离散知识点公式总结
大学离散数学期末重点知识点总结(考试专用)
1 / 1 1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (∃x)((Ax)∨(Bx))<=>( ∃x)(Ax)∨(∃x)(Bx) (∀x)((Ax)∧(Bx))<=>(∀x)(Ax)∧(∀x)(Bx) —┐(∃x)(Ax)<=>(∀x)┐(Ax) —┐(∀x)(Ax)<=>(∃x)┐(Ax) (∀x)(A ∨(Bx))<=>A ∨(∀x)(Bx) (∃x)(A ∧(Bx))<=>A ∧(∃x)(Bx) (∃x)((Ax)→(Bx))<=>(∀x)(Ax)→(∃x)(Bx) (∀x)(Ax) →B <=>(∃x) ((Ax)→B) (∃x)(Ax) →B <=>(∀x) ((Ax)→B) A →(∀x)(Bx) <=>(∀x) (A →(Bx)) A →(∃x)(Bx) <=>(∃x) (A →(Bx)) (∀x)(Ax)∨(∀x)(Bx) =>(∀x)((Ax)∨(Bx)) (∃x)((Ax)∧(Bx)) =>(∀x)(Ax)∧(∀x)(Bx) (∀x)(Ax)→(∀x)(Bx) =>(∀x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={<x,y>|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f ºg=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f ºg 也是单射; ②如果f,g 都是满射,则f ºg 也是满射; ③如果f,g 都是双射,则f ºg 也是双射; ④如果f ºg 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f 为由<A,*>到<B,^>的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b =>c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格<A,<=>的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格<A,<=>的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度;②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n=n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学重要公式定理汇总分解
离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。
离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。
下面是对离散数学中一些重要的公式和定理的汇总。
1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。
一个集合有n个元素,那么它的幂集有2^n个元素。
-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。
2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。
-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。
3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。
-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。
4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。
- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。
5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。
离散数学部分概念和公式总结
离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B 是等值的,记作A<=>B。
约束变元和自由变元:在合式公式xA和 xA中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Qk…xkB,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散信号 知识点总结
离散信号知识点总结一、离散信号的定义离散信号是指在离散时间点上的取样值的集合。
在数学上,它可以用一个序列来表示,即{..., x[-2], x[-1], x[0], x[1], x[2], ...}。
其中,x[n]表示在时刻n处的取样值,n为整数。
离散信号与连续信号相对,连续信号是在连续的时间上取值的,而离散信号是在离散的时间上取值的。
二、离散信号的性质1. 有界性:离散信号通常是有界的,即存在一个有限的范围,超出这个范围时信号值为零。
2. 周期性:某些离散信号是周期的,即满足x[n+N]=x[n]的性质,其中N为周期。
3. 非周期性:另一些离散信号是非周期的,即没有周期性结构。
4. 平稳性:离散信号的平稳性是指信号的统计特性在时间平移后保持不变,即x[n]=x[n-k]。
若满足这个条件,则称该信号是平稳的。
5. 因果性:对于实际系统的输入信号来说,它通常是因果的,即在某一时刻的取值只取决于之前时刻的取值。
三、离散信号的表示离散信号可以通过多种方式来表示,包括序列表示法、块状表示法、方块表示法等。
其中,序列表示法是最常见的一种表示方法。
在序列表示法中,离散信号可以通过一列有序的数值来描述,例如{x[0], x[1], x[2], ...}。
这种表示方法简单直观,便于分析和处理。
四、离散信号的处理方法离散信号的处理方法包括离散信号的运算、变换和滤波等。
其中,离散信号的运算主要是指对离散信号进行加法、乘法、卷积等运算。
这些运算可以通过离散信号的表示法来实现。
另外,离散信号的变换主要是指离散信号的傅里叶变换、离散余弦变换等。
这些变换可以用于信号的频域分析和压缩。
最后,离散信号的滤波是指通过滤波器来对信号进行频率选择和抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
总之,离散信号是一种在离散时间点上取样的信号,在信号处理中具有重要的作用。
通过对离散信号的定义、性质、表示和处理方法的总结,可以更好地理解离散信号的特点和应用。
离散数学部分概念和公式总结(精简版)
第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
离散数学基本公式
离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。
在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。
以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。
用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。
这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。
4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。
用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。
这个定理在密码学、计算机科学等领域都有广泛的应用。
5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。
反证法则是通过假设相反的命题成立来证明原命题的一种方法。
在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。
这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。
在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。
离散数学公式范文
离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。
它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。
离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。
本文将介绍一些离散数学中常用的公式及其应用。
一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。
A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。
A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。
A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。
A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。
它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。
数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。
2.归纳假设:假设当n=k时命题成立,即P(k)成立。
3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。
三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。
常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。
2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。
3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。
4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。
离散数学总复习-知识点
离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学知识点(可编辑修改word版)
1.内容及范围主要来自 ppt,标签对应书本2.可能有错,仅供参考离散数学知识点说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法: 绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(⌝,∧,∨,→,↔),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,∀-规则(US),∀+规则(UG),∃-规则(ES),∃+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ∈, ⊆, ⊂, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
离散数学公式
离散数学公式
离散数学是一门利用数学原理研究离散复杂系统的科学,是一门多维而全面的学科,其研究范围涵盖了计算机科学、逻辑学、概率论和组合数学等领域。
关系公式:若集合X和Y之间存在一对一的函数关系,则X到Y的映射关系可以用公式f:X→Y表示,其中•x∈X表示x是X集合中的一个元素,•f(x)∈Y表示f(x)是Y集合中的一个元素,•f:X→Y表示Y集合的每个元素都可以通过函数f映射回X集合中的一个元素。
函数关系公式:若集合X和Y之间存在可定义的函数关系,则可以用f:X→Y表示,其中•f:X→Y表示函数f把X集合中的元素映射到Y集合中,•f(x)表示x在X集合中的元素映射到Y集合中的元素。
算数逻辑公式:若集合X和Y之间存在逻辑关系,则可以用公式
x∈X⊃y∈Y表示,其中•x∈X表示x是X集合中的一个元素,•y∈Y表示y是Y集合中的一个元素,•x∈X⊃y∈Y表示若x属于X集合,则y属于Y集合。
离散数学知识点整理
离散数学一、逻辑和证明1.1命题逻辑命题:是一个可以判断真假的陈述句。
联接词:A、V、一、f「。
记住“p仅当q”意思是“如果p,则q",即p-。
记住“q除非p”意思是“」p-q”。
会考察条件语句翻译成汉语。
构造真1.2语句翻译系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。
1.3命题等价式逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。
证逻辑等价是通过p推导出q,证永真式是通过p推导出T。
(p—r)A(q-r) = (pVq)-r(p—q)V(p-r) = p—(qVr)(p—r)V(q-r) = (pAq)-r双条件命题等价式pf = (pfq) A (qfp)pf = -pfqpf Q (pAq) V(-pA-q)「(pf) = pfq1.4量词谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如V x>0P(x)。
当论域中的元素可以一一列举,那么V xP(x)就等价于P(x1)AP(x2)...A P(xn)。
同理,3 xP(x)就等价于 P(x1)VP(x2)...VP(xn)。
两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如V x(P(x)AQ(x))和(V xP(x)) A (V xQ(x))。
量词表达式的否定:「V xP(x) Q 3 x-P(x),「3 xP(x) Q V x-P(x)。
1.5量词嵌套我们采用循环的思考方法。
量词顺序的不同会影响结果。
语句到嵌套量词语句的翻译,注意论域。
嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。
1.6推理规则一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。
但有效论证不代命题和量化命题的组合使用。
二、集合、函数、序列、与矩阵2.1集合£说的是元素与集合的关系,^说的是集合与集合的关系。
八年级上册数学《数据的离散程度》知识点
八年级上册数学《数据的离散程度》知识点人教版八年级上册数学《数据的离散程度》知识点
1、极差:
一组数据中的最大值与最小值的差叫做极差。
计算公式:极差=
最大值-最小值。
极差是刻画数据离散程度的'一个统计量,可以反映一组数据的
变化范围。
一般说,极差越小,则说明数据的波动幅度越小。
2、方差
意义:
1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个
数相等、平均数相等或比较接近的情况。
2、方差较大的波动较大,方差较小的波动较小。
3、方差大,标准差就大,方差小,标准差就小。
因此标准差同
样反映数据的波动大小。
注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。
离散数学公式范文
离散数学公式范文离散数学是研究离散对象及其性质、结构和相互关系的一门数学学科。
它是数学中的一个重要分支,广泛应用于计算机科学、信息科学、金融、工程和其他领域。
离散数学的内容丰富多样,其中包括了许多重要的公式。
本文将介绍一些与离散数学相关的公式,帮助读者更好地理解和应用离散数学。
1.排列组合公式:排列公式表示从n个不同元素中取r个元素所能组成的不同排列的个数,记作P(n,r)。
组合公式表示从n个不同元素中取r个元素所能组成的不同组合的个数,记作C(n,r)。
它们的计算公式如下:P(n,r)=n!/(n-r)!C(n,r)=n!/(r!*(n-r)!)2.容斥原理公式:容斥原理是一种计数方法,用于计算多个集合的交集和并集中的元素个数。
假设A1,A2,...,An是n个集合,容斥原理公式如下:A1∪A2∪...∪An,=Σ(,Ai,)-Σ(,Ai∩Aj,)+Σ(,Ai∩Aj∩Ak,)-...+(-1)^(n-1)*,A1∩A2∩...∩An3.递推关系公式:递推关系是一种数列的定义方式,通过前几项的关系来递推出后面的项。
其中最著名的递推关系是斐波那契数列的定义,即F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1)=14.二项式定理公式:二项式定理是代数中一种重要的展开公式,用于计算(x+y)^n的展开式。
它的公式如下:(x+y)^n=Σ(C(n,r)*x^(n-r)*y^r),其中r取值范围为0到n。
5.欧拉欧系数公式:欧拉欧系数是用于描述图的性质的一种算子。
对于一个图G的顶点集V和边集E,欧拉欧数E(G)定义为:E(G)=,E,-,V,+16.布尔代数公式:布尔代数是一种逻辑代数,用于描述和操作命题的真值。
其中的一些重要公式包括德摩根定律、分配律、吸收定律等。
7.图论中的公式:图论是离散数学中的一个重要分支,用于研究图的性质和结构。
其中一些重要的公式包括图的度数和、握手定理、树的性质等。
离散数学基本公式
离散数学基本公式离散数学是数学中的一个重要分支,主要研究离散对象及其关系的数学结构。
离散数学中有很多基本公式,下面将介绍一些常用的公式。
1.排列公式:排列是从一个集合中取出特定元素组成一定长度的有序排列。
对于n个不同元素中取r个元素排列的个数表示为P(n,r),其计算公式为:P(n,r)=n!/(n-r)!其中,n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*12.组合公式:组合是从一个集合中取出特定元素组成一定长度的无序组合。
对于n个不同元素中取r个元素组合的个数表示为C(n,r),其计算公式为:C(n,r)=n!/(r!*(n-r)!)3.二项式定理:二项式定理是将一个二次多项式展开为一系列项的求和,其公式为:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+C(n,2)*a^(n-2)*b^2+...+C(n,n)*a^0*b^n4.递推公式:递推公式是通过前一项或前几项的值求得下一项的值。
在离散数学中,递推公式经常用来求解递归关系式。
例如,斐波那契数列的递推公式为:F(n)=F(n-1)+F(n-2)其中,F(n)表示斐波那契数列的第n项,F(0)=0,F(1)=15.布尔代数公式:布尔代数是离散数学中研究命题逻辑的一种代数结构。
布尔代数中有一些常见的公式,如德·摩根定律:¬(p∧q)=¬p∨¬q¬(p∨q)=¬p∧¬q其中,¬表示取非操作,∧表示逻辑与操作,∨表示逻辑或操作。
6.常用等式:在离散数学中,还有一些常用的等式,如:a+(a*b)=aa∨(a∧b)=aa∧(a∨b)=a这些等式在布尔代数、集合论等离散数学的领域中经常被使用。
7.容斥原理:容斥原理是离散数学中常用的一种求解集合问题的方法,其公式为:A1∪A2∪...∪An,=,A1,+,A2,+...+,An,-,A1∩A2,-,A1∩A3,-...+(-1)^(n+1)*,An-1∩An,+...+(-1)^(n+1)*,A1∩A2∩...∩A其中,A,表示集合A的元素个数。
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
离散数学公式大全总结
离散数学公式大全总结离散数学是数学中的一个分支,涵盖了许多概念和公式。
以下是一些离散数学中常见的公式和概念的总结:1. 集合理论:集合并:$A \cup B = {x | x \in A \text{或} x \in B}$集合交:$A \cap B = {x | x \in A \text{且} x \in B}$集合补:$A' = {x | x \notin A}$集合差:$A - B = {x | x \in A \text{且} x \notin B}$幂集:如果$A$有$n$个元素,$P(A)$有$2^n$个子集。
容斥原理:$|A \cup B| = |A| + |B| - |A \cap B|$2. 排列和组合:排列数:$P(n, k) = \frac{n!}{(n - k)!}$组合数:$C(n, k) = \frac{n!}{k!(n - k)!}$二项定理:$(a + b)^n = \sum_{k=0}^{n}C(n, k)a^{n-k}b^k$3. 图论:手握定理:$2 \cdot \text{边数} = \sum \text{度数}$欧拉图:一个连通图是欧拉图,当且仅当每个顶点的度数都是偶数。
哈密顿图:包含图中每个顶点的圈。
图着色:给定图中的顶点,用尽量少的颜色对它们进行着色,使得相邻的顶点颜色不相同。
图的最短路径:Dijkstra算法和Floyd-Warshall算法用于找到图中的最短路径。
4. 布尔代数:布尔变量:$0$表示假,$1$表示真。
逻辑与:$A \land B$逻辑或:$A \lor B$逻辑非:$\lnot A$逻辑与门:$AND$逻辑或门:$OR$逻辑非门:$NOT$布尔恒等定律:$A \land 1 = A$,$A \lor 0 = A$德·摩根定律:$\lnot (A \land B) = \lnot A \lor \lnot B$,$\lnot (A \lor B) = \lnot A \land \lnot B$5. 树和图:树的顶点数与边数关系:$V = E + 1$二叉树的性质:最多有$2^k$个叶子节点,高度为$h$的二叉树最多有$2^{h+1} - 1$个节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散知识点公式总结
1. 集合论
集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:
- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}
- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作
A∩B。
公式:A∩B={x|x∈A且x∈B}
- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}
- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}
2. 关系和函数
关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:
- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}
- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B
3. 图论
图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:
- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}
- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}
- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)
- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
公式:v1,v2,...,vn,v1
- 连通图:在无向图G中,如果任意两个顶点之间都存在路径,则称G为连通图。
公式:对于任意的u,v∈V,存在(u,v)的路径
4. 组合数学
组合数学是离散数学的一个重要分支,它研究的是对象的选择和排列的数学结构。
组合数学的基本概念包括排列、组合、二项式系数等。
其相关公式如下:
- 排列数:对于n个元素,从中任取r个元素按一定顺序排列,则有nPr=n!/(n-r)!
公式:nPr=n!/(n-r)!
- 组合数:对于n个元素,从中任取r个元素不考虑顺序,则有nCr=n!/(r!(n-r)!)
公式:nCr=n!/(r!(n-r)!)
- 二项式系数:对于非负整数n和k,二项式系数是由二项式定理所给出的系数,记作
C(n,k)。
公式:C(n,k)=n!/(k!(n-k)!)
在离散数学的学习过程中,这些基本概念和公式是非常重要的内容,它们构成了离散数学的基础知识,对于进一步的学习和应用有着重要的指导作用。
通过对这些概念和公式的理解和掌握,可以更好地理解和应用离散数学在计算机科学和信息技术领域中的相关知识。
因此,在学习离散数学的过程中,要充分理解和掌握这些基本概念和公式,才能更好地应用离散数学知识解决实际问题。