反证法的定义 数学
反证法的定义
反证法的定义反证法是指以否定假设的方法来证明一种命题正确性的一种推理方式,也称作“反向推理”或“反证法”或“假设反证”。
它可以通过否定某一命题来证明另一命题的正确性。
反证法是建立在反面推理的基础之上的一种推理方式,而反面推理指的是一种以反面为基础的推理,是“以质疑或否定的方式来反映某个说法或想法,以便说服某个想法是正确的”。
反证法可以用来证明许多经典的定理,其中最具代表性的就是数学家克莱因在17篇文章中提出的“克莱因定理”,其证明的方式就是通过反证法。
克莱因定理的要点为:任何一个非空集合必然至少有两个元素,否则它就不是一个集合。
克莱因定理的证明是从负结论的角度出发的,即:如果任何一个非空集合只有一个元素,那么它就不是一个集合。
为了证明非空集合至少有两个元素,就必须证明该假设是错误的。
为此,克莱因利用排中律,从而推出若集合有两个元素,那么它就是一个集合,使克莱因定理得以证明。
反证法也用于经济学的研究,一个典型的例子就是通过反证法来证明David Ricardo提出的“比较优势”理论。
比较优势理论认为,在自由贸易的条件下,一个国家可以依靠其所擅长的特定产品来增长出口贸易,从而实现社会收益的最大化。
要证明这个理论,Ricardo利用反证法,让大家相信如果不能通过比较优势来使一国收益最大化,那么另一个国家就一定会受到损失。
他让大家相信,如果不是按照比较优势来进行贸易,那么一国的投资就不能达到最优的状态,必然会使另一个国家受到伤害,从而证明比较优势理论的正确性。
另一方面,反证法在哲学上也有着广泛的应用。
例如,古希腊的哲学家亚里士多德提出“万物有灵论”,这是一个未经验证的假设,当今哲学界也难以完全证实它的正确性。
亚历斯多德没有用传统的论证方法来证明他的观点,而是采取了反证法,即,如果不存在灵魂,那么每一个物体就没有内在的动能,从而推出“万物有灵论”的正确性。
从上述例子可以看出,反证法有着多方面的应用,它可以在数学、经济学和哲学等领域中都有着广泛的用处。
中学数学教学中的反证法-精选教育文档
中学数学教学中的反证法在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法.一、反证法的基本概念1.反证法的定义法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。
反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性.2.反证法的基本思想反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示:“否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定.3.反证法的逻辑依据通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真.所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的.二、反证法的步骤用反证法证题一般分为三个步骤:1.反设.假设原命题的结论不成立;2.归谬.从这个结论出发,经过推理论证,得出矛盾;3.结论.由矛盾判定假设不成立,从而肯定原命题的结论正确.即:否定结论→推导出矛盾→结论成立.三、反证法的种类1.归谬反证.结论的反面只有一种情形,只要把它驳倒,就能达到证题目的.2.穷举反证.结论的反面不止一种情形,必须将它们逐一驳倒,才能达到证题目的.四、反证法的典型例题例1:已知:AB,CD是圆内非直径的俩弦(如图),求证:AB与CD不能互相平分.证明:假设AB与CD互相平分与点M,则由已知条件AB,CD均非圆O直径,可以判定M不是圆心O,联结OA,OB,OM.因为OA=OB,M是AB中点,所以OM⊥AB(等腰三角形底边上的中线垂直于底边).同理可得:OM⊥CD,从而过点M有两条直线AB,CD都垂直于OM.这与已知的定理相矛盾.故AB与CD不能互相平分.五、反证法的使用条件任何方法都有它成立的条件,也都有它适用的范围.离开了条件超越了范围就会犯错误,同样,问题解决也就没有那么容易.因此,我们应该学会正确使用反证法解题.虽然用反证法证明,逻辑推理严谨而清晰,论证自然流畅,可谓是干净利落,快速而可行,是一种很积极的证明方法,而且用反证法证题还有很多优点:如思想选择的余地大、推理方便等.但是并不是什么题目都适合用反证法解决.例2:如果对任何正数p,二次方程ax+bx+c+p=0的两个根是正实数,则系数a=0,试证之.分析:看了本题的证明过程似乎很合理,但其实第三步,即肯定原结论成立的论证错了.因为,本题的题设条件为对任意正数p,y=0有两个正实数根,结论是a=0,但本题的题设条件与结论是矛盾的;当a=0时,二次方程就变成了一次方程bx+c+p=0,此一次方程在b≠0时,对于任何正数p,它只有一个根;在b=0时,仅当p=-c>0的条件下,它有无数个根,否则无根,但总之不会有两个根.题设条件和结论矛盾.因此,本题不能反证法来处理.若原题改为“如果对于任何正数p,只存在正实根,则系数a=0”,就能用反证法证明.因此,对于下列命题,较适用反证法解决.(1)至多至少型命题;(2)唯一性命题;(3)否定型命题;(4)明显型命题;(5)此前无定理可以引用的命题.例3:设a,b都是正数,求证:(a-b)/a≤ln(a/b)≤(a-b)/b.证明:反设ln(a/b)≤(a-b)/b不成立,便有ln(a/b)≥(a-b)/b,由对称性知:ln(b/a)≥(b-a)/a,相加得:ln(a/b)+ln(b/a)>(a-b)/b+(b-a)/a即:0>(a-b)/a≥0这一矛盾说明ln(a/b)≤(a-b)/b即:ln(b/a)≥(a-b)/b交换位置:ln(a/b)≥(a-b)/b合并得:(a-b)/a≤ln(a/b)≤(a-b)/b反证法是数学中的一种重要的证明方法.牛顿曾说:“反证法是数学家最精当的武器之一.”它是从命题的否定结论出发,通过正确的逻辑定理推理导出矛盾,从而证明原命题的正确性的一种重要方法.反证法之所以有效是因为它对结论的否定实际上增加了论证的条件,多一个条件,这对发现正确的解题思路是有帮助的.对于具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,通过逆向思维,从结论入手进行反面思考,问题就能迎刃而解.在现代数学中,反证法已成为最常用和最有效的解决问题的方法之一.。
第2章 2.2 2.2.2 反证法
2.2.2反证法学习目标核心素养1.了解反证法的思考过程、特点.(重点、易混点)2.会用反证法证明简单的数学问题.(重点、难点)通过反证法的学习,提升学生的逻辑推理素养.反证法1.反证法的定义由证明p⇒q转向证明:¬q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾,从而判定¬q为假,推出q为真的方法,叫做反证法.2.常见的几种矛盾(1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾(例如,导出0=1,0≠0之类的矛盾).1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(3)反证法的实质是否定结论导出矛盾.()[答案](1)√(2)×(3)√2.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°[解析]根据反证法的定义,假设是对原命题结论的否定,故假设三个内角都大于60°.[答案] B3.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设__________.[解析]∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.[答案]b与c平行或相交利用反证法证明否定性命题数,则方程没有整数根”,正确的假设是方程存在实数根x0为() A.整数B.奇数或偶数C.自然数或负整数D.正整数或负整数(2)已知三个正整数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.[解析](1)要证明的结论是“方程没有整数根”,故应假设:方程存在实数根x0为整数,故选A.[答案] A(2)证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.又a,b,c成等比数列,所以b2=ac,即b=ac,所以a+c+2ac=4ac,所以a+c-2ac=0,即(a-c)2=0,所以a =c ,从而a =b =c ,所以a ,b ,c 可以成等差数列,这与已知中“a ,b ,c 不成等差数列”相矛盾.原假设错误,故a , b , c 不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.反证法证明问题的一般步骤1.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.求证:数列{S n }不是等比数列.[证明] 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾.所以数列{S n }不是等比数列.利用反证法证明存在性命题于14.[思路探究] “不能都大于”的含义为“至少有一个小于或等于”其对立面为“全部大于”.[解] 假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. ∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0.∴(1-a )+b 2≥(1-a )b >14=12.同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:2.已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.[证明] 假设a ,b ,c ,d 都是非负数,因为a +b =c +d =1,所以(a +b )(c +d )=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.利用反证法证明唯一性命题反证法解题的实质是什么?提示:否定结论、导出矛盾,从而证明原结论正确.【例3】已知直线m与直线a和b分别交于A,B两点,且a∥b.求证:过a,b,m有且只有一个平面.[思路探究]“有且只有”表示“存在且唯一”,因此在证明时,要分别从存在性和唯一性两方面来考虑.[解]因为a∥b,所以过a,b有一个平面α.又因为m∩a=A,m∩b=B,所以A∈a,B∈b,所以A∈α,B∈α.又因为A∈m,B∈m,所以m⊂α,即过a,b,m有一个平面α,如图.假设过a,b,m还有一个平面β异于平面α,则a⊂α,b⊂α,a⊂β,b⊂β,这与a∥b,过a,b有且只有一个平面矛盾.因此,过a,b,m有且只有一个平面.用反证法证明唯一性命题的一般思路证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.3.若函数f(x)在区间[a,b]上的图象连续,且f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.[证明]由于f(x)在[a,b]上的图象连续,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内至少存在一个零点,设零点为m,则f(m)=0.假设f(x)在(a,b)内还存在另一个零点n,即f(n)=0,则n≠m.若n>m,则f(n)>f(m),即0>0,矛盾;若n<m,则f(n)<f(m),即0<0,矛盾.因此假设不正确,即f(x)在(a,b)内有且只有一个零点.1.“自然数a,b,c中恰有一个偶数”的否定正确的为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数[解析]自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数,所以否定正确的是a,b,c中都是奇数或至少有两个偶数.[答案] D2.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角[解析]“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.[答案] B3.“x=0且y=0”的否定形式为________.[解析]“p且q”的否定形式为“¬p或¬q”.[答案]x≠0或y≠04.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设________.[解析]“x≠a且x≠b”形式的否定为“x=a或x=b”.[答案]x=a或x=b5.若a,b,c互不相等,证明:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.[证明]假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加得a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0,∴a=b=c.这与a,b,c互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.。
浅谈数学中的反证法
浅谈数学中的反证法一、反证法的定义关于反证法,牛顿说:“反证法是数学家最精当的武器之一。
”这就充分肯定了反证法在数学应用中的积极作用和不可动摇的重要地位.古希腊数学家欧道克斯正是依据了反证法发现了无理数(√2的非有理性证性明就是一例).罗巴切夫斯基(Lobatchevsky)也是依据了反证法发现非欧几何学,从某种意义上说,也是总结了用反证法证明平行公理失败的教训,从而得到启示的结果.就是说把有理数域扩充到实数以及非欧几何的诞生都是逆向思维——特别是反证法的伟大功绩.鉴于此,近年来的教育工作中,对学生的逆向思维原则的培养得以增强,各大中小学教育中更加注重培养学生思维的多向性、创造性与灵活性.二、反证法的步骤在中学数学题目的求解证明过程中,当直接证明一个命题感到困难时,我们经常采用反证法的思想.由此,我们总结出用反证法证明命题的四个步骤: ①审题一定要将命题的前提,命题的结论弄清楚.②提出假设根据假设的条件以及原命题,对原命题提出否定.③逻辑证明从假设出发,根据数学中现有的公理、定义、公式、定理以及,命题等条件,在逻辑推理的正确引导下得出逻辑矛盾.④肯定结论对原命题的正确性进行肯定.三、反证法的逻辑应用反证法指的是从反面的角度,对问题进行思考的一种证明方法,也是间接证明中的一种类型.换言之,就是对题设肯定,却对结论否定,在这个过程中将矛盾到过来进行推理.四、中学数学中反证法的应用1)否定性命题的证明例题1:三个正整数a,b,c成等比数列,但不成等差数列,求证√a,√b,√c不成等差数列解:假设√a,√b,√c成等差数列,则√a+√c=2√b,两边同时平方得a+c+2√ac=4b.又a,b,c成等比数列,所以b2=ac,即b=√ac,所以a+c+2√ac=4√ac,所以a+c-2√ac=0,即((√a−√c)2=0,所以√a=√c,从而a=b=c,所以a,b,c可以成等差数列,这与已知中“a,b,c不成等差数列”矛盾.原假设错误,故√a,√b,√c不成等差数列.2)限定式命题的证明3)无穷性命题的证明例题3:求证:质数序列2,3,5,7,11,13,17,19......是无限的证:假设质数序列是有限的,序列的最后一个也就是最大质数为P,全部序列为2,3,5,7,11,13,17,19......P再构造一个整数N=2×3×5×7×11×…×P+1显然N不能被2整除,N不能被3整除,……N不能被P整除,即N不能被2,3,5,7,11,13,17,19......P中的任何一个整除,所以N是个质数,而且是个大于P的质数,与最大质数为P矛盾,即质数序列2,3,5,7,11,13,17,19......是无限的.4)逆命题的证明5)某些存在性命题的证明6)全称肯定性命题的证明7)一些不等量命题的证明8)基本命题的证明五、总结。
2.2.2反证法
2.2.2反证法学习目标:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.学习重点:会用反证法证明问题;了解反证法的思考过程.学习难点:根据问题的特点,选择适当的证明方法.一、知识梳理1、反证法的定义:一般地,假设原命题,经过正确的推理,最后得出,因此说明假设,从而证明了原命题.2、反正法的步骤:3、反证法的适用范围:二、例题讲解例1、证明2不是有理数。
例2、证明质数有无穷多个。
例3、证明:1,3,2不能为同一等差数列的三项。
例4、平面上有四个点,没有三点共线。
证明以每三点为顶点的三角形不可能都是锐角三角形。
三、巩固练习1. 用反证法证明命题“三角形的内角至少有一个不大于60︒”时,反设正确的是(). A.假设三内角都不大于60︒B.假设三内角都大于60︒C.假设三内角至多有一个大于60︒D.假设三内角至多有两个大于60︒2. 实数,,a b c不全为0等价于为().A.,,a b c均不为0B.,,a b c中至多有一个为0C.,,a b c中至少有一个为0D.,,a b c中至少有一个不为03.设,,a b c都是正数,则三个数111,,a b cb c a+++().A.都大于2 B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于24.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数5. 用反证法证明命题“自然数,,a b c 中恰有一个偶数”的反设为 .6 “4x >”是“240x x ->”的 条件.7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是____ ____ .8.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为____________.9.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.10.已知数列{b n }的通项公式为b n =14⎝⎛⎭⎫23n -1.求证:数列{b n }中的任意三项不可能成等差数列.。
2.2.2 反证法
2.2.2反证法1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.基础梳理1.定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t 与假设矛盾,或与某个真命题矛盾.从而判定┐q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或与公认的简单事实矛盾等.想一想:(1)反证法的实质是什么?(2)反证法属于直接证明还是间接证明?其证明过程属合情推理还是演绎推理?(1)解析:反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.(2)解析:反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.自测自评1.用反证法证明命题“三角形的内角中至少有一个大于60°”时,反设正确的是(A)A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°解析:“至少有一个”的否定是“一个都没有”,则反设为“三个内角都不大于60°”.2.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p +q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是(D)A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析:用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”,故①假设错误.②假设正确.3.“实数a,b,c不全大于0”等价于(D)A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0解析:“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.故选D.基础巩固1.(2014·微山一中高二期中)用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(C)A.a2=b2B.a2<b2C.a2≤b2D.a2<b2,且a2=b22.否定“至多有两个解”的说法中,正确的是(D)A.有一个解B.有两个解C.至少有两个解D.至少有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为(B)A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠1能力提升5.下列命题不适合用反证法证明的是(C)A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1.解析:选项A中命题条件较少,不足以正面证明;选项B中命题是否定性命题,可以反证法证明;选项D中命题是至少性命题,可以反证法证明.选项C不适合用反证法证明.故选C.6.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的(C)A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:首先若P 、Q 、R 同时大于零,则必有PQR >0成立.其次,若PQR >0,且P 、Q 、R 不都大于0,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,∴b <0与b ∈R +矛盾,故P 、Q 、R 都大于0.故选C.7.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得 a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:08.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有__________(填序号).解析:“x =y ”的反面是“x ≠y ”,即是“x >y 或x <y ”,所以②正确;“a >b ”的反面是“a ≤b ”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角”的反面是“三角形至少有两个钝角”.所以这三个都错.答案:②9.如果非零实数a ,b ,c 两两不相等,且2b =a +c .证明:2b =1a+1c不成立. 证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac,∴b 2=ac . 又∵b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=ac ,即a 2+c 2=2ac ,即(a -c )2=0, ∴a =c ,这与a ,b ,c 两两不相等矛盾,∴2b =1a +1c不成立. 10.已知函数f (x )=a x+x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负实根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0.所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数.(2)设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1.又0<ax0<1,所以0<-x0-2x0+1<1,即12<x0<2.与假设x0<0矛盾,故f(x)=0没有负实根.。
介绍反证法及举例
反证法将更多地与其他证明方法相结合,形成更强大的证 明工具。例如,可以与归纳法、构造法等相结合,共同解 决复杂问题。
完善理论体系
未来反证法的理论体系将进一步完善,包括更严谨的假设 条件、更精确的推导过程以及更广泛的应用范围。
推动学科发展
反证法的不断发展和完善将推动相关学科的进步,为数学 、物理学、哲学等领域的研究提供更有效的工具和方法。
原理
基于逻辑中的排中律和矛盾律。排中律指出任何命题要么为真要么为假,没有中间状态;矛盾律则表 明一个命题不能既为真又为假。通过假设命题的否定并推导出矛盾,可以证明原命题的成立。
适用范围及局限性
适用范围
反证法在数学、逻辑学、哲学等多个领域都有广泛应用。它特别适用于直接证 明困难或不可能的情况,通过间接方式证明命题的成立。
03
反证法在物理领域应用
力学问题中反证法应用
假设物体不受外力作用时,其运动状 态不会改变。如果物体运动状态发生 了改变,则可以推导出物体必定受到 了外力的作用,从而证明了牛顿第一 定律的正确性。
VS
假设两个物体之间的摩擦力与它们之 间的正压力成正比。如果两个物体之 间的摩擦力与正压力不成正比,则可 以推导出物体之间的滑动摩擦系数不 是一个常数,从而证明了库仑摩擦定 律的正确性。
电磁学问题中反证法应用
假设电荷在电场中受到的电场力与其所带电荷量成正比。如 果电荷在电场中受到的电场力与其所带电荷量不成正比,则 可以推导出电场强度不是一个恒定的值,从而证明了库仑定 律的正确性。
假设电流在导体中产生的磁场与电流强度成正比。如果电流 在导体中产生的磁场与电流强度不成正比,则可以推导出磁 感应强度不是一个恒定的值,从而证明了安培环路定律的正 确性。
对反证法的初步认识
对反证法的初步认识反证法是一种常见的逻辑推理方法,它通过否定某个命题的对立面来论证该命题的真实性。
在逻辑推理中,反证法被广泛应用于数学、哲学、科学等领域,其基本原理和应用方法对于正确理解和运用逻辑思维具有重要意义。
本文将从反证法的基本原理、应用方法和局限性三个方面对反证法进行初步认识。
一、基本原理反证法的基本原理是通过对原命题的否定进行推理,从而得出原命题的真实性。
在逻辑推理中,我们常常遇到一些命题或定理,如果直接证明这些命题或定理比较困难,我们可以尝试采用反证法来证明。
反证法的基本原理可以用以下逻辑推理形式来描述:假设原命题为P,对立面为非P。
如果我们假设非P成立时推出矛盾,则可以得出P成立。
通过对非P的否定推理,最终得到P的真实性。
对于某个数学问题中的定理,如果我们无法直接证明它,我们可以假设该定理不成立,然后通过对其进行推导和分析,最终得出其矛盾,从而证明该定理的真实性。
二、应用方法在实际应用中,反证法常常可以分为直接反证法和间接反证法两种方法。
1. 直接反证法直接反证法是指通过对原命题的否定进行逻辑推理,得出矛盾,从而证明原命题的真实性。
这种方法通常应用于一些具体的命题或定理证明中,其思路相对简单直接。
举个例子,要证明“根号2是一个无理数”,可以采用直接反证法:假设根号2是一个有理数,即可以表示为分数a/b,其中a和b都是整数,并且a、b互为质数。
然后通过对a/b进行分析,得出a和b均为偶数,这与a、b互为质数矛盾,所以根号2不是一个有理数,从而证明它是一个无理数。
证明“不存在最大的素数”可以采用间接反证法:假设存在最大的素数P,然后构造出P的一个更大的素数P+1,显然这与“P是最大的素数”的前提相矛盾,因此可以得出不存在最大的素数。
三、局限性尽管反证法是一种常见的逻辑推理方法,但它并不适用于所有情况,且在应用过程中也存在一定的局限性。
1. 可证命题反证法只适用于那些具有确定性的命题或定理,无法应用于一些不可证命题或涉及概率论推理的问题。
浅谈“反证法”在高中数学的应用
浅谈“反证法”在高中数学的应用反证法,又称归谬法,是一种通过否定或质疑对方的论点,从而证明自己观点正确性的方法。
这种证明方法在高中数学中有着广泛的应用,下面我们就来谈谈反证法在高中数学中的应用。
反证法的原理是:如果一个命题的结论是错误的,那么这个命题的前提也必须是错误的。
这个原理基于逻辑推理的矛盾性,即如果一个命题的前提和结论之间存在矛盾,那么这个命题就是错误的。
根据这个假设,推导出与原命题的结论相矛盾的结论;说明这个矛盾的结论与原命题的结论是矛盾的,从而证明原命题的结论是正确的。
下面我们通过一个实例来说明反证法在高中数学中的应用:例题:求证:在任意三角形ABC中,至少有一个内角小于或等于60度。
证明:假设在三角形ABC中,所有内角都大于60度,即每个内角都大于60度。
根据三角形内角和定理,三角形内角和为180度,因此三角形ABC的内角和大于180度。
但是,这与三角形内角和定理相矛盾,因为三角形的内角和不可能大于180度。
因此,我们的假设是错误的,至少有一个内角小于或等于60度。
通过这个例子,我们可以看到反证法的应用范围很广,可以用来证明各种类型的命题,包括数量关系、不等式、函数性质等等。
虽然反证法在高中数学中有着广泛的应用,但是并不是所有的命题都可以使用反证法来证明。
一般来说,反证法适用于那些结论是“至多”、“至少”等形式的命题,因为这些命题的结论可以被否定。
如果命题的结论是“等于”、“不等于”等形式,那么就不适合使用反证法。
反证法是一种非常重要的数学证明方法,在高中数学中有着广泛的应用。
通过掌握反证法的原理和步骤,我们可以更好地理解和掌握数学中的各种知识点,提高自己的数学素养。
使用反证法也可以培养我们的逻辑思维能力,让我们更加严谨、准确地思考问题。
因此,我们应该认真学习反证法,并将其应用到实际生活中去。
在中学数学的学习过程中,我们经常会遇到一些看似简单但实际上需要巧妙思维才能解决的问题。
这时候,反证法就像是一把利剑,能帮助我们破解难题。
高中数学选修~课件第三章§反证法
推理不严谨,结论不成立
推理过程中存在漏洞
在使用反证法时,需要确保推理过程的严谨性。如果推理过程中存在漏洞,就可 能导致结论不成立。
未能正确运用逻辑规则
在反证法中,需要正确运用逻辑规则进行推理。如果未能正确运用逻辑规则,就 可能导致推理结果出现错误。
05 练习题与拓展思考
针对性练习题
证明
若$a,b,c in mathbb{R}$,且$a=b+c$,则$a,b,c$中至少有一个数不小于$frac{a}{3}$ 。
错误地否定原命题
在反证法中,需要假设原命题的否定 形式成立,然后进行推理。如果错误 地否定了原命题,就会导致推理方向 偏离正确轨道。
未能找到矛盾点或突破口
对已知条件理解不足
在使用反证法时,需要充分利用已知条件进行推理。如果对 已知条件理解不足,就可能无法找到矛盾点或突破口。
缺乏解题经验
对于一些较为复杂的题目,需要具备一定的解题经验才能找 到矛盾点或突破口。如果缺乏解题经验,就可能无法有效地 运用反证法。
假设$x,y$都不大于$1$,即$x leq 1, y leq 1$,则$x+y leq 2$,与已知条件 $x+y>2$矛盾,故假设不成立,原命题成立。
答案及解析
• 假设在这$99$个数中,任意三个数的和都不是$3$的倍数。 考虑这$99$个数除以$3$的余数,只能为$0,1,2$。由于 $99$个数中任意三个数的和都不是$3$的倍数,故余数为 $0,1,2$的数应各出现$33$次。但在这$99$个连续自然数中 ,必有一个数能被$3$整除,即余数为$0$的数至少有$34$ 个,与假设矛盾,故原命题成立。
高中数学选修~课件 第三章§反证法
汇报人:XX 20XX-01-30
人教版数学高二反证法概述
反证法的由来反证法顾名思义是一种证明方法,在数学和逻辑上是统一的。
早期古希腊的数学在毕达哥拉斯学派的影响下认为万物皆数,用整数和几何图形构建了一个宇宙图式。
万物皆数这个思想当时在数学家的脑海里是根深蒂固的。
随着2的出现,希腊人渐渐开始重新审视他们的数学,图形和直观并不是万能的,推理和逻辑走上了数学的舞台。
此时西方数学成为以证明为主的证明数学,他们要的是准确的数学,或者说他们的数学推崇准确性。
表现形式就是:逻辑、演绎的体系。
可见它是指证明的数学与算的数学正好相反。
希腊人重视逻辑和演绎的证明,反证法最早应用在欧几里得的《几何原本》中。
法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要、最精辟的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”。
反证法作为一种最重要且基本的数学证明方法,在数学命题的证明中被广泛应用。
欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法。
在我们自身学习的各个阶段,反证法一直伴随着我们。
反证法的定义反证法有多种不同的描述,其本质都是一样的。
最早的法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了如下的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”。
又称归谬法、被理法是一种论证方式,他首先假维基百科中这样描述“反证法()设某命题不成立即在原命题的条件下,结论不成立,然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题成立。
反证法从属于间接证明法的范畴,是从反面考虑问题的证明方法,既方便又实用。
反证法的逻辑基础反证法是一种简单却又行之有效的证明方法,从其创立至今就一直被广泛应用。
它的优点是,即使不知道怎样直接证明,也能辨别该命题的真伪。
4.反证法
4.反证法反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。
法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。
具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。
在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A 或者非A ”,这就是逻辑思维中的“排中律”。
反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。
再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。
所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为“否定→推理→否定”。
即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。
应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。
实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
反证法-精品文档
否定结论,假设命题
推理矛盾,肯定结论
通过推理出现自相矛盾的情况
矛盾的出现证明了原命题结论的正确性
用反证法证明命题时,矛盾的出现是关键
反证法的应用举例
证明几何中“三角形内角和等于180度”
通过推理得出三角形内角和大于180度或小于180度
假设三角形内角和不等于180度
反证法与其他证明方法的比较
05
反证法的发展趋势和前景
反证法作为数学证明中的重要方法,其理论体系在不断完善,包括对证明条件的深入探讨、对反证法在不同数学分支中的应用等。
理论体系的完善
随着计算机科学的发展,反证法的算法化与自动化成为了研究热点,旨在通过计算机程序实现数学证明的自动化与辅助化。
算法化与自动化
证明一个算法的时间复杂度为O(n)
在离散数学中的应用
04
反证法的局限性和注意事项
反证法不适用于否定性命题
反证法是一种通过证明命题的否定不成立来证明原命题成立的方法,因此对于否定性命题的反证法往往无法奏效。
反证法的局限性
反证法不适用于存在性命题
对于存在性命题,反证法同样存在局限性,因为要证明一个存在性命题成立,需要构造一个具体的实例或对象,而这在某些情况下可能是非常困难的。
03
证明一个函数可导
假设一个函数不可导,推导出矛盾结论,从而证明该函数可导。
在高等数学中的应用
01
证明函数的极限存在
假设函数的极限不存在,推导出矛盾结论,从而证明函数的极限存在。
02
证明数列的极限存在
假设数列的极限不存在,推导出矛盾结论,从而证明数列的极限存在。
证明一个图是连通的
证明一个集合是有限的
初二数学反证法
整数的性质
通过假设整数不具有某种 性质,如假设一个整数不 是质数,然后推导出矛盾 来证明该整数是质数。
同余定理
在证明同余定理时,可以 通过假设两个整数不同余 来推导矛盾。
唯一分解定理
通过假设一个整数不能被 唯一分解为质因数的乘积 来推导矛盾,从而证明唯 一分解定理。
04
反证法的优缺点分析
优点:简化问题、明确方向
可能引入额外条件
在使用反证法时,我们需要假设反面命题成立,并推导出矛 盾。然而,这个假设可能会引入额外的条件或限制,使得证 明过程变得复杂或困难。
不易掌握
反证法需要一定的逻辑思维和推理能力,对于初学者来说可 能较难掌握。同时,使用反证法时需要注意一些细节和技巧 ,否则可能会导致证明过程出现错误。
05
作用
反证法在数学证明中具有重要作用,尤其对于一些难以直接证明的结论,可以 通过反证法间接证明其成立。同时,反证法还可以培养学生的逆向思维能力和 逻辑推理能力。
适用范围及重要性
适用范围
反证法适用于各种数学领域,如代数、几何、数论等。在解决一些复杂问题时,反证法往往能够简化问题,提供 新的解题思路。
重要性
初二数学反证法
汇报人:XX
目 录
• 引言 • 反证法的基本步骤 • 初二数学中常见反证法应用 • 反证法的优缺点分析 • 反证法与直接证明法的比较 • 练习题与解析
01
引言
反证法的定义和作用
定义
反证法是一种数学证明方法,通过假设所要证明的结论不成立,然后推导出与 已知条件、定理、公理等相矛盾的结论,从而证明所要证明的结论成立。
代数证明中的反证法
01
02
03
方程的解
通过假设某个数不是方程 的解,然后代入方程得到 矛盾,从而证明该数是方 程的解。
对反证法的初步认识
对反证法的初步认识反证法是一种证明方法,通常用于证明某种命题的真值。
它基于一个简单的思想,即如果我们已经证明了某个命题的反命题是错误的,那么原始命题就必须是真的。
因此,为了证明某个命题的真值,我们可以假设它的反命题是真的,然后尝试证明这个反命题是错误的。
反证法的运用十分广泛。
它经常被用于证明某些数学问题,例如质数定理或柯西-施瓦茨不等式。
这种证明方法也经常被用于逻辑和哲学领域中的证明问题。
具体来说,反证法的证明步骤如下:1. 假设命题的反命题是真的。
2. 利用这个假设来推导出一个矛盾的结论。
3. 由于我们已经证明了反命题是错误的,我们必须推断出原始命题是真的。
举个例子,考虑下面这个简单的命题:“如果一个数是偶数,那么它的平方也是偶数。
”为了证明这个命题,我们可以使用反证法。
假设我们想要证明它的反命题:“如果一个数是偶数,那么它的平方是奇数。
”我们可以假设这个反命题是真的,然后推导出一个矛盾。
因为如果一个数是偶数,那么它可以表示成2n的形式,其中n是一个整数。
因此,这个数的平方可以表示成(2n)^2=4n^2的形式,这一定是偶数。
然而,反命题声称这个平方是奇数。
这是不可能的,因为一个数不能同时是偶数和奇数。
因此,我们的假设是错误的,原始的命题“如果一个数是偶数,那么它的平方也是偶数”是真的。
反证法是一种非常强大的证明方法,它可以用于解决各种各样的证明问题。
虽然这种证明方法不能用于证明所有的命题,但它在证明过程中提供了非常重要的指导和启示。
在掌握了反证法之后,我们可以更好地理解许多数学和逻辑问题,并能够更加准确地判断命题的真值。
反证法 逆否命题
反证法逆否命题
反证法(proof by contradiction)是一种数学证明方法,通过假设所要证明的结论为假,然后推导出矛盾,从而证明原始假设为真。
这个方法的基本思想是通过反证法来证明一个命题,首先假设它的否定,然后通过逻辑推导导出一个矛盾,从而证明原命题成立。
逆否命题(contrapositive)是一个命题的逻辑等价形式,对于命题"如果P,则Q",其逆否命题是"如果非Q,则非P"。
在逆否命题中,原命题的条件和结论都被否定,并且这两者的关系保持不变。
在证明过程中,有时会将反证法与逆否命题结合使用。
具体步骤如下:
1. 反证法的步骤:
-假设原命题的否定为真。
-推导出一个矛盾。
-得出结论:原命题为真。
2. 逆否命题的应用:
-将原命题表示为"如果P,则Q" 的形式。
-将其逆否命题表示为"如果非Q,则非P" 的形式。
-在证明过程中,有时会转而证明逆否命题,因为逆否命题的证明可能更容易。
总体而言,反证法是一种更宽泛的证明方法,而逆否命题则是一种特殊的逻辑形式,两者在某些情况下可以相互补充使用。
在证明中选择使用哪种方法通常取决于具体问题的性质和证明的难易程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反证法的定义数学
反证法是一种由数学家威廉爱德华卡尔的卡尔定理发展而来的
推理方法,它用于证明某种定理的真实性。
反证法是一种充满智慧和创造力的推理方式,它旨在通过辩论,比较和证明某一观点的正确性,以便于证明目标定理的真实性。
反证法的定义是:反证法是用来证明某一特定观点的正确性的一种推理方式,它通过对该观点的另一种情况进行论证,从而得出结论。
反证是一种负面证明,它经常通过假设要证明的事实是错误的,以及假设与已经证实的事实相抵触,从而证明该事实是正确的。
反证法在数学中有着广泛的应用,主要用于证明某一主张是正确的,而不是推测一个假设来证明它是正确的。
例如,假设x是一个正整数,我们可以利用反证法来证明x的立方数是奇数。
首先,我们假设x的立方数不是奇数,即x的立方数是偶数。
因此,结论就是x必须是奇数。
反证法也可以用于解决一些平面几何问题,以证明某些图形是否满足某一条件。
例如,假设有一个几何图形,我们可以利用反证法来证明它是否满足直角三角形的条件。
我们首先假设该几何图形不满足直角三角形的条件,即它的三角形的三个角不全为直角,而是有些角是钝角。
如果一个三角形有两个钝角,则这个三角形的三条边的长度都不相等,由此可以得出结论,即原来假设的几何图形不满足直角三角形的条件是错误的,因此原来假设的几何图形确实满足直角三角形的条件。
除了上述应用,反证法也被广泛应用在其他领域,如政治经济学、法律学和数理统计学等,以及一些哲学论文中,用来证明论文或定理的正确性。
由于反证法在数学中具有重要的意义,因此,在数学教学和学习过程中,需要重视反证法的理解和运用。
首先,数学教师应注意在教授定理的同时,详细介绍反证法的基本概念,培养学生对反证法的正确认识。
其次,教师应提供大量的实际例子,以说明反证法的运用,让学生更加熟练的掌握反证法的用法,同时提高学生对反证法的敏感性。
最后,在数学课堂上,教师应提供反证法的几何实验,一方面可以让学生进行反证法的证明,另一方面可以使学生在熟悉实际情况的基础上,熟悉抽象的概念,将概念转化为证明定理的能力培养灵活起来。
总之,反证法是一种充满智慧和创造力的推理方式,可以有效的帮助证明某一特定观点的正确性,是一种在数学中重要的推理方法。
数学教师通过多种方式培养学生对反证法的理解,实际操作能力更加娴熟,从而增强学生对定理的证明能力。