第3章_动量守恒定律和能量守恒定律集美大学物理答案
大学物理3章答案-7页精选文档
第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。
已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。
求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。
解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。
当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。
解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。
大学物理动量守恒和能量守恒习题讲解
第三章 动量守恒定律和能量守恒定律
动量守恒和能量守恒习题课选讲例题
物理学教程 (第二版)
例 以下四种说法中,哪一种是正确的? (1)作用力与反作用力的功一定是等值异号.
(2)内力不能改变系统的总机械能.
(3)摩擦力只能作负功. (4)同一个力作功在不同的参考系中,也不 一定相同.
Ff m
dv
Fn m
v
2
Ff
m
en R
et
o
由
v
v
0
dv v
π
πR
R
0
d s 得 ln
W
v v0
1 2
Fn
π
2 mv0
v v0e
摩擦力 的功
(e
2 π
1) 0
第三章 动量守恒定律和能量守恒定律
动量守恒和能量守恒习题课选讲例题
动量守恒和能量守恒习题课选讲例题
物理学教程 (第二版)
例
一质量为 m 的小球,以速率为v0 、与水平面夹
角为60°的仰角作斜抛运动,不计空气阻力,小球从抛
出点到最高点这一过程中所受合外力的冲量大小
为
3 m v 0 2 ,冲量的方向是 沿 解: I mv mv0
1
y 轴负方向 .
物理学教程 (第二版)
程中所作的功为:
( A) 67 J , (B) (D ) 91 J , 67 J
(A)
( C ) 17 J ,
分析: F r W
( 4 i 5 j 6 k ) ( 3i 5 j 9 k )
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
(完整版)大学物理学(课后答案)第3章
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
2024高考物理动量守恒定律习题集及答案
2024高考物理动量守恒定律习题集及答案说明:根据您的要求,我将根据提供的标题写一篇关于2024高考物理动量守恒定律习题集及答案的文章。
以下是正文内容:2024高考物理动量守恒定律习题集及答案1. 引言物理是高中阶段的重要科目之一,其中动量守恒定律是一个基础概念,具有重要的物理意义。
为了帮助广大高考学子更好地理解和掌握动量守恒定律,本文整理了一套2024高考物理动量守恒定律习题集及答案,旨在帮助学生进行针对性的复习与练习。
2. 动量守恒定律简介动量守恒定律是物理学中的基本定律之一,其表述为:在一个封闭系统中,当系统内部没有外力作用时,系统的总动量保持不变。
换句话说,对于一个孤立系统而言,系统中各个物体的动量之和在任何时刻都保持不变。
3. 习题集及答案(以下是一些关于动量守恒定律的典型考题,答案仅供参考。
)3.1 单个物体的动量守恒问题(题目)一质量为m的物体A以速度V撞向质量为M的物体B,碰撞发生后,物体A和物体B分别以速度v1和v2分开。
如果碰撞是完全弹性碰撞,请计算物体A和物体B的速度变化。
(答案)设物体A的速度变化为Δv,物体B的速度变化为ΔV。
根据动量守恒定律,有m * Δv + M * ΔV = 0。
(详细推导步骤省略)可得:Δv = (M / m) * ΔV,即物体A的速度变化与物体B的速度变化成反比。
3.2 多个物体的动量守恒问题(题目)一个质量为m₁的物体A和一个质量为m₂的物体B以相同的速度v撞击在一起,碰撞发生后,物体A向右偏移,并以速度v₁向右反弹,物体B向左偏移,并以速度v₂向左反弹。
已知 m₁ = 2 kg,m₂ = 3 kg,v = 4 m/s,v₁ = 6 m/s,请问v₂的大小是多少?(答案)设v₂为物体B反弹时的速度。
根据动量守恒定律,有m₁ * v + m₂ * (-v) = m₁ * v₁ + m₂ * (-v₂)。
可得:-2 * 4 + 3 * 4 = 2 * 6 + 3 * (-v₂)。
大学物理第三章部分答案知识讲解
大学物理第三章部分答案知识讲解大学物理第三章部分答案大学物理部分课后题参考答案第三章动量守恒定律和能量守恒定律选择题:3.15—3.19 A A D D C计算题:3.24 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50kg 的重物,结果是A 船停了下来,而B 船以3.4m/s 的速度继续向前驶去。
A 、B 两船原有质量分别为0.5?103kg 和1.0?103kg ,求在传递重物前两船的速度。
(忽略水对船的阻力)解:(1)对于A 船及抛出的重物和B 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设A 船抛出重物前的速度大小为v A 、B 船抛出重物前的速度大小为v B ,两船抛出的重物的质量均为m .则动量守恒式为,0B A A A =+-mv mv v m (1)(2)对于B 船及抛出的重物和A 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设B 船抛出重物后的速度大小为V B ,则动量守恒式为,B B A B B B V m mv mv v m =+- (2)联立(1)、(2)式并代入kg 105.03A ?=m 、kg 100.13B ?=m 、kg 50=m 、m /s 4.3B =V 可得 m/s 4.0))((2B A B B A -=----=m m m m m mV m v3.38用铁锤把钉子敲入墙面木板。
设木板对钉子的阻力与钉子进入木板的深度成正比。
若第一次敲击,能把钉子钉入木板m1000.12-?,第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?解:因阻力与深度成正比,则有F = kx (k 为阻力系数)。
现令x 0 = 1.00?10-2 m ,第二次钉入的深度为x ?,由于钉子两次所作功相等,可得+=x x x x x kx x kx 000d d 0m 1041.02-?=?x。
第三章 动量守恒定律和能量守恒定律 问题与习题解答
第3章 动量守恒定律和能量守恒定律 问题与习题解答问题:3-1、3-3、3-7、3-10、3-14、3-193-1如图所示,设地球在太阳引力的作用下,绕太阳作匀速圆周运动。
试问:在下述情况下,(1)地球从点A 运动到点B ,(2)地球从点A 运动到点C ,(3)地球从点A 出发绕行一周又返回点A ,地球的动量增量和所受的冲量各为多少? 答:选太阳处为坐标原点O ,且O →C 方向为X 轴正方向,O →B 方向为Y 轴正方向,设地球和太阳的质量分别为,m M ,两者间的距离为r ,地球沿反时针方向作匀速圆周运动的速率为v ,故根据万有引力定律,有:22vm M m Grr=,即v =(1)地球从点A 运动到点B 的动量增量为:()())A B B A P m v v m vi vj i j ∆=-=-=-根据质点的动量定理,地球所受的冲量为:)A B A B I P mi j =∆=-(2)地球从点A 运动到点C 的动量增量和所受的冲量为:()()2A C A C C A P I m v v m vj vj mj ∆==-=--=-(3)同理,地球从点A 出发绕行一周回到A 点的动量增量和所受的冲量为:()0A A A A A A P I m v v ∆==-=3-3在上升气球下方悬挂一梯子,梯子站一人。
问人站在梯子上不动或以加速度向上攀升,气球的加速度有无变化? 答:(1)人不动,则气球的加速度不变。
(2)以气球及梯子(总质量为M )与人(质量为m )为系统,地面为参照系,且设人相对梯子上爬的速度为v 、气球相对地面的速度为V ,人相对地面的速度为v ',则有v v V '=+如果设气球及梯子与人初始为匀速率0v 竖直上升,则可应用动量守恒定律,得0()m v M V m M v '+=+所以, 0()V v m v m M =-+故得气球的加速度为d V m d v a d tm Md t==-⋅+气由此可知,当人相对于梯子的加速度0d v d t=(相对梯子匀速爬上)时0a =气;而当0d v d t>(加速爬上)时,0a <气。
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
大学物理第三章动量守恒定律和能量守恒定律
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案第三章动量守恒定律和能量守恒定律3-1 力)SI (12i F t =作用在质量kg 2=m 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A )m/s kg 54?-i (B )m/s kg 54?i(C )m/s kg 27?-i (D )m/s kg 27?i [B] 解:以该物体为研究对象,由质点动量定理=?==-=?30300354d 12d i i F p p p t t t又00=p 故()-13s m kg 54??=i p3-2 一个质点同时在几个力作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953kj i F +--=,则此力在该位移过程中所作的功为(A )67J (B )91J(C )17J (D )-67J [A] 解:()()k j i k j i r F 654953+-?+--=??=A(J) 675425-12=++=3-3 对质点组有以下几种说法:①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中:(A )只有①是正确的(B )①、③是正确的(C )①、②是正确的(D )②、③是正确的 [B] 解:由于质点组内力冲量的矢量和为零,所以质点组总动量的改变与内力无关。
由于质点组内力功的代数和不一定为零,由动能定理K E A A ?=+内外,质点组总动能的改变可能与内力相关。
,由功能原理E A A ?=+非保内外,质点系机械能的改变与保守内力无关。
3-4 质点系的内力可以改变(A )系统的总质量(B )系统的总动量(C )系统的总动能(D )系统的总角动量 [C] 解:由质点系动量定理、角动量定理和动能定理k t t t t E A A t t ?=+?=??=??内外外外2121d d LM p F可知质点系内力只能改变系统总动能而不影响其总动量和总角动量。
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。
(B)质点系总动量的改变与内力无关。
(C)动量是过程量,冲量是状态量。
(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。
2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。
3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。
5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。
7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。
大学物理习题答案解析第三章
第三章动量守恒定律和能量守恒定律3 -1对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的(D) (2)、(3)是正确的分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).3 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3 -3对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.下列上述说法中判断正确的是()(A) (1)、(2)是正确的(B) (2)、(3)是正确的(C) 只有(2)是正确的(D) 只有(3)是正确的分析与解保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3 -4如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有()(A) 动量守恒,机械能守恒 (B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).3 -5 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3 -6 一架以3.0 ×102 m·s-1 的速率水平飞行的飞机,与一只身长为0.20 m 、质量为0.50 kg 的飞鸟相碰.设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率甚小,可以忽略不计.试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算).根据本题的计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?分析 由于鸟与飞机之间的作用是一短暂时间内急剧变化的变力,直接应用牛顿定律解决受力问题是不可能的.如果考虑力的时间累积效果,运用动量定理来分析,就可避免作用过程中的细节情况.在求鸟对飞机的冲力(常指在短暂时间内的平均力)时,由于飞机的状态(指动量)变化不知道,使计算也难以进行;这时,可将问题转化为讨论鸟的状态变化来分析其受力情况,并根据鸟与飞机作用的相互性(作用与反作用),问题就很简单了.解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得式中F ′为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得0Δ-='v m t F鸟对飞机的平均冲力为式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105 N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故.3 -7 质量为m 的物体,由水平面上点O 以初速为v 0 抛出,v 0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为则物体落回地面的时间为 于是,在相应的过程中重力的冲量分别为 解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为3 -8 F x =30+4t (式中F x 的单位为N,t 的单位为s)的合外力作用在质量m =10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v 1 N 1055.252⨯=='lm F v N 1055.25⨯-='-=FF gαt sin Δ01v =gαt sin Δ01v =gαt t sin Δ2Δ012v ==j j F I αm t mg t t sin Δd 011Δ1v -=-==⎰j j F I αm t mg t t sin 2Δd 022Δ2v -=-==⎰j j j I αm y m mv Ay sin 001v v -=-=j j j I αm y m mv By sin 2002v v -=-==10 m·s -1 ,方向与Fx 相同,在t =6.86s 时,此物体的速度v 2 .分析 本题可由冲量的定义式,求变力的冲量,继而根据动量定理求物体的速度v 2.解 (1) 由分析知(2) 由I =300 =30t +2t 2 ,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N·s ,将I 、m 及v 1代入可得3 -9 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为(1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有(2)由式(1)、(2)可得安全带对人的平均冲力大小为解2 从整个过程来讨论.根据动量定理有3 -10 质量为m 的小球,在合外力F =-kx 作用下运动,已知x =A cos ωt ,其中k 、ω、A 均为正常量,求在t =0 到 时间内小球动量的增量. 分析 由冲量定义求得力F 的冲量后,根据动量原理,即为动量增量,注意用式积分前,应先将式中x 用x =A cos ωt 代之,方能积分.解 力F 的冲量为 ⎰=21d t t t F I ()s N 68230d 43020220⋅=+=+=⎰t t t t I 112s m 40-⋅=+=mm I v v gh 21=v ()12Δv v m m t -=+P F ()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v N 1014.1/2Δ3⨯=+=mg g h tmg F ωt 2π=⎰21d t t t F即 3 -11 如图所示,在水平地面上,有一横截面S =0.20 m 2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力从而可得水流对管壁作用力的大小为作用力的方向则沿直角平分线指向弯管外侧.3 -12 一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6 m .爆炸1.00 s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为1.00×102 m .问第二块落在距抛出点多远的地面上.(设空气的阻力不计)分析 根据抛体运动规律,物体在最高点处的位置坐标和速度是易求的.因此,若能求出第二块碎ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d ()ωkA m -=vΔ()A B t S ρtv v v -==ΔΔI F N 105.2232⨯-=-=-='v S ρFF片抛出的速度,按抛体运动的规律就可求得落地的位置.为此,分析物体在最高点处爆炸的过程,由于爆炸力属内力,且远大于重力,因此,重力的冲量可忽略,物体爆炸过程中应满足动量守恒.由于炸裂后第一块碎片抛出的速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出的速度,进一步求出落地位置.解 取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为(1) 物体爆炸后,第一块碎片竖直落下的运动方程为 当该碎片落地时,有y 1 =0,t =t 1 ,则由上式得爆炸后第一块碎片抛出的速度(2) 又根据动量守恒定律,在最高点处有 (3) (4) 联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为爆炸后,第二块碎片作斜抛运动,其运动方程为(5)(6) 落地时,y 2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置x 2 =500 m3 -13 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s -1的速度继续向前驶去.A 、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度.(忽略水对船的阻力)分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守hg x t x x 21010==v 21121gt t h y --=v 12121t gt h -=v x x m m 2021v v =y m m 2121210v v +-=1102s m 100222-⋅===hg x x x v v 112112s m 7.1421-⋅=-==t gt h y v v 2212t v x x x +=2222221gt t h y y -+=v恒方程即可解出结果.解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有(1)(2)由题意知v A ′ =0, v B ′ =3.4 m·s -1 代入数据后,可解得也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解.3 -14 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v 0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得人的水平速率的增量为 而人从最高点到地面的运动时间为 ()A A B A A m m m m v v v '=+-()''=+-B B A B B m m m m v v v ()()12s m 40.0-⋅-=---'-=m m m m m m m A B B B A v v ()()()12s m 6.3-⋅=---'-=m m m m m m m m B A B B A B vv ()()u m m αm m -+'='+v v v cos 0u mm m α'++=cos 00v v u m m m α'+=-=cos Δ0v v v所以,人跳跃后增加的距离 *3 -15 一质量均匀柔软的绳竖直的悬挂着,绳的下端刚好触到水平桌面上.如果把绳的上端放开,绳将落在桌面上.试证明:在绳下落过程中的任意时刻,作用于桌面上的压力等于已落到桌面上绳的重量的三倍.分析 由于桌面所受的压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳的托力.但是,应注意此托力除了支持已落在桌面上的绳外,还有对d t 时间内下落绳的冲力,此力必须运用动量定理来求.解 取如图所示坐标,开始时绳的上端位于原点,Oy 轴的正向竖直向下.绳的总长为l ,以t 时刻,已落到桌面上长为y 、质量为m′的绳为研究对象.这段绳受重力P 、桌面的托力F N 和下落绳子对它的冲力F (如图中所示)的作用.由力的平衡条件有(1) 为求冲力F ,可取d t 时间内落至桌面的线元d y 为研究对象.线元的质量,它受到重力d P 和冲力F 的反作用力F ′的作用,由于F ′>>d P ,故由动量定理得 (2) 而 (3)由上述三式可得任意时刻桌面受到的压力大小为 gαt sin 0v =()gm m αm t x '+==sin ΔΔ0vv 0N =-+F F yg l m y lm m d d =y lm t F d 0d v -='F F '-=g m yg lm l m yg l m F F '==+=-='332N N v*3 -16 设在地球表面附近,一初质量为5.00 ×105 kg 的火箭,从尾部喷出气体的速率为2.00 ×103 m·s -1 .(1) 试问:每秒需喷出多少气体,才能使火箭最初向上的加速度大小为4.90 m·s -2 .(2) 若火箭的质量比为6.00,求该火箭的最后速率.分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t →t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量Σd P i 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =u d m′/d t +m d v /d t (推导从略,见教材),即火箭主体的动力学方程.由于在d t 时间内排出燃料的质量d m ′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率d m ′/d t 也就是火箭质量的变化率-d m /d t .这样,上述方程也可写成.在特定加速度a 0 的条件下,根据初始时刻火箭的质量m 0 ,就可求出燃料的排出率d m /d t .在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m 0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为 (1) 因火箭的初始质量为m 0 =5.00 ×105 kg, 要使火箭获得最初的加速度a 0 =4.90 m·s -2,则燃气的排出率为(2) 为求火箭的最后速率,可将式(1)改写成分离变量后积分,有 火箭速率随时间的变化规律为 (2) 因火箭的质量比为6.00,故经历时间t 后,其质量为 得 (3) 将式(3)代入式(2),依据初始条件,可得火箭的最后速率 ma mg tm u=-d d ma mg tm u =-d d ()1300s kg 1068.3d d -⋅⨯=+=ua g m t m tm mg t m ud d d d v =-⎰⎰⎰-=t mm t g m m u 0d d d 00v v v gt m m u --=00lnv v m t t m m m 61d d 0=-=tm m t d /d 650=13000s m 1047.2d /d 65ln ln -⋅⨯=-=-='tm m m m u gt m m u v3 -17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知t =0 时质点位于原点,且初始速度为零.设外力F 随距离线性地减小,且x =0 时,F =F 0 ;当x =L 时,F =0.试求质点从x =0 处运动到x =L 处的过程中力F 对质点所作功和质点在x =L 处的速率.分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 的关系,由题给条件知.则该力作的功可用式 计算,然后由动能定理求质点速率. 解 由分析知, 则在x =0 到x =L 过程中作功, 由动能定理有 得x =L 处的质点速率为 此处也可用牛顿定律求质点速率,即 分离变量后,两边积分也可得同样结果.3 -18 如图所示,一绳索跨过无摩擦的滑轮,系在质量为1.00 kg 的物体上,起初物体静止在无摩擦的水平平面上.若用5.00 N 的恒力作用在绳索的另一端,使物体向右作加速运动,当系在物体上的绳索从与水平面成30°角变为37°角时,力对物体所作的功为多少? 已知滑轮与水平面之间的距离d =1.00 m .分析 该题中虽施以“恒力”,但是,作用在物体上的力的方向在不断变化.需按功的矢量定义式来求解.解 取图示坐标,绳索拉力对物体所作的功为3 -19 一物体在介质中按规律x =ct 3 作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由x 0 =0 运动到x =l 时,阻力所作的功.(已知阻力系数为k )分析 本题是一维变力作功问题,仍需按功的定义式来求解.关键在于寻找力函数F =F (x ).根据运动学关系,可将已知力与速度的函数关系F (v ) =k v 2 变换到F (t ),进一步按x =ct 3 的x LF F F 00-=⎰L x F 0d x L F F F 00-=2d 0000L F x x L F F W L =⎪⎭⎫ ⎝⎛-=⎰0212-=v m W mL F 0=v xm t m x L F F d d d d 00v v v ==-⎰⋅=s F d W J 69.1d d cos d 2122=+-==⋅=⎰⎰⎰x x d Fx x θF W x x x F ⎰⋅=x F d W关系把F (t )转换为F (x ),这样,就可按功的定义式求解.解 由运动学方程x =ct 3 ,可得物体的速度按题意及上述关系,物体所受阻力的大小为则阻力的功为3 -20 一人从10.0 m 深的井中提水,起始桶中装有10.0 kg 的水,由于水桶漏水,每升高1.00 m 要漏去0.20 kg 的水.水桶被匀速地从井中提到井口,求所作的功.分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡.水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功.由于拉力作功也就是克服重力的功,因此,只要能写出重力随高度变化的关系,拉力作功即可题3 -20 图求出.解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为3 -21 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.23d d ct tx ==v 3/43/242299x kc t kc k F ===v ⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W l o l -=-==⋅=⎰⎰⎰xF ()J 882d d 1000=-=⋅=⎰⎰y agy mg W l y F分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为小球在最低位置的速率为(3) 当小球在最低位置时,由牛顿定律可得3 -22 一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上.此质点在粗糙水平面上作半径为r 的圆周运动.设质点的最初速率是v 0 .当它运动一周时,其速率为v 0 /2.求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中⎰⋅=s d F W ()J 53.0cos 1Δ=-==θmgl h P W P s F d T T ⋅=⎰W J 53.0k k ==E E 1P K s m 30.222-⋅===mW m E v lm P F 2T v =-N 49.22T =+=lm mg F v克服摩擦力作功上.由此,可依据动能定理列式解之.解 (1) 摩擦力作功为(1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有(2)由式(1)、(2)可得动摩擦因数为(3) 由于一周中损失的动能为,则在静止前可运行的圈数为 圈 3 -23 如图(a)所示,A 和B 两块板用一轻弹簧连接起来,它们的质量分别为m 1 和m 2 .问在A 板上需加多大的压力,方可在力停止作用后,恰能使A 在跳起来时B 稍被提起.(设弹簧的劲度系数为k )分析 运用守恒定律求解是解决力学问题最简捷的途径之一.因为它与过程的细节无关,也常常与特定力的细节无关.“守恒”则意味着在条件满足的前提下,过程中任何时刻守恒量不变.在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立的条件.该题可用机械能守恒定律来解决.选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态1),直到B 板刚被提起(取作状态2),在这一过程中,系统不受外力作用,而内力中又只有保守力(重力和弹力)作功,支持力不作功,因此,满足机械能守恒的条件.只需取状态1 和状态2,运用机械能守恒定律列出方程,并结合这两状态下受力的平衡,便可将所需压力求出.解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得20202k 0k 832121v v v m m m E E W -=-=-=mg μr πs F W 2180cos o f -==rgπμ16320v =2083v m 34k0==W En 2221212121mgy ky mgy ky +=-F=P1+F2(3) 当A板跳到N点时,B板刚被提起,此时弹性力F′2=P2 ,且F2=F′2.由式(3)可得F=P1+P2=(m1+m2 )g应注意,势能的零点位置是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点.3 -24如图(a)所示,有一自动卸货矿车,满载时的质量为m′,从与水平成倾角α=30.0°斜面上的点A 由静止下滑.设斜面对车的阻力为车重的0.25 倍,矿车下滑距离l时,与缓冲弹簧一道沿斜面运动.当矿车使弹簧产生最大压缩形变时,矿车自动卸货,然后矿车借助弹簧的弹性力作用,使之返回原位置A 再装货.试问要完成这一过程,空载时与满载时车的质量之比应为多大?分析矿车在下滑和返回的全过程中受到重力、弹力、阻力和支持力作用.若取矿车、地球和弹簧为系统,支持力不作功,重力、弹力为保守力,而阻力为非保守力.矿车在下滑和上行两过程中,存在非保守力作功,系统不满足机械能守恒的条件,因此,可应用功能原理去求解.在确定重力势能、弹性势能时,应注意势能零点的选取,常常选取弹簧原长时的位置为重力势能、弹性势能共同的零点,这样做对解题比较方便.解取沿斜面向上为x轴正方向.弹簧被压缩到最大形变时弹簧上端为坐标原点O.矿车在下滑和上行的全过程中,按题意,摩擦力所作的功为Wf=(0.25mg+0.25m′g)(l+x) (1) 式中m′和m分别为矿车满载和空载时的质量,x为弹簧最大被压缩量.根据功能原理,在矿车运动的全过程中,摩擦力所作的功应等于系统机械能增量的负值,故有Wf=-ΔE=-(ΔE P+ΔEk)由于矿车返回原位时速度为零,故ΔEk=0;而ΔE P=(m -m′) g(l+x) sinα,故有Wf=-(m-m′) g(l+x) sinα (2) 由式(1)、(2)可解得。
动量及动量守恒定律习题大全含解析答案推荐文档
动量及动量守恒定律习题大全一.动量守恒定律概述1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
2.动量守恒定律的表达形式(1)附叫+叫叫二叫H十感桃,即pi p2=pi/p2/.(2) Ap1 Aj2=0, Ap1= -Aj2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1 )分析题意,明确研究对象。
(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)建立动量守恒方程求解。
4.注重动量守恒定律的五性”①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
女口:光滑水平面上,质量为ml的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在I位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到H位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到川位位置恰好分开。
(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,n状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此I、川状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证实A、B的最终速度分别为:比=—--------- = --------------- 比。
(这个结论最好背下来,以后经常要用到。
)(2)弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,n状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
大学物理题库-第3章-动量守恒定律和能量守恒定律试题(含答案解析)
大学物理题库 第三章 动量守恒定律和能量守恒定律一、选择题: 1、水中有一只静止的小船,船头与船尾各站有一个质量不相同的人。
若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: (A)与质量大的人运动方向一致 (B)与动量值小的人运动方向一致 (C)与速率大的人运动方向一致 (D)与动能大的人运动方向一致[ ]2、关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是: (A )不受外力作用的系统,其动量和机械能必然同时守恒;(B )所受合外力为零,内力都是保守力的系统,其机械能必然守恒;(C )不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D )外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒。
[ ]3、一质点在外力作用下运动时,下述哪种说法是正确的?(A )质点的动量改变时,质点的动能也一定改变; (B )质点的动能不变时,质点的动量也一定不变; (C )外力的冲量为零,外力的功一定为零; (D )外力的功为零,外力的冲量一定为零。
[ ]4、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s .[ ]5、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122([ ]6、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.[ ]7、一个质点同时在几个力作用下的位移为k j i r654+-=∆ (SI ),其中一个恒力为k j i F953+--=(SI ),则此力在该位移过程中所作的功为: (A )67J (B )91J (C ) 17J (D ) -67J[ ]8、如图3-12所示,劲度系数为k 的轻质弹簧水平放置,一端固定,另一端接一质量为m 的物体,物体与水平桌面间的摩擦系数为μ,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为:(A ) ()22mg F k μ- (B ) ()221mg F k μ- (C ) 22F k(D )221F k[ ]9、质量为m 的一艘宇宙飞船关闭发动机返回地面时,可认为该飞船只在地球的引力场中运动。
习题第3章
动量守恒和能量守恒 练习一
一、选择题
1.质量为m的质点,以不变速率v沿图中正三角形ABC
的水平光滑轨道运动.质点越过A角时,轨道作用于质
点的冲量的大小为
A
[ C]
B
(A) m v
(B) 2 m v (C) 3 m v
(D) 2 m v
青岛科技大学
C
.
大学物理讲义
习题解答
2.两辆小车A、B,可在光滑平直轨道上运动.第一
[B]
30 v 2
(A) 2 m/s (B) 4 m/s (C) 7 m/s (D) 8 m/s
青岛科技大学
.
大学物理讲义
习题解答
二、填空题 1. 有两艘停在湖上的船,它们之间用一根很轻的绳子 连接.设第一艘船和人的总质量为250 kg , 第二艘船的总 质量为500 kg,水的阻力不计.现在站在第一艘船上的 人用F = 50 N的水平力来拉绳子,则5 s后第一艘船的速 度大小为____1__m__/s_;第二艘船的速度大小为__0_._5_m_./s
习题解答
练习二
一、选择题 1.质量为m的质点在外力作用下,其运动方程为
r A co ti s B sit j n 式中A、B、都是正的常量.由此
可知外力在t=0到t=/(2)这段时间内所作的功为
[ C]
(A) 1m2(A2 B2) (B) m2(A2B2) 2
(C) 1m2(A2 B2)
(1) A、B起动后,经多长时间C也开始运动? (2)C开始运动时速度的大小是多少?(取g=10 m/s2)
CB
青岛科技大学
A
.
大学物理讲义
习题解答
解:(1) 设A,B间绳中张力为T,分别对A、B列方程 MA g –T =MA a T =MB a
第三章动量定理及动量守恒定律(思考题与习题解答)
第三章 动量定理及动量守恒定律(思考题与习题解答)(一)思考题3.1试表述质量的操作型定义。
解答,kgv v m m 00 ∆∆=式中kg 1m 0=(标准物体质量) 0v∆:为m 与m0碰撞m0的速度改变 v∆:为m 与m0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒)p p (p p ,p p p p 22112121 -'-=-'+='+' ,p p 21 ∆-=∆t p t p 21∆∆-=∆∆取极限dt p d dtp d 21 -= 动量瞬时变化率是两质点间的相互作用力。
,a m )v m (dt d dt p d F 111111=== ,a m )v m (dt d dt p d F 222222 ===21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。
(参见P63最后一自然段) 3.3在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。
现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零? 解答,①电梯加速下降视重小于重量; ②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g 时,视重为零; ④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gR v ,0mg R v m N ,N mg R v m 22==-=+=飞行员的视重为零3.4一物体静止于固定斜面上。
(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。
(2)因物体静止,故下滑力mg sin α与静摩擦力N 0μ相等。
α表示斜面倾角,N 为作用于斜面的正压力,0μ为静摩擦系数。
大学物理(吴百诗)习题答案3运动守恒定律
冲量和动量定理3-1质量m =10kg 的物体在力F x =30+4t N 的作用下沿x 轴运动,试求(1)在开始2s 内此力的冲量I ;(2)如冲量I =300N·s ,此力的作用时间是多少?(3)如物体的初速v 1=10m/s ,在t =6.86s 时,此物体的速度v 2为多少? 解:(1) s N 68d )430(d 2020⋅=+==⎰⎰t t t FI xx(2) 300230d )430(d 2=+=+==⎰⎰tt t t t F I tt x t ,s 86.6=t(3) 1212mv mv p p I -=-=,s 86.6=t ,s N 300⋅=I ,m/s 20)1010300(101)(112=⨯-=-=mv I m v 3-2质量m =1kg 的物体沿x 轴运动,所受的力如图3-2所示。
t =0时,质点静止在坐标原点,试用牛顿定律和动量定理分别求解t =7s 时此质点的速度。
解:(1) ⎩⎨⎧≤≤+-≤≤=75355502t t t t F 50≤≤t ,t tv m2d d =,⎰⎰=500d 2d 1t t v m v ,(m/s)25251==m v75≤≤t ,355d d +-=t tvm ,⎰⎰+-=75d )355(d 21t t v m v v ,(m/s)352=v(2) s)(N 35)107(21d 7⋅=⨯==⎰t F I ,212mv mv mv I =-=,(m/s)352=v动量守恒定律3-3两球质量分别为m 1=3.0g , m 2=5.0g ,在光滑的水平桌面上运动,用直角坐标xOy 描述运动,两者速度分别为cm /s 81i v ϖϖ=,cm /s )168(2j i v ϖϖϖ+=,若碰撞后两球合为一体,则碰撞后两球速度v ϖ的大小为多少?与x 轴的夹角为多少?解:系统动量守恒 j i v m v m v m m ϖϖϖϖϖ8064)(221121+=+=+, j i v ϖϖϖ108+=cm/s 8.1210822=+==v v ϖ,与x 轴夹角 ︒==3.51810arctan α3-4如图3-4所示,质量为M 的1/4圆弧滑槽停在光滑的水平面上,一个质量为m 的小物体自圆弧顶点由静止下滑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级____________ 姓名______________ 学号_________________ 第3-1 动量定理 一.填空题:1.物体所受到一维的冲力F ,其与时间的关系如图所示,则该曲线与横坐标t 所围成的面积表示物体在∆t = t 2 - t 1时间所受的 冲量的大小。
2.质量为m 的物体以初速度v 0,倾角α 斜向抛出,不计空气阻力,抛出点与落地点在同一水平面,则整个过程中,物体所受重力的冲量大小为αsin 20⋅mv ,方向为竖直向下。
3.设有三个质量完全相同的物体,在某时刻t 它们的速度分别为123 , , v v v ,并且123ννν==,1v 与2v 方向相反,3v 与1v相垂直,设它们的质量全为m ,则该时刻三物体组成的系统的总动量为3v m。
4.质量为m 的质点在Oxy 平面内运动,运动方程为j t b i t a r)sin()cos(ωω+=,请问从 0t =到t πω=这段时间内质点所受到的冲量是2mb j ω-。
5.高空作业时系安全带是非常必要的,假如一质量为51.0kg 的人,在操作过程中不慎从空竖直跌落下来。
由于安全带的保护,最终使他被悬挂起来。
已知此时人离原处的距离为2.0m 。
安全带弹性缓冲作用时间为0.5s ,求安全带对人的平均冲力N 31014.1⨯。
二.计算题:6.一个质量m=0.14 kg 的垒球沿水平方向以v 1=50 m/s 的速率投来,经棒打出后,沿仰角α=45˚的方向向回飞出,速率变为v 2=80 m/s 。
求棒给球的冲量大小和方向;如果球与棒接触时间t ∆=0.02 s ,求棒对球的平均冲力的大小。
它是垒球本身重力的几倍? 解 设垒球飞来之正方向为x 轴正方向,则棒对球冲量大小为:11)(616)/()(845'2152cos sin 180:)/(9.16cos 221221222112倍此力为垒球本身重的棒对球平均冲力角给出方向由==∆==+-==++=-=mg F N tIF mv mv mv avctg S N v v v v m v m v m I ααθθα7.一个子弹在枪膛中前进时所受的合外力的大小为54104003tF ⨯=-,子弹从枪口射出时的速率为300m ·s -1。
设子弹离开枪口处合力刚好为零。
求:⑴ 子弹走完枪膛所需的时间;⑵ 子弹在枪膛中所受力的冲量;⑶ 子弹的质量。
解:(1)当0F =时 541040003t ⨯-=,得 534000.003410t ⨯==⨯s (2) 0.0035520.0034104104004000.6323t I F t t t t ⎛⎫⨯⨯==-=-=⋅ ⎪⨯⎝⎭⎰⎰d d N s(3)0I m =-v , 0.60.0022300I m ====kg kg g v*8.如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上。
设料斗口连续卸煤的流量为q m = 40 kg ·s -1,A 以v =2.0 m/s 的水平速度匀速向右移动。
求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉落在A之前的瞬时速率为0v = 设煤粉落在A 上的作用时间为dt ,则在竖直方向的力的大小 满足动量定理:0m F dt v q dt ⊥=,即0m F v q ⊥=在水平方向的力的大小满足动量定理:m F dt vq dt =即:m F vq =煤粉对A 的作用力的大小为148.6F q q N ====tan 1.57F F ϕ⊥=== 方向为左向下,与水平方向的夹角为arctan1.57v班级____________ 姓名______________ 学号_________________ 第3-2 动能定理 势能 一.填空题:1.一个质点在几个力同时作用下的位移为()456r i j k ∆=-+(SI ),其中一个恒力可表达成()359F i j k =--+(SI ),这个力在该过程中作功为67J 。
2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为RGMm32-。
3.一颗速率为700 m/s 的子弹,打穿一块木板后,速率降到500 m/s 。
如果让它继续穿过厚度和阻力均与第一块完全相同的第二块木板,则子弹的速率将降到 100 m/s 。
4.质量、动量、冲量、动能、势能、功,这些物理量中与参考系选取有关的物理量是 动量、动能、功 。
(不考虑相对论效应) 5.保守力做功的特点是 保守力做功与路径无关,只与始末位置有关 ;保守力的功与势能的关系式为 保守力做功等于势能变化的负值 。
二.选择题:6.一质点在几个外力同时作用下运动时,下述哪种说法正确? ( C ) (A)质点的动量改变时,其动能一定改变。
(B)质点的动能不变时,其动量也一定不变。
(C)外力的冲量是零时,其功一定是零。
(D)外力的功是零时,其冲量一定是零。
7.质量为m 的质点在外力作用下,其运动方程为j t B i t A rωωsin cos +=,式中A 、B 、ω 都是正的常量。
由此可知外力在t = 0到t =π / (2ω)这段时间内所作的功为( C )(A))(21222B A m +ω (B))(222B A m +ω(C))(21222B A m -ω(D))(21222A B m -ω三.计算题:8.一个质量为2kg m =的质点,在外力作用下,运动方程为:x = 5 + t 2,y = 5t -t 2,求力在t = 0到t = 2秒内作的功。
解 由运动方程知 t dt dx v x 2==,t dtdy v y 25-== ∴22y x v v v +=当t=0s 时,115-⋅=s m v 当t=2s 时,1217-⋅=s m v根据动能定理 J mv mv W 821212122-=-=9.用铁锤把钉子敲入墙面木板,设木板对钉子的阻力与钉子进入木板的深度成正比。
若第一次敲击,能把钉子钉入木板21.0010m -⨯。
第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?试问木板对钉子的阻力是保守力? 解:由动能定理,有:12201011022s m kx x ks -=-=-⎰d v设铁锤第二次敲打时能敲入的深度为ΔS ,则有 112220111110()222s s s m kx x k s s ks +∆⎡⎤-=-=-+∆-⎢⎥⎣⎦⎰d v得:2211()2s s s +∆= 化简后为:11s s +∆=第二次能敲入的深度为:111)10.41cm s s ∆-=⨯=cm 易知:木板对钉子的阻力是保守力10.某弹簧不遵守胡克定律,力F 与伸长x 的关系为F =52.8x +38.4x 2(SI ),求: ⑴ 将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功。
⑵ 将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率。
⑶此弹簧的弹力是保守力吗? 解:(1)()2211252.838.431x x x x W Fdx x x dx J ==+=⎰⎰(2)由动能定理可知2220111222W mv mv mv =-=,即 5.35/v m s == (3)很显然,力F 做功与路径无关,此弹簧的弹力是保守力。
班级____________ 姓名______________ 学号_________________ 第3-3 守恒定律 一.填空题:1.一维保守力的势能曲线如图所示,则总能E 为12 J 的粒子的运动范围为(],10m-∞ ;在x = 6m时,粒子的动能E K 最大;在x = 10m 时,粒子的动能E K 最小。
2.如图的系统,物体A ,B 置于光滑的桌面上,物体A 和C ,B 和D 之间摩擦因数均不为零,首先用外力沿水平方向相向推压A 和B ,使弹簧压缩,后拆除外力,则A 和B 弹开过程中,对 A 、B 、C 、D 组成的系统动量守恒,机械能守恒吗? 动量守恒,机械能不一定守恒 3.如图所示,有两个高度相同、质量相同、倾角不同的光滑斜面,放在光滑水平面上。
在两个斜面上分别放两个大小可以忽略、质量相同的滑块,使两滑块分别从这两个斜面的顶点由静止开始滑下,以地面为参照系,指出下面几个结论中正确性,并说明理由。
⑴ 两滑块滑到斜面底端时的动量相同;该结论是否正确? 不对 理由: 至少方向是不同的 。
⑵ 滑块与楔形物体组成的系统动量守恒;该结论是否正确?不对 理由: 竖直方向重力有冲量不为零 。
⑶ 滑块与楔形物体组成的系统机械能保持不变;该结论是否正确? 对 理由: 系统只有保守力做功,故机械能守恒 。
⑷ 滑块与楔形物体组成的系统水平方向动量守恒;该结论是否正确? 对 理由:滑块与楔形物体组成的系统水平方向受力为零,故水平方向动量守恒 。
二.选择题:4.关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是 ( C ) (A)不受外力作用的系统,其动量和机械能必然同时守恒; (B)所受合外力为零,内力都是保守力的系统,其机械能必然守恒; (C)不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D)外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒。
5.一质子轰击一α粒子时因未对准而发生轨迹偏转。
假设附近没有其它带电粒子,则在这一过程中,由此质子和α粒子组成的系统, ( D ) (A)动量守恒,能量不守恒。
(B)能量守恒,动量不守恒。
(C)动量和能量都不守恒。
(D)动量和能量都守恒。
三.计算题:6.在光滑水平面上有一质量为B m 的静止物体B ,在B 上又有一质量为A m 的静止物体A ,()()()220202002022222011322:,,,,3341111332222B A B A A B kx m v v A B K B v v v v v v v L mv mv mv mv m v mv m v kL =∴=--->↓↑===+=-----=++---有①对、、系统过平衡位置后由于弹簧被拉长且当时弹簧拉得最长动量导恒②机械能守恒③今有一小球从左边射到A 上,并弹回,于是A 以速度0v (相对于水平面的速度)向右边运动,A 和B 间的摩擦系数为μ,A 逐渐带动B 运动,最后A 与B 以相同的速度一起运动。
问A 从运动开始到与B 相对静止时,在B 上走了多远?解:由于水平面是光滑的,故而物体A 和物体B 所组成的系统水平方向动量守恒,设A 与B 运动相同的速度为v ,则有()v m m v m B A A +=0,即BA A m m v m v +=A 和B 间的摩擦之间的摩擦力为g m A μ,则A 的加速度大小为g μ,B 的加速度大小BA m gm μ,设在达到共同的速度时,A 相对地面走的路程为1S ,B 相对地面走的路程为2S则有12022gS v v μ-=-,222S m gm v B A μ=,即A 在B 上走的距离为()gm m v m S S B A B +=-μ22217.两个质量分别为m 1和m 2的木块A和B,用一个质量忽略不计,劲度系数为k 的弹簧联接起来,放置在光滑水平面上,使A紧靠墙壁(如图所示),用力推木块B使弹簧压缩x 0,然后释放,已知m 1=m ,m 2=3m ,求:⑴ 释放后,A、B两木块速度相等时的瞬时速度的大小;⑵ 释放后,弹簧的最大伸长量。