 1850-2050S30200 302 1010-1120 1850-2050S30215 302B 1010-1120 1850-2050S30300 303 1010-1120 1850-2050 S30323 303Se 1010-1120 1850-2050 S30400 304 1010-1120 1850-2050 S30500 305 1010-1120 1850-2050 S30800 308 1010-1120 1850-2050 S30900 309 1040-1120 1900-2050 S30908 309S 1040-1120 1900-2050 30100 310 1040-1065 1900-1950 S31008 310S 1040-1065 1900-1950 S31600 316 1040-1120 1900-2050 S31700 317 1065-1120 1950-2050 Stabilized gradesS32100 321 955-1065 1750-1950 S34700 347 980-1065 1800-1950 S34800 348 980-1065 1800-1950 N08020 20Cb-3 925-955 1700-1750 Low-carbon gradesS30403 304L 1010-1120 1850-2050 S30453 304LN 1010-1120 1850-2050 S31603 316L 1040-1110 1900-2025 S31653 316LN 1040-1110 1900-2025S31703 317L 1040-1110 1900-2025 High-nitrogen gradesS20100 201 1010-1120 1850-2050 S20200 202 1010-1120 1850-2050 S30451 304N 1010-1120 1850-2050 S31651 316N 1010-1120 1850-2050 S24100 Nitronic 32, 18Cr-2Ni-12Mn 1010-1065 1850-1950 S24000 Nitronic 33 1040-1095 1900-2000 S21904 Nitronic 40, 21Cr-6Ni-9Mn 980-1175 1800-2150 S20910 Nitronic 50, 22Cr-13Ni-5Mn 1065-1120 1950-2050 S21800 Nitronic 60 1040-1095 1900-2000 S28200 18-18 Plus 1040-1095 1900-2000 Highly alloyed gradesS31725 317LM 1120-1150 2050-2100 . . . 317LX 1120-1150 2050-2100 . . . 317L Plus 1120-1150 2050-2100 . . . 317LMO 1120-1150 2050-2100 . . . 7L4 1120-1150 2050-2100 . . . JS700 1065-1150 1950-2100 . . . JS777 1065-1150 1950-2100 N08904 904L 1075-1125 1965-2055. . . AL-4X 1075-1125 1965-2055. . . 2RK65 1075-1125 1965-2055N08028 Sanicro 28 . . . . . .N08366 AL-6X 1205-1230 2200-2250S31254 254SMO 1150-1205 2100-2200(a) Temperatures given are for annealing a composite structure. Time at temperature and method of cooling depend on thickness. Light sectionsmay be held at temperature for 3 to 5 min per 2.5 mm (0.10 in.) of thickness, followed by rapid air cooling. Thicker sections are water quenched. For many of these grades, a postweld heat treatment is not necessary. For proprietary alloys, alloy producers may be consulted for details. Although cooling from the annealing temperature must be rapid, it must also be consistent with limitations of distortion.Table 4 Annealing of ferritic and austenitic stainless steel castingsMinimum temperature Typical ultimate tensilestrength (b)Type°C °F Quench (a) MPa ksiFor full softnessCB-30 790 1450FC + A (c) 66095CC-50 790 1450 A 670 97For maximum corrosion resistanceCE-30 1095 2000 W, O, A 670 97CF-3 1040 1900 W, O, A 530 77CF-3M 1040 1900 W, O, A 530 77CF8 1040 1900 W, O, A 530 77CF-8C (d)1040 1900 W, O, A 530 77CF-8M 1040 1900 W, O, A 550 80CF-12M (e) 10401900 W, O, A 550 80CF-16F 1040 1900 W, O, A 530 77CF-20 1040 1900 W, O, A 530 77CH-20 1095 2000 W, O, A 610 88CK-20 1095 2000 W, O, A 520 76CN-7M 1120 2050 W, O, A 480 69(a) FC, furnace cool; W, water; O, oil; A, air.(b) Approximate.(c) Furnace cool to 540 °C (1000 °F) and then air cool.(d) CF-8C may be reheated to 870 to 925 °C (1600 to 1700 °F) and then air cooled for precipitation of niobium carbides.(e) CF-12M should be quenched from a temperature above 1095 °C (2000 °F).Table 5 Compositions and typical microstructures of Alloy Casting Institute (ACI) corrosion-resistant cast steelsComposition (b), % ACI type UNSNo.Wrought alloy type (a)ASTMspecificationsMost common end-usemicrostructureCMnSiCrNiOthers (c)Chromium steelsCA-15 J91150 410A 743, A 217, A 487Martensite 0.15 1.00 1.5011.5-14.01.00.50 Mo (d)CA-15M J91151 . . . A 743 Martensite 0.15 1.00 0.6511.5-14.01.0 0.15-1.00 MoCA-40 J91153 420 A 743 Martensite 0.40 1.00 1.5011.5-14.01.00.5 Mo (d)CA-40F . . . . . . A 743 Martensite0.2-0.41.00 1.5011.5-14.01.0 . . .C Mn Si Cr Ni Others(c)CB-30 J91803 431, 442 A 743 Ferrite andcarbides 0.30 1.00 1.50 18.0-22.02.0 . . .CC-50 J92615 446 A 743 Ferrite andcarbides 0.30 1.00 1.50 26.0-30.04.0 . . .Chromium-nickel steelsCA-6N J91650 . . . A 743 Martensite 0.06 0.50 1.00 10.5-12.5 6.0-8.0. . .CA-6NM J91540 . . . A 743, A 487 Martensite 0.06 1.00 1.00 11.5-14.0 3.5-4.50.4-1.0 MoCA-28MWV . . . . . . A 743 Martensite 0.20-0.280.50-1.001.00 11.0-12.50.50-1.000.9-1.25 Mo;0.9-1.25 W; 0.2-0.3 VCB-7Cu-1 J92180 . . . A 747 Martensite, agehardenable0.07 0.70 1.00 15.5-17.73.6-4.62.5-3.2 Cu;0.20-0.35 Nb;0.05 N maxCB-7Cu-2 J92110 . . . A 747 Martensite, agehardenable0.07 0.70 1.00 14.0-15.54.5-5.52.5-3.2 Cu;0.20-0.35 Nb;0.05 N maxCD-4MCu J93370 . . . A 351, A 743, A744, A 890Austenite in ferrite,age hardenable0.04 1.00 1.00 25.0-26.54.75-6.01.75-2.25 Mo;2.75-3.25 CuCE-30 J93423 312 A 743 Ferrite in austenite 0.30 1.50 2.00 26.0-30.0 8.0-11.0. . .CF-3(e)J92700 304L A 351, A 743, A744 Ferrite in austenite 0.03 1.50 2.00 17.0-21.08.0-12.0. . .CF-3M(e)J92800 316L A 351, A 743, A744 Ferrite in austenite 0.03 1.50 2.00 17.0-21.08.0-12.02.0-3.0 MoCF-3MN . . . . . . A 743 Ferrite in austenite 0.03 1.50 1.50 17.0-21.0 9.0-13.02.0-3.0 Mo;0.10-0.20 NCF-8(e)J92600 304 A 351, A 743, A744 Ferrite in austenite 0.08 1.50 2.00 18.0-21.08.0-11.0. . .C Mn Si Cr Ni Others(c)CF-8C J92710 347 A 351, A 743, A744 Ferrite in austenite 0.08 1.50 2.00 18.0-21.09.0-12.0Nb(f)CF-8M J92900 316 A 351, A 743, A744 Ferrite in austenite 0.08 1.50 2.00 18.0-21.09.0-12.02.0-3.0 MoCF-10 J93401 . . . A 351 Ferrite in austenite 0.04-0.10 1.50 2.00 18.0-21.08.0-11.0. . .CF-10M . . . . . . A 351 Ferrite in austenite 0.04-0.10 1.50 1.50 18.0-21.09.0-12.02.0-3.0 MoCF-10MC J92971 . . . A 351 Ferrite in austenite 0.10 1.50 1.50 15.0-18.013.0-16.01.75-2.25 MoCF-10SMnN . . . . . . A 351, A 743 Ferrite in austenite 0.10 7.00-9.003.50-4.5016.0-18.08.0-9.00.08-0.18 NCF-12M . . . 316 . . . Ferrite in austeniteor austenite 0.12 1.50 2.00 18.0-21.09.0-12.02.0-3.0 MoCF-16F J92701 303 A 743 Austenite 0.16 1.50 2.00 18.0-21.0 9.0-12.01.50 Mo max;0.20-0.35 SeCF-20 J92602 302 A 743 Austenite 0.20 1.50 2.00 18.0-21.0 8.0-11.0. . .CG-6MMN J93799 . . . A 351, A 743 Ferrite in austenite 0.06 4.00-6.001.00 20.5-23.511.5-13.51.50-3.00 Mo;0.10-0.30 Nb;0.10-30 V; 0.20-0.40 NCG-8M J93000 317 A 351, A 743, A744 Ferrite in austenite 0.08 1.50 1.50 18.0-21.09,0-13.03.0-4.0 MoCG-12 J93001 . . . A 743 Ferrite in austenite 0.12 1.50 2.00 20.0-23.0 10.0-13.0. . .CH-8 J93400 . . . A 351 Ferrite in austenite 0.08 1.50 1.50 22.0-26.0 12.0-15.0. . .CH-10 J93401 . . . A 351 Ferrite in austenite 0.04-0.10 1.50 2.00 22.0-26.012.0-15.0. . .C Mn Si Cr Ni Others(c)CH-20 J93402 309 A 351, A 743 Austenite 0.20 1.50 2.00 22.0-26.0 12.0-15.0. . .CK-3MCuN . . . . . . A 351, A 743, A744Ferrite in austenite 0.025 1.20 1.00 19.5-20.517.5-19.56.0-7.0V; 0.18-0.24 N; 0.50-1.00 CuCK-20 J94202 310 A 743 Austenite 0.20 2.00 2.00 23.0-27.0 19.0-22.0. . .Nickel-chromium steelCN-3M . . . . . . A 743 Austenite 0.03 2.00 1.00 20.0-22.0 23.0-27.04.5-5.5 MoCN-7M N08007 . . . A351, A 743, A744 Austenite 0.07 1.50 1.50 19.0-22.027.5-30.52.0-3.0Mo; 3.0-4.0 CuCN-7MS J94650 . . . A 743, A 744 Austenite 0.07 1.50 3.50(g)18.0-20.0 22.0-25.02.5-3.0Mo; 1.5-2.0 CuCT-15C . . . . . . A 351 Austenite 0.05-0.15 0.15-1.500.50-1.5019.0-21.031.0-34.00.5-1.5V(a) Type numbers of wrought alloys are listed only for nominal identification of corresponding wrought and cast grades. Composition ranges ofcast alloys are not the same as for corresponding wrought alloys; cast alloy designations should be used for castings only.(b) Maximum unless a range is given. The balance of all compositions is iron.(c) Sulfur content is 0.04% in all grades except: CG-6MMN, 0.030% S (max); CF-10SMnN, 0.03% S (max); CT-15C, 0.03% S (max); CK-3MCuN, 0.010% S (max); CN-3M, 0.030% S (max); CA-6N, 0.020% S (max); CA-28MWV, 0.030% S (max); CA-40F, 0.20-0.40% S; CB-7Cu-1 and -2, 0.03% S (max). Phosphorus content is 0.04% (max) in all grades except: CF-16F, 0.17% P (max); CF-10SMnN, 0.060% P (max); CT-15C, 0.030% P (max); CK-3MCuN, 0.045% P (max); CN-3M, 0.030% P (max); CA-6N, 0.020% P (max); CA-28MWV, 0.030% P (max); CB-7Cu-1 and -2, 0.035% P (max).(d) Molybdenum not intentionally added.(e) CF-3A, CF-3MA, and CF-8A have the same composition ranges as CF-3, CF-3M, and CF-8, respectively, but have balanced compositions sothat ferrite contents are at levels that permit higher mechanical property specifications than those for related grades. They are covered by ASTMA 351.。