一元一次不等式组的应用典型例题
中考复习 一元一次(组)不等式应用(四大类型)
中考复习一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.14.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?培优特训专项2.2 一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【答案】D【解答】解:(x﹣1)位同学植树棵数为9(x﹣1),∵有1位同学植树的棵数不到8棵.植树的总棵数为(7x+9)棵,∴可列不等式组为:.故选:D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【答案】D【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人【答案】C【解答】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6﹣5(x﹣1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟【答案】B【解答】解:设这人跑了x分钟,则走了(18﹣x)分钟,根据题意得:210x+90(18﹣x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米【答案】D【解答】解:设这次爆破的导火索需要xcm才能确保安全,•7≥70x≥103.这次爆破的导火索至少103cm才能确保安全.故选:D.6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?【答案】(1)骑车用了1.25小时,步行用了0.25小时,(2)大于15km/h.【解答】解:(1)设他骑车用了x小时,步行用了y小时,依题意得:,解得,答:他骑车用了1.25小时,步行用了0.25小时,(2)设骑车的平均速度为vkm/h,依题意得:1.25v+5×0.25>20,解得:v>15,答:骑车的平均速度大于15km/h.7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.【答案】(1)10秒(2)12秒开始(3)5秒【解答】解:(1)设经过x秒小颖追上小华,由题意得7x﹣6x=10解得:x=10答:经过10秒小颖追上小华.(2)设经过y秒后,小颖到终点的距离不超过16米,由题意得0≤100﹣7y≤16解得:12≤y≤14答:从12秒开始,小颖到终点的距离不超过16米.(3)设小颖追上小华之前,经a秒小颖和小华相距5米,7a﹣6a=10﹣5解得:a=5设小颖追上小华之后,经b秒小颖和小华相距5米,7b﹣6b=10+5解得:b=15(不合题意,舍去)答:经5秒小颖和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折【答案】B【解答】解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折【答案】D【解答】解:设可以打x折,根据题意可得:500×﹣400≥400×10%,解得:x≥8.8,故选:D.10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?【答案】(1)大瓶饮料500瓶,小瓶饮料300瓶(2)50瓶【解答】解:(1)设该超市购进大瓶饮料x瓶,小瓶饮料y瓶,依题意,得:,解得:.答:该超市购进大瓶饮料500瓶,小瓶饮料300瓶.(2)设小瓶饮料作为赠品送出m瓶,依题意,得:(5﹣3)×500+(3﹣2)×100+(3﹣0.5﹣2)×(300﹣100﹣m)﹣2m=1075,解得:m=50.答:小瓶饮料作为赠品送出50瓶.11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)【答案】(1)赚250元钱(2)不低于4.5元/市斤【解答】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100×(4﹣2.8)+100×(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100×(1﹣10%)a+100×4.5﹣600≥250,解得:a≥≈4.44;答:给青菜定售价为不低于4.5元/市斤.考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?【答案】(1)1400 (2)三种方案(3)当a=25时,W最大,此时购进自行车A、自行车B各25台.【解答】解:(1)设自行车专卖店购进自行车Ax辆,自行车By辆,依题意得,解得,所以,20×(250﹣200)+10×(200﹣160)=1400(元).答:自行车专卖店在该买卖中赚了1400元;(2)设购买自行车Aa台,则购买自行车B(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买自行车A23台,则购买自行车B27台;②购买自行车A24台,则购买自行车B26台;③购买自行车A25台,则购买自行车B25台.(3)设自行车专卖店赚钱数额为W元,当a=23时,W=23×(250﹣200)+27×(200﹣160)=2230;当a=24时,W=24×(250﹣200)+26×(200﹣160)=2240;当a=25时,W=25×(250﹣200)+25×(200﹣160)=2250;综上所述,当a=25时,W最大,此时购进自行车A、自行车B各25台.故答案为:1400.13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.【答案】(1)一套课桌凳和一套办公桌椅的价格分别为120元、200元(2)略【解答】解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元;(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000,解得:,∵m为整数,∴m=22、23、24,有三种购买方案:方案一方案二方案三课桌凳(套)440460480办公桌椅(套)22232414.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.。
一元一次不等式15道应用题
一、综合题(共15题;共160分)1.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案哪种租车方案费用最低,最低费用是多少》2.(2015•攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件!(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.|(1)每个气排球和每个篮球的价格各是多少元(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低最低费用是多少元》4.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案&5.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要万元,购买2台电脑和1台电子白板需要万元.(1)求每台电脑、每台电子白板各多少万元(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低./"6.某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.^7.师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
一元一次不等式(组)的应用经典题目分类总结
类型一利用一元一次不等式解决简单的实际问题1.七年级一班在创意市场中共售出了20件作品,其中售出的男生的作品不比女生的作品多.男生的作品的平均售价为20元/件,女生的作品的平均售价为30元/件,总售价少于510元,则售出了件男生的作品.2.有3人携带会议材料乘坐电梯,这3人的体重共210 kg,每捆材料重20 kg,电梯的最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下,最多还能搭载捆材料.3.某种品牌毛巾原零售价为每条8元,凡一次性购买3条以上(含3条),可享受商家推出的两种优惠销售办法中的任意一种,第一种:其中三条按原价,其余按7折优惠;第二种:全部按原价的8折优惠.若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买条毛巾.4.某人上午8时以每小时100km的速度自驾从甲地出发赶往乙地,(中途休息、用餐共1小时)到达乙地时已超过当天下午2时45分,但不到3时,则甲、乙两地的距离x 的范围是.5.某射击运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的纪录,那么他第7次射击不能少于( )A. 6环B. 7环C. 8环D. 9环6.某人要在18min内通过一段2.1 km长的路程,已知他每分钟走90m.若跑步每分钟可跑210m,则此人通过这段路程时,至少要跑( )A.-3 minB. 4 minC. 4.5 minD. 5 min7.某市自来水公司的收费标准:若每户每月用水不超过5立方米,则每立方米收费2. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月的用水量至少是( )A.11立方米B. 10立方米C. 9立方米D. 5立方米8.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x 名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本类型二:分段计费1.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)(1)求m、n的值;(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?类型三决策性问题1.某游泳馆今年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元; 方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数一为x(x为正整数),方式一的总费用为y元,方式二的总1费用为y元.2(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?x>时,小明选择哪种付费方式更合算?(3)当202.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张办公桌送三把椅子;乙厂家:办公桌和椅子全部按原价8折优惠,现某公司要购买3张办公桌和若干把椅子,若x≥).购买的椅子为x把(9(1)分别用含x的式子表示到甲、乙两个广家购买桌椅所需的金额.(2)该公司到哪个厂家购买更划算?3.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?4.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?类型四方案选择问题1.银杏树具有观赏、经济、药用等价值,深受人们喜爱.在银杏种植基地有A、B个品种的树苗出售,已知A种树苗的单价比B种树苗高20元,买1株A种树苗和2株B种树苗共需200元.(1) A、B两种树苗的单价分别为多少元?(2)为扩大种植,某农户准备购买A、B两种银杏树苗共36株,且A种树苗的数量不少于B种树苗数量的一半,请求出费用最省的购买方案.2.为绿化校园,我区某学校计划购进甲、乙两种树苗共36棵,已知甲种树苗每棵50元,乙种树苗每棵40元.(1)若购进甲、乙两种树苗刚好用去1640元,问购进甲、乙两种树苗各多少棵?(2)若购买甲种树苗的数量不少于乙种树苗的数量2倍,请你选出一种费用最省的方案,并求出该方案所需费用.3.甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.4.某童装厂现有甲种布料38米,乙种布料26米。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
(47)列不等式组解应用题专项练习60题(有答案)
列一元一次不等式组解应用题60题(有答案)1.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.2.某校初三(5)班同学利用课余时间回收钦料瓶,用卖得的钱去购买5本大小不同的两种笔记本,要求总钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表:大笔记本小笔记本价格(元/本) 6 5页数(页/本) 100 60根据上述相关数据,请你设计一种节约资金的购买方案,并说明节约资金的理由.3.某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车___辆.当租用64座客车时,未坐满的那辆车还有___个空位(用含x的代数式表示).由题意,可得不等式组:_____解这个不等式组,得:______.因此,需租用48座客车_________辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?4.某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?5.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.6.2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.级数全月应纳税所得额税率1 不超过1500元的部分5%2 超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%………依据草案规定,解答下列问题:(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.7.某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?8.某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?A型B型8 6价格(万元/台)200 180月处理污水量(吨/月)9.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?10.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.11.在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地22 20 20运往D地(元/立方米)20 22 21运往E地(元/立方米)在(2)的条件下,请说明哪种方案的总费用最少?12.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m 的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.13.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?14.某工厂第一次购买甲种原料60盒和乙种原料120盒共用21 600元,第二次购买甲种原料20盒和乙种原料100盒共用16 800元.(1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.15.小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本小笔记本价格(元/本) 6 5页数(页/本)100 6016.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?17.2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B 两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?18.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?19.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?20.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?21.2010年1月1日,全球第三大自贸区﹣中国﹣东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.24.为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?25.师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?26.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.27.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?28.君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?29.为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?30.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.31.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?32.今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?33.初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.34.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.35.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲45乙7536.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克37.某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包10个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?38.某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?(2)甲型号运动鞋每双售价为260元,乙型号运动鞋每双售价为220元,要满足进鞋资金不超过17500元,当100双运动鞋全部售出后,利润不低于7800元,鞋店经理有几种进货方案?39.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?40.某学校科技活动小组制作了部分科技产品后,把剩余的甲乙两种原料制作100个A、B两种类型号的工艺品.已知每制作一个工艺品所需甲乙两种原料如右表,已知剩余的甲种原料29千克,乙种原料37.2千克,假设制作x个A型工艺品.型号A型B型千克/个原料甲0.5 0.2乙0.3 0.4(1)求出x应满足的不等式组的关系式;(2)请你设计A、B两种型号的工艺品的所有制作方案;(3)经市场了解,A型工艺品售价25元/个,B型工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并指出哪种制作方案,使销售总额最大,求出最大销售总额.41.商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元.(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买总金额不能超过450元,请你帮公司设计购买方案.42.“六•一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?43. 红旺商店同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:A 商品B 商品进价120元/件100元/件售价138元/件120元/件(1)求本次红旺商店购进A、B两种商品的件数;(2)第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?44. 我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获得(百元)12 16 10(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.45.为迎接市运动会,某单位准备用800元订购10套下表中的运动服.运动服价格(元/套)男装甲100男装乙80女装50。
一元一次不等式组应用题专题
• • • • •
解:依题意,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,则 (1)W=200x+170(70﹣x)+160(40﹣x)+150(x﹣10)=20x+16800. 解 得10≤x≤40.(2分) 由
• • • • • • • • • • •
(2)由W=20x+16800≥17560, ∴x≥38 . ∵ 10≤x≤40 ∴38≤x≤40,x=38,39,40. ∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10)=(20﹣a) x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达 到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达 到最大.(8分)
• 3、(2013•湛江)某工厂现有甲种原料280kg, 乙种原料190kg,计划用这两种原料生产A,B 两种产品50件,已知生产一件A产品需甲种原料 7kg、乙种原料3kg,可获利40可获利350 元. • (1)请问工厂有哪几种生产方案? • (2)选择哪种方案可获利最大,最大利润是多 少?
• • • •
解:(1)60﹣x﹣y; (2)由题意,得900x+1200y+1100(60﹣x﹣y)=61000, 整理得y=2x﹣50. (3)①由题意,得P=1200x+1600y+1300(60﹣x﹣y) ﹣61000﹣1500, • 整理得P=500x+500. • ②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等
一元一次不等式组的实际应用
品,按原价销售;若一次性购买超过 5 件,按原价的八折进行销售.小明现有 29 元,则最多可
购买该商品
件.
12、甲乙两队进行篮球对抗赛,比赛规定每队胜一场得 3 分,平一场得 1 分,负一场得 0
分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,得分不低于 24 分,甲队至少胜了
பைடு நூலகம்
场.
13、某次数学测验中有 18 道选择题,评分办法:答对一道得 6 分,答错一道扣 2 分,不答得 0
33 0 的。
16、解:设打 x 折,根据题意1200x 800 5% 得解得 x≥7.所以最低可打七折. 800
17、解:∵每次钉入木块的钉子长度是前一次的 1 .已知这个铁钉被敲击 3 次后全部进入木块(木 3
块足够厚),且第一次敲击后铁钉进入木块的长度是 acm,根据题意得:敲击 2 次后铁钉进入木
9x 3x
(50 (50
x)4 360 解得:30≤x≤32,∵x x)10 290
为整数,∴x=30,31,32,∴有
3
种生产方案:方案
1,A 产品 30 件,B 产品 20 件;方案 2,A 产品 31 件,B 产品 19 件;方案 3,A 产品 32 件, B 产品 18 件.答案为:3
案是:6.
6、解析:设有 x 名儿童,则有牛奶(5x+18)盒,则若每人分 6 盒,则最后一个人分得的数量是
精心整理
精心整理
(5x+18)-6(x-1).根据题意得:
24 24
x x
3 6
解得:18<x≤21.则这个儿童福利院的儿童最少有
19
人,最多有 21 人.故答案是:19,21.
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
定 一元一次不等式组应用题
8.3 一元一次不等式组应用题一.分配问题1、某校住校生若干人,住若干间宿舍,,若每间住4人,则余20人无宿舍若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。
2、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果少于3个,问有几个孩子?有多少只苹果?4、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数有多少人?。
5、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?二、方程与不等式1.为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?2.为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?3、儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元.问该店应该怎样安排进货,才能使总获利最大?最大总获利为多少元?三、方案问题1、2012年某市某县筹备40周年市庆,园林部门决定利用现有的3490盆甲种,两种花卉和2950盆乙种花卉搭配A B园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?2.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲,乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,•乙种行李每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可能的租车方案;(2)如果甲,乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种租车方案.3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B 种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.求有几种生产方案?哪种方案所获利润最大?最大利润是多少?4 .为打造“书香校园”某学校计划用 1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?5.(12分)某商场从厂家直接购进A,B,C三种不同型号的洗衣机108台,其中A种洗衣机的台数是C种的4倍,购进三种洗衣机的总金额不超过147000元.已知A,B,C三种型号的洗衣机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买C种洗衣机多少台?(2)若要求A种洗衣机的台数不超过B 种洗衣机的台数,问有哪些购买方案?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?7.(12分)某公交公司有A,B型两种客车,它们的载客量和租金如下表:红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.8.某企业在生产过程中产生大量的污水,为了保护环境,该企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买污水处理设备的资金不多于107万元,设购买A型设备x 台(x≥1).(1)请你为该企业设计出所有的购买方案;(2)若该企业每月产生的污水量为2060吨,为了能够及时处理掉每月所产生的污水量,同时也尽可能减少购买设备的资金,应选择哪种购买方案?为什么?9.(8分)上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.(1)该旅游团人住的二人普通间有_________间(用含x的代数式表示);(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?10.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?11.(2008,山东,8分)为了美化校园环境,建设绿色校园,•某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不.已知种植草少于种植树木面积的32皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?四、销售问题1.(表格信息题)青青商场经销甲,乙两种商品,甲种商品每件进价15元,•售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲,乙两种商品共100件恰好用去2700元,求能购进甲,•乙两种商品各多少件?(2)该商场为使甲,乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”期间,该商场对甲,乙两种商品进行如下优惠促销活动:按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,•第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲,•乙两种商品一共多少件?(通过计算求出所有符合要求的结果)2.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲,乙两种货车共8辆将这批水果全部运往外地销售,•已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲,乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,•则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?3.“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.某荷藕加工企业已收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,•每天可加工8•吨,•每吨可获利1000元;如果进行精加工,每天可加工0.5吨,每吨可获利5000元.•由于受设备条件的限制,两种加工方式不能同时进行.(1)•设精加工的吨数为x•吨,•则粗加工的吨数为_____•吨,•加工这批荷藕需要_____天,可获利______元(用含x的代数式表示);(2)为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,•粗加工的吨数x在什么范围内时,该企业加工这批荷藕的获得不低于80000元?并说明理由.。
一元一次不等式的应用题
一元一次不等式的应用题一元一次不等式是数学中的重要概念之一,其在实际问题中的应用十分广泛。
本文将通过具体的应用例题来介绍一元一次不等式的应用。
请参考以下内容:案例一:商品打折小明在某商场看中了一双原价为200元的鞋子,商店正好在进行优惠活动,打折力度为n折。
小明想知道如果商品可以享受到2折优惠,他需要支付多少钱?解析:根据题意,我们可以建立如下一元一次不等式:n * 200 ≤ 200,其中n表示折扣数。
通过对不等式进行运算,得到n ≤ 1/10。
由于n是折扣数,因此n必须为正数。
因此,小明实际上需要支付的金额不能低于0,所以他最多享受到1折的优惠。
案例二:车辆超速违章某城市的高速公路对车辆速度进行限制,标识要求车辆速度不得超过v km/h。
小红驾驶汽车行驶在某路段上,她想知道自己的车速是否超过了限制。
解析:根据题意,我们可以建立如下一元一次不等式:v - x ≥ 0,其中v表示限速值,x表示小红的车速。
如果不等式成立,说明小红未超速;如果不等式不成立,则说明小红超速了。
案例三:裁剪布料小张在裁剪布料时,从一块长方形的布料中切割出一块长为x米、宽为y米的布料。
他想要知道是否有足够的布料满足要求。
解析:根据题意,我们可以建立如下一元一次不等式:x ≤ 长度,y ≤ 宽度,其中x表示所需的布料长度,y表示所需的布料宽度。
如果不等式成立,说明有足够的布料满足要求;如果不等式不成立,则说明没有足够的布料满足要求。
通过上述案例,我们可以看到一元一次不等式在实际问题中的应用。
无论是商品打折、车辆超速还是裁剪布料,一元一次不等式都能帮助我们解决具体问题,找到满足条件的解答。
总结:一元一次不等式的应用包括但不限于商品打折、车辆超速违章、布料裁剪等。
通过建立一元一次不等式,并利用不等式的性质进行数学运算,我们可以得出所需的答案。
在实际问题中,我们需要根据题意确定不等式的形式以及解的意义,从而找到正确的解法。
不等式的应用不仅能够帮助我们解决实际生活中的问题,还可以提升我们的逻辑思维能力和数学运算能力。
一元一次不等式组应用题汇总
一元一次不等式组应用题汇总1、某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型 3 20 48B型 2 3 6 政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.2、学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?3.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
4.惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.① 3名驾驶员开甲种货车,6名驾驶员开乙种货车,能否将救灾物资一次性地运往灾区?②要使救灾物资一次性地运往灾区,共有哪几种运货方案?5.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?6. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.7.某超市销售甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.8. 某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
一元一次不等式应用题
一元一次不等式应用题例1.为迎接世博会,园岭部门决定利用现有的3600盆甲种花和2900盆乙花搭配,A ,B两种造型共50个,搭配每个造型所需花盆如下造型甲/盆乙/盆A 90 30B 40 100(1)符合题意的搭配方案有几种(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型1200元,则(1)中那种方案成本最低要把列式写出来要用一元一次不等式解最佳答案第一题:设A造型有x个(0≤x≤50),则B造型有50-x个,根据题意列不等式组得:90x+40(50-x)≤360030x+100(50-x)≤2900计算得:30≤x≤32(共有30+20,31+19,32+18三种方式)符合题意的搭配方案有3种第二题算一下就是了30*1000+20*1200=5400031*1000+19*1200=5380032*1000+18*1200=53600显然是32+18了例1.某工厂每年要用某种电子元件5000个来组装赖机,这种元件每次不论进货多少个都要付手续费400元,进场后每个元件存放一年的保管费是2元。
如果所需原件一进货,则只需付一次手续费,但保管费较高;如多次进货,则可减少保管费,但手续费增多。
假定每次进货的元件个数相等,为尽量减少手续费和保管费的总支出,那么该厂每年进货次数是几次是总支出最少?(不及购买元件的其他费用)设每年进货次数为x次据题意,有f(x)=(5000/x)*2+400x (x>0,且为整数)化简为f(x)=10000/x+400x根据不等式性质,有10000/x + 400x ≥ 2√(10000/x * 400x) = 4000(当且仅当10000/x = 400x ,即x=5 时f(x) 取最大值)例2.“5、1节“某单位组织职工旅游,单位规定每辆大客车必须乘坐相同的人数,每辆车最多坐32人,则如果每辆车坐22人则余1人,如果去掉一辆车,则每辆车乘坐人数相同,问该单位有多少名职工?解:设开始计划用大客车x辆,则总人数为(22x+1)人,后来少用一辆则(x-1)辆,那么每两车只坐22人显然不行,所以有:22x+1>=23(x-1).因为:每辆车最多坐32人,所以:22x+1<=32(x-1),两不等式组成不等式组,解得:3.3<=x<=24.去掉一辆车,则每辆车乘坐人数相同,那么:(22x+1)/(x-1) 得到每辆车坐的人,这一定是整数,所以(22x+1)一定是(x-1)的整数倍,22x+1=22(x-1)+23 ,22(x-1)是(x-1)的整数倍,那么只要23是(x-1)的整数倍,那么x-1是23 的约数,所以x-1=1,或x-1=23x=2或x=24,因为3.3<=x<=24 ,所以x=24总人数:24*22+1=529人例3. 某校男生若干名住校,若每间宿舍住4名,则还剩下20名未住下,若每间宿舍住8名,则一部分宿舍未住满,且无空房.该校共有住校男生____名.(1992年"希望杯"试题) 解设该校有男生宿舍x间,那么住校男生有(4x+20)名.因为,每间宿舍住8名,一部分未住满且无空房,所以,x间宿舍中必有一宿舍住的人数至少为1人,至多为7人,则因为x是正整数,∴x=6,4x+20=44.故该校共有住校男生44名.例4. 含有浓度分别为5%,8%,9%的甲,乙,丙三种食盐水60克,60克,47克,现在配制浓度为7%的食盐水100克.问甲种食盐水最多可用多少克?最少可用多少克?( 1993年吉林省初中数学竞赛试题)解:设需要甲、乙、丙食盐水分别为x克,y克,z克,依题意列方程与不等式混合组,得由①、②得:y=200-4x,z=3x-100.把y=200-4x代入④得:35≤x≤50.⑥由③、⑥、⑦得:35≤x≤49.答:甲种食盐水最多可用49克,最少可用35克.例5.下岗阿姨利用自己一技之长开办了"爱心服装厂"计划生产甲,乙两种幸好的服装共40套投放市场.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元(1)问服装厂有哪几种生产方案(2)按照(1)中方案生产,服装全部售出至少可获多少利润?甲最大为18有三种利润为274¥例6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
一元一次不等式组应用题及答案
一元一次不等式组应用题及答案一元一次不等式应用题解决实际问题的步骤:1.审题,找出不等关系;2.设未知数;3.列出不等式;4.求出不等式的解集;5.找出符合题意的值;6.作答。
一.分配问题:1.一定数量的花生要分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.一定数量的书要分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
1)如果有x间宿舍,那么可以列出关于x的不等式组:4x ≤ n - 196y。
n2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。
已知XXX步行速度为90米/分,跑步速度为210米/分,问XXX至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
七年级下一元一次不等式(组)的典型应用题归纳
(归纳)七年级下数学一元一次不等式(组)的典型应用题一.列不等式解应用题类型一例1.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:练习一:1.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?2.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?类型二例2.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1).若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2).根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?练习二:1.国庆期间两名家长计划带几个孩子去旅游,他们联系了两家旅行社,报价均为每人500元,经协商甲旅行社的优惠条件是:两名家长全额收费,孩子均按7折收费;乙旅行社的条件是:家长和孩子均按8折收费。
假设两名家长带领x名孩子去旅游,他们应选择哪家旅行社?类型三例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?练习三:1、某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价元,售价元。
一元一次不等式典型例题
一元一次不等式典型例题类型一:一元一次不等式的解集问题1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况1.若关于x的一元一次不等式组无解,则a的取值范围是.2.已知不等式组无解,则a的取值范围是3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围1.若不等式的解集为x>3,则a的取值范围是2.若关于x的不等式的解集为x<2,则a的取值范围是.3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=类型四:一元一次不等式组有解求未知数的范围1.若有解,则a的取值范围是2.若关于x的不等式组有实数解,则a的取值范围是3._______类型五:一元一次不等式组有整数解求范围1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是.3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.7.已知关于x的不等式组有四个整数解,求实数a的取值范围.类型六:一元一次不等式(组)应用题1.分配问题(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。
中小学数学_一元一次不等式应用题 答案解析100道【经典数学资料系列】
一元一次不等式(组)应用题练习及答案1.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。
(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。
经过预算,本次购买机器所耗资金不能超过34万元。
甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若使总收入不低于15.6万,则最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站到A窗口队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)?(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).AB5.小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,已知小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?6.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?7.学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了1.8万册。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组的应用》典型例题例题1 车站有待运的甲种货物1530 吨,乙种货物1150 吨,原计划用50 节A,B两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为万元,每节B型货箱的运费为万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排A,B 两种货箱的节数,共有哪几种方案请你设计出来,并说明哪种方案的运费最少例题2 幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果例题3 某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10 名学生,已知笔记本的单价是元,钢笔的单价是8 元,且购买奖品的金额不超过70 元.问至多能买几支钢笔例题4 某宾馆底楼客房比二楼少5 间,某旅游团有48 人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3 人,房间不够,每间4 人,又有房间没有住满,问宾馆底楼有客房几间例题5 幼儿园有玩具若干件,分给小朋友,如果每人3 件,那么还余59 件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具多少个小朋友例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件•已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案请你帮助设计.例题7 一条铁路线上A, B,C,D,E各站之间的路程如图所示,单位为千米.一列火车7: 30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D沐E站)的铁路线上., SO ( 50 t70 , 60 J.4 H C DE例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分代B,C三类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60 元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分•问在第五次测验时,这两个学生的分数各是多少(满分100 分,得分都是整数)例题11 大小盒子共装球99 个,每个大盒装12 个,小盒装5 个,恰好装完,盒子个数大于10,问:大小盒子各多少个参考答案例题1分析这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
解答设需要A型车厢x节,35x 25(50 x) 1530由题意得15x 35(50 x) 1150解得28 x 30,因为x为整数,所以x取28, 29,30,即有3种方案:(1)A型28节,B型22节;(2)A型29节,B型21节;(3)A型30节, B型20节,由题意知,运费y 0.5x 0.8(50 x) 0.3x 40,当x 30时,y取最小值,即A型车厢20节,B型车厢20节时运费最少.例题2分析设有x个小朋友,则苹果数为3x 8 •如果每人分5个,因为最后一个小朋友的苹果数不足3个,所以3x 8应在5(x 1)和5(x 1) 3之间,可得不等式组.解答设幼儿园大班共有x个小朋友,根据题意得5(x 1) 3x 8, (1)3x 8 5(x 1) 3. (2)由(1)得5x 5 3x 8,2x 13,x 137 ;由(2)得3x 8 5x 5 3, 2x 10,x 5 .所以不等式组的解集为5 x 132又因为x为整数,故x 6 .所以,有6个小朋友,共有苹果3 X 68 = 26 (个).例题3分析因为每人只获1件奖品,故笔记本和钢笔的数量和是10,总金额不超过70元.根据题意,可列出下列由方程和不等式组成的式子.解答设购买x本笔记本,y支钢笔,依题意可得根据题意,得5x4x4848,依题意,又可得3(x 5) 48 4(x 5) 48解答设小朋友x人,则有3x 59 5(x 1) 3x 59 5xx y 10, (1)3.5x 8y 70.⑵由(1)得x 10 y , (3)将(3)代入(2)得3.5(10 y) 8y 70,解得y 70.9又y是正整数,所以y的最大值是7,即至多能买7支钢笔.例题4解答设底楼有x间客房,则二楼有(x+5)间客房,••• 9v x v 12.7v x v 11.故x =10.答:底楼有10间客房.说明本题是列不等式解应用题,在确定设未知数后,关键是找出不等式关系和列出不等式,为此须认真斟酌关键词语如不够”和没住满”的含义.例题5分析此问题中有两个未知数,且没有等量关系,有不等关系,因此可考虑用不等式组来解.解(1),得x 32,解(2),得x 29.5,• 29.5 x 32.••• x 为整数,• x 30,31.此时3x 59 149,152.答:幼儿园有小朋友30人,玩具149件;幼儿园有小朋友31人,玩具152件.说明利用一元一次不等式组解应用题的步骤与列一元二次方程组解应用题大体相同,不同的是后者寻求的是等量关系,列出的是等式,前者寻求的是不等关系,列出的是不等式,并且解不等式组所得结果通常为一解集,需从解集中找出符合题意的答案.例题6 解答 ( 1 )根据题意,x满足不等式组:9x 4(50 x) 3603x 10(50 x) 290( 2)解不等式组,得30 x 32.因为x 是整数,所以x 30,31,32因此生产方案有三种:生产A种产品30件、B种产品20件;或生产A种产品31件、B种产品19件;或生产A种产品32件、B种产品18件.例题7 分析如果设这列火车行驶至DE 这段铁路线上任意一处(不包括D,E )所经过的时间为x,那么就能用x的一次式表示列车所经过的路程•根据这个路程应大于(80+ 50+ 70) km,且小于(80+ 50+ 70 + 60) km,就可列出不等式组,解出x的取值范围•再根据列车出发的时间,就能求出列车何时行驶在DE 这段铁路线上.解答设这列火车行驶至DE这段铁路线上任意一处(不包括D,E )所经过的时间为x ,则相应所经过的路程为80(x 0.2) km.依题意,得80(x 0.2) (80 50 70 60), (1)80(x 0.2) (80 50 70). (2)解不等式( 1),得x 3.45.解不等式( 2),得x 2.7.•••不等式组的解集是2.7 x 3.45 .+ =(时),+=(时).答:这列火车行驶在DE这段铁路线上的时间是10: 12至10: 57.说明列不等式组时,要注意单位的统一,否则会影响表达式的正确性.例题8 解答 (1)去年备有和今年生产的车轮共有1000+ 1500X 1228000 (只),(2) 设至少超过 x 次时, 购买A 类年票比较合算,则有不等式组60 40 10x2x 120, 3x 120,120,解得30, 2畤其公共解集为x30 . 共可装配自行车的辆数为28000十姑 14000 (辆).(2)该厂全年生产自行车的辆数范围是:1000 12 全年生产自行车辆数1200 12, 即12000全年生产自行车辆数14400 .(3)今年订购自行车14500辆,可知供不应求,以最快生产速度也不能满 足社会要求,得扩大生产能力.(4) 由上分析可知 12000 500 a 14000 500, •••600 (万元) a 700 (万元).说明 本例中14400辆是可以生产出,但实际上原料供应只能保证生产 14000辆,故计算a 的范围时只能用14000辆参与计算.例题9分析 讨论某次经济行为是否合算,即要看这种方式与其他方式比 较是否花费最少,故本题(2)要转化为用不等式组的知识求解.解答 (1)因为80 120,所以不可能选A 类年票. 若选B 类年票,则8^-6010 (次);2若选C 类年票,则辽凹13 (次);3 80若不购买年票,则8 (次).10所以计划用80元花在该园林的门票上时,选择购买 C 类年票的方法进入园林的次数最多,为13次.所以,一年中进入该园林至少超过30次时,购买A类年票比较合算.说明本例展示的是生活中的一件小事,但暗示我们,生活中无处不存在数学的身影,渗透在生活中的一个个细节中.例题10分析此例中的未知量较多(如两学生前四次的平均分数,第五3212 5 5由①得x 设亚卫 5y 3 12 12 ,则y 求不定方程整数解的 解答 设大、小盒分别有x 个、y 个,根据题意得: 12x 5y 9 ① x y 10 ② 15 时,x 2,即 2 15. 次测验的分数等),且没有足够的等量关系,难以列方程组求解•但题中蕴含两 个不等关系:平均分低于90分;满分100分,即测验分数不超过100分•于是 考虑利用不等式的有关知识求解. 解答 设其中某个学生前4次的平均分为x 分,第5次测验的成绩为y 分, 依题意有4^_y 90,即y 450 4x . 5 由第5次测验的成绩高于90分,而又不大于100分,得90 450 4x 100, 解得 87.5 x 90, 因为x 为整数,故x 88或89. 又已知两个学生平均分数不等,故前 4次的平均分一个为88分,另一个为 89分,第5次测验一个学生的成绩为98分,另一个的成绩为94分. 说明 禾I 」用不等式(组)解应用题,其步骤与列方程(组)解应用题大体相 同.不同的是,后者探求等量关系,列出的是等式,而前者寻求不等关系,列出 的是不等式,并且解不等式(组)得到的结果通常为一解集,需从解集中找出符 合题意的答案. 例题11分析 问题中有两个未知量,只有一个等量关系,另外还有一个 附加条件,这是一个求有条件的不定方程整数解的问题, 种方法是观察系数特征,用试验的办法求解.由①知y 为奇数,且x 辔8专③ ••• x 为自然数,••• 12 (5y 3).通过试验可得y 3时,x 7, 但x y 10与x y 10矛盾,故舍去,也可以用逐步代换的方法(常规方法)求解如下:2 3 5 3 1再设,贝U 2 1 .5 2 2数)•由于x,y均为自然数,即7 5t 0,12t 3 0.1 2• ••— t 1 . ••• t 0 或1 .4 5当t 1时,x 7,y 3,但与x y 10矛盾,舍去.当t 1时,x 2, y 15 ,符合题意.说明不定方程组可以通过消元转化为二元一次不定方程求解,如中国古代百鸡问题” 孙子定理” 鸡兔同笼”等,都属于这一类求解问题.。