材料成型基础实验报告

合集下载

生产实习报告材料成型及控制工程

生产实习报告材料成型及控制工程

生产实习报告材料成型及控制工程材料成型及控制工程是我在实习期间所从事的岗位,主要负责材料的加工和成型过程中的工艺控制。

以下是我对这段实习经历的总结和报告。

在实习初期,我首先了解了材料成型及控制工程的背景知识,包括材料的性质和加工方式,以及各种成型工艺和控制方法。

通过学习相关理论和实例,我对材料成型及控制工程的原理和应用有了初步的了解。

随后,我参与了具体的生产工作,包括材料选择、成型工艺方案的制定和实施等。

我学习了不同材料的特性和应用范围,通过与工程师的交流和观察,我了解了材料在不同工艺中的表现和特点,以及成型过程中可能出现的问题和风险。

在实习期间,我有机会参与了几个项目的材料选择和工艺方案的制定,也亲自操作过一些成型设备和机器。

在实际操作中,我学会了如何调整材料和工艺参数,以达到预期的成型效果。

在控制材料成型过程中,我学会了使用仪器仪表进行数据记录和分析,以便对工艺参数进行调整和优化。

我也学会了根据产品要求进行相关的测试和检测,以确保产品的质量和性能符合标准。

通过这些实践,我进一步理解了材料成型及控制工程的重要性和挑战。

在实习期末,我参与了一个项目的验收工作。

由于之前的实习经历和知识储备,我能够快速判断出材料加工过程中出现的问题,并提出相应的解决方案。

我与团队合作,完成了项目的验收任务,并得到了领导的认可和表扬。

通过这段实习经历,我深刻体会到了材料成型及控制工程的复杂性和重要性。

材料成型的每个环节和参数都需要精确控制,以确保产品的质量和性能。

同时,材料成型也需要多方面的知识和技能,包括材料的性质和选择、工艺的制定和优化、设备的操作和维护等。

这些知识和技能对于我未来在材料领域的发展将起到重要的支持和指导作用。

通过这段实习经历,我进一步树立了学习的决心和信心,我将进一步学习和掌握相关的知识和技能,以便在未来能够在材料成型及控制工程方面做出更大的贡献。

我也将时刻保持对新技术和新工艺的关注,以保持自身的竞争力和能力。

《材料成型综合实验》3D打印实验报告

《材料成型综合实验》3D打印实验报告

《材料成型综合实验》3D打印实验报告一、实验目的1、掌握快速成型加工原理、方法及在模具加工中的应用;2、了解快速成型机床的组成、工作原理和操作方法。

二、实验仪器HTS-400pl快速成型机、树脂丝材、计算机等三、实验原理3D打印即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉未状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

RP技术基本原理:离散—堆积(叠加)。

3D打印技术与激光成型技术基本上是一样的。

简单来说,就是通过采用分层加工、迭加成形,逐层增加材料来生成3D实体。

称它为“打印机”的原因是参照了其技术原理,3D打印机的分层加工过程与喷墨打印机十分相似。

首先是运用计算机设计出所需零件的三维模型,然后再根据工艺需求,按照一定规律将该模型离散为一系列有序的单位,通常在Z向将其按照一定的厚度进行离散,把原来的三维CAD模型变成一系列的层片;然后再根据每个层片的轮廓信息,输入加工参数,然后系统后自动生成数控代码;最后由成型一系列层片并自动将它们连接起来,最后得到一个三维物理实体。

四、实验过程基本过程如下:对要打印的零件进行三维建模,绘制三维图形,保存STL通用格式。

用3D 打印软件打开保存的STL格式的零件,在3D打印软件中设置相关打印参数,生成路径。

将3D软件生成的GSD格式用插卡的形式放在打印机里。

随后启动打印机即可。

实验的详细过程如下:首先进行的三维模型构建经常使用的软件有Pro/E、UG、SolidWorks、激光扫描、CT断层扫描等。

然后要对三维模型做近似处理,也就是用三角形平面来逼近原来的模型(STL文件)。

近似处理后进行切片处理,即对加工方向(Z方向)进行分层(间隔一般取0.05m--0.5mm,常用0.1mm )。

之后进行打磨、抛光、涂挂、烧结等后处理步骤。

最后成型加工。

成型头(激光头或喷头)按各截面轮廓信息扫描。

其中分解(离散)过程由计算机完成,组合(堆积)过程由成型机完成,后处理过程中的结构与性能的加强由其他辅助设备完成。

混凝土成型实验报告

混凝土成型实验报告

混凝土成型实验报告
一、实验目的
本次实验旨在研究混凝土的成型过程,了解混凝土在成型过程中的物理性质和工艺要求。

通过实际操作,掌握混凝土成型的基本方法和注意事项。

二、实验原理
混凝土是一种由水泥、骨料、粗骨料、掺合料等按照一定比例配制而成的人工石料,其制作过程主要包括拌合、浇筑、振实、养护等步骤。

在混凝土实验中,成型是混凝土工艺的重要环节,直接影响混凝土的强度和密实性。

三、实验材料与仪器
•水泥
•砂
•碎石
•水
•搅拌机
•试模具
•振动台
四、实验步骤与方法
1.将水泥、砂、碎石按照设计配合比称量好。

2.将混合物放入搅拌机中进行拌合,保证混合均匀。

3.准备好试模具,将混凝土倒入模具中并用振动台进行振实处理。

4.等混凝土凝固后,取出样品进行养护。

五、实验注意事项
1.配合比的准确性对混凝土强度至关重要,应严格按照设计要求进行配比。

2.搅拌时间不宜过长,避免混凝土早期硬化。

3.振实时应控制振动时间和力度,以避免产生气孔。

4.混凝土养护过程中,应及时进行保湿,保证混凝土的正常养护。

六、实验结果与分析
经过实验操作,成功制作出符合要求的混凝土样品。

经检测,样品强度达到设计要求,密实性良好。

通过本次实验,加深了对混凝土成型工艺的理解,为今后的相关研究和工程实践提供了实用经验。

七、结论
本实验通过混凝土的成型过程,深入探讨了混凝土的物理性质和工艺要求,为后续混凝土工程提供了有益参考。

掌握了混凝土成型的基本方法和注意事项,为日后的工作积累了经验。

材料成型专业综合实验报告

材料成型专业综合实验报告

摘要金属材料的热处理后的力学性能取决其内部组织的改变状况,内部组织可以通过金相显微镜对其进行综合分析,力学性能可通过静拉伸试验、硬度试验、冲击试验、疲劳试验、磨损试验中仪器的使用获得。

热处理工艺的制订则有赖于正确掌握成分,淬火温度,冷却速度与组织、性能之间的关系。

一般热处理的基本操作有退火、正火、淬火及回火等。

本实验通过对40Cr淬火温度、冷却速度、回火的综合实验设计,使其每一种热处理影响因素都在单一变量和对照的条件下实现了分析,从而得出了40Cr的金相组织、硬度等相关性能随热处理工艺的变化而发生变化,主要介绍40Cr正火、淬火(水冷)后的组织性能特点。

关键字:仪器使用、原理、40Cr、热处理、金相分析目录第一章仪器的使用及原理1.1 金属力学性能试验1.1.1 静拉伸试验‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21.1.2 硬度试验‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21.1.3 冲击试验‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 41.1.4 疲劳试验‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 41.1.5 磨损实验‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4 1.2 金相综合分析1.2.1 金相显微镜的构成原理及使用‥‥‥‥‥‥‥‥‥‥41.2.2 钢件的火花鉴别法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 1.3 钢的热处理1.3.1 碳钢的热处理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61.3.2 结构钢的淬透性测定‥‥‥‥‥‥‥‥‥‥‥‥‥61.3.3 离子氮化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 1.4 铸造综合实验1.4.1中频感应电炉‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61.4.2真空热压炉‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61.4.3铸造合金流动性测定‥‥‥‥‥‥‥‥‥‥‥‥‥‥7第二章40Cr热处理及金相分析2.1实验目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72.2实验材料及设备‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72.3 实验工艺制定‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72.4 实验结果及分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥92.5 2号试样(正火+淬火水冷))具体过程及分析‥‥‥102.6实验总结‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12致谢‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12参考文献‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12第一章仪器的使用及原理1.1金属力学性能实验1.1.1静拉伸试验一、使用及原理静拉伸试验在油压式万能试验机上进行。

材料成型实验报告

材料成型实验报告

材料成型实验报告1. 实验目的材料成型是工程领域中常见的一种加工方式,它通过对材料施加力的作用,使材料发生形变并最终得到所需的形状。

本实验旨在通过对不同材料进行成型实验,探究不同条件对材料形变的影响,了解材料成型的基本原理和工艺。

2. 实验材料和设备实验材料:•铝板•钢管•聚合物材料•碳纤维布实验设备:•压力机•橡胶垫•模具•热风枪•电子天平3. 实验方法3.1 铝板压力实验1.将铝板切割为适当大小。

2.放置模具于压力机工作台上。

3.在模具中放入铝板。

4.调整压力机的参数,如施加压力、冲击次数等。

5.执行压力实验并记录结果。

3.2 聚合物材料塑性成型1.准备聚合物材料和模具。

2.将聚合物材料加热至适当温度。

3.将加热后的聚合物材料放置于模具中。

4.施加适当压力,使聚合物材料充分填充模具。

5.冷却聚合物材料至固化温度。

6.取出固化的聚合物制品。

3.3 碳纤维材料层脆性实验1.准备碳纤维布和热风枪。

2.将碳纤维布放置于平坦的表面。

3.使用热风枪将碳纤维布加热。

4.观察碳纤维布在加热过程中的形变情况。

5.将碳纤维布继续加热,观察其是否发生层脆性断裂。

4. 实验结果与讨论通过以上三种实验,我们得到了以下结果和讨论:铝板压力实验根据压力实验的数据记录,我们发现施加更大的压力会导致铝板的形变程度增加。

在其他实验条件保持不变的情况下,增加压力意味着对材料施加更大的力量,使得材料更容易形变。

但是当压力过大时,可能会导致铝板断裂。

因此在实际应用中,需要根据材料的特性和需要达到的成型效果来选择适当的压力。

聚合物材料塑性成型在聚合物材料塑性成型实验中,我们发现加热温度和施加压力对聚合物材料的成型效果有重要影响。

提高加热温度可以使聚合物材料更易流动和填充模具,但同时也会面临材料烧结或炭化的风险。

施加适当的压力可以使聚合物材料紧密地填充模具,并减少气泡和缺陷的产生。

因此,在聚合物材料的塑性成型过程中,需要综合考虑加热温度和施加压力,以达到所需的成型效果。

胶砂成型实验报告(3篇)

胶砂成型实验报告(3篇)

第1篇一、实验目的本实验旨在了解水泥胶砂的成型过程,掌握水泥胶砂强度试验的基本操作,并分析实验结果,以评估水泥胶砂的力学性能。

二、实验原理水泥胶砂是由水泥、标准砂和水按一定比例混合而成的混合物,其强度试验主要用于评估水泥的强度等级。

本实验采用抗压强度试验和抗折强度试验两种方法来测定水泥胶砂的力学性能。

三、实验仪器与材料1. 仪器:水泥胶砂搅拌机、振动台、试模、养护箱、天平、量筒、刮刀等。

2. 材料:水泥、标准砂、水。

四、实验步骤1. 称量:按照实验要求,用天平称取水泥、标准砂和水的质量。

水泥与标准砂的质量比为1:3,水的用量为水泥质量的25%。

2. 搅拌:将称量好的水泥和标准砂倒入搅拌锅中,加入适量的水,搅拌均匀。

3. 振动:将搅拌好的胶砂倒入试模中,将试模放置在振动台上,振动60次,使胶砂密实。

4. 刮平:振动完毕后,用刮刀将胶砂表面刮平。

5. 养护:将成型的胶砂试件放入养护箱中,养护24小时。

6. 抗压强度试验:将养护好的试件放入抗压强度试验机中,按照试验要求进行抗压强度试验。

7. 抗折强度试验:将养护好的试件放入抗折强度试验机中,按照试验要求进行抗折强度试验。

五、实验数据记录与处理1. 记录实验数据:记录水泥胶砂的抗压强度和抗折强度。

2. 数据处理:计算水泥胶砂的抗压强度和抗折强度平均值。

六、实验结果与分析1. 实验结果:根据实验数据,计算出水泥胶砂的抗压强度和抗折强度平均值。

2. 分析:通过对比实验结果与标准值,分析水泥胶砂的力学性能。

(以下为实验结果与分析部分,具体数据需根据实验实际情况填写)实验结果如下:抗压强度:Mpa抗折强度:Mpa根据实验结果,水泥胶砂的抗压强度和抗折强度均达到标准要求。

七、实验结论通过本次实验,掌握了水泥胶砂的成型过程和强度试验的基本操作。

实验结果表明,水泥胶砂的力学性能符合标准要求,可以应用于建筑工程中。

八、实验注意事项1. 称量时注意精度,确保实验数据的准确性。

工程材料与成型技术基础实验报告

工程材料与成型技术基础实验报告

《工程材料与成型技术基础》实验报告评语:姓名:学号:班级:指导教师:成绩:日期:实验一碳钢金相样品制备与铁碳合金在平衡状态下的组织观察实验时间:一、实验目的1.通过实验能识别铁碳合金在平衡状态下的显微组织。

2.掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。

二、实验原理利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析(或金相分析)。

合金在极其缓慢的冷却条件(如退火状态)下所得到的组织称为平衡组织。

铁碳合金平衡组织的观察与分析,要依据Fe-Fe3C相图来进行。

(1)工业纯铁工业纯铁的碳质量分数小于0.0218%,组织为单相铁素体。

铁素体呈白亮多边形晶粒,晶界呈暗色的网络,并在晶界的局部区域分布有微量亮白窄条状三次渗碳体(Fe3CⅢ)。

(2)亚共析钢亚共析钢的碳质量分数为0.0218%~0.77%,组织为铁素体(白亮多边形块状)加珠光体(暗色层状)。

(3)共析钢共析钢的碳质量分数为0.77%,其室温组织为单一的珠光体。

其中白亮铁素体和暗色渗碳体以层状相间。

(4)过共析钢过共析钢的碳质量分数为0.77%~2.11%,在室温下的平衡组织为珠光体加二次渗碳体。

其中,二次渗碳体呈白亮网状分布在暗色珠光体的晶界上。

(5)亚共晶白口铸铁亚共晶白口铸铁的碳质量分数为2.11%~4.3%,室温下的平衡组织为珠光体、二次渗碳体加变态莱氏体。

其中变态莱氏体为基体,在变态莱氏体基体上分布着暗色块状或椭圆状的珠光体,在珠光体晶体边缘有一薄层白亮二次渗碳体。

(6)共晶白口铸铁共晶白口铸铁的碳质量分数为4.3%,其室温下的显微组织为变态莱氏体,其中渗碳体为白亮基体,珠光体以暗色细条状和点状嵌镶分布在白亮渗碳体基体上。

(7)过共晶白口铸铁过共晶白口铸铁的碳质量分数为4.3%~6.69%,其室温下的显微组织为变态莱氏体加一次渗碳体。

一次渗碳体呈白亮板条状嵌镶分布在变态莱氏体的基体上。

三、实验仪器、材料1.金相显微镜2.金相试样四、实验内容及步骤内容:1.通过观察分析,画出表中所列每种铁碳合金显微组织示意图,并用引线和符号标出各种组织的名称,在组织示意图下方填写合金名称、合金碳含量、显微组织名称、观察倍数、浸蚀剂等各个项目内容。

材料成型基础实验报告

材料成型基础实验报告

材料科学根底实验设计报告学生专业:材料成型及控制工程学生班级: 1306091学生学号:学生XX:指导教师报告日期: 2021 年12月目录一、综述————————————————— 3- 6 页二、选题依据——————————————— 6- 7页三、材料及仪器—————————————— 7- 8 页四、实验过程——————————————— 9-11 页五、结果及分析——————————————11-17页六、结论—————————————————17 页参考文献——————————————— 18 页一、综述1、碳钢的认知:对于被试验的材料的选取对象为铁碳合金,根据含碳量不同,可以分为碳钢和铸铁两类。

而在几种典型合金中有亚共析钢、共析钢、过共析钢。

.亚共析钢:亚共析钢含碳量为0.0218%~0.77%,从液态结晶完毕时得到的单相奥氏体,奥氏体冷却至A3线温度时,开场析出铁素体,称先共析铁素体。

随着温度的降低,析出过程持续进展,但温度降到Ar1温度时,具有共析成分的奥氏体转变为珠光体,最终得到由铁素体和珠光体构相组成的两相组织。

共析钢:共析钢即T8钢,室温下组织全部为珠光体,在较大的放大倍数下,可一分辨出珠光体中的铁素体与渗碳体。

过共析钢:含碳量超过0.77%的钢称为过共析钢,过共析钢从液态结晶完毕得到单相奥氏体,在以后的冷却过程中,因奥氏体中的碳的溶解度变化,而沿着奥氏体晶界析出二次渗碳体,在过共析钢中二次渗碳体呈网状,过共析钢中的含碳量越高那么二次渗碳体的网络就越粗越趋于完整。

由于渗碳体是硬而脆的相,当钢中有完整的二次渗碳体网络形成时常使钢的塑形韧性大大降低。

在实验室中,根据实验条件,我们集中对两种钢型进展热处理、组织观察及硬度测定。

其中45号钢属于典型的亚共析钢,而T8钢属于共析钢。

通过对这两型号钢的实验研究,我们能够初步了解铁碳合金的热处理的组织变化后的各项指标及材料改性。

2、碳钢的热处理原理与工艺:.钢的热处理原理与工艺:热处理是对固态金属或合金采用适当方式加热、保温和冷却,以获得所需要的组织构造与性能的加工方法。

成型CAE实验报告完整版

成型CAE实验报告完整版

成型CAE实验报告完整版一、实验目的本次成型 CAE 实验的主要目的是通过模拟分析来研究材料在成型过程中的行为和性能,以便优化成型工艺参数,提高产品质量,降低生产成本,并缩短产品开发周期。

二、实验原理成型 CAE(Computer Aided Engineering,计算机辅助工程)是利用计算机软件对成型过程进行数值模拟和分析的技术。

其基本原理是基于材料力学、流体力学、传热学等相关理论,通过建立数学模型和有限元分析方法,对成型过程中的应力、应变、温度、流速等物理量进行计算和预测。

在成型 CAE 中,通常需要输入材料的性能参数(如弹性模量、屈服强度、热导率等)、成型工艺参数(如模具温度、注射速度、保压时间等)以及模具结构等信息。

软件会根据这些输入条件,自动生成网格模型,并进行求解计算,最终输出成型过程中的各种结果数据和图形。

三、实验设备与材料(一)实验设备1、计算机:配置较高的工作站或服务器,用于运行成型 CAE 软件。

2、成型 CAE 软件:选用了市场上较为成熟和广泛应用的_____软件,版本为_____。

(二)实验材料1、选用了_____材料,其主要性能参数如下:密度:_____弹性模量:_____屈服强度:_____热导率:_____四、实验步骤1、建立几何模型使用三维建模软件(如_____)创建成型产品的几何模型,并将其导入到成型 CAE 软件中。

2、划分网格在成型 CAE 软件中,对几何模型进行网格划分。

选择合适的网格类型(如四面体网格、六面体网格等)和网格尺寸,以保证计算精度和效率。

3、定义材料属性根据实验材料的性能参数,在成型 CAE 软件中定义材料的力学、热学等属性。

4、设置成型工艺参数根据实际的成型工艺条件,设置模具温度、注射速度、保压时间、冷却时间等工艺参数。

5、边界条件和加载确定模型的边界条件,如模具的固定约束、流体的入口和出口等,并施加相应的载荷。

6、求解计算运行成型 CAE 软件进行求解计算,等待计算完成。

金属材料成型生产实习总结

金属材料成型生产实习总结

金属材料成型生产实习总结
一、实习基本情况
1. 实习机构:机械制造公司
2. 实习时间:2022年7月1日-8月8日
3. 实习部门:成型生产车间
4. 实习指导老师:张老师
二、实习工作内容
1. 熟悉不同金属材料的物理和成型性能,为生产定型和试运行提供参考。

2. 掌握压铸成型设备的操作方法,与技术人员联合完成部件试验定型工作。

3. 参与机加工设备的调试和优化,提高产品质量。

4. 对生产车间进行例行检查,锁定生产瓶颈和隐患,提出改进措施。

5. 与供应商联络,解决生产中遇到的设备和部件问题。

三、实习收获
1. 加深了对金属材料加工技术原理和企业生产管理流程的认识。

2. 掌握了不同设备的操作技能,能独立完成简单的部件试运行任务。

3. 了解到产品质量直接决定企业生存与发展,培养了敬业的工作态度。

4. 实习促进了理论知识与实际操作的进一步衔接,帮助毕业后更快上手工作。

5. 收获了宝贵的企业工作经验,为今后的就业提供参考。

以上是我参加“机械制造公司”成型生产车间实习的总结。

实习期间收获颇多,对未来工作具有重要意义。

感谢指导老师的教导与公司的照顾。

混凝土成型实验报告模板

混凝土成型实验报告模板

混凝土成型实验报告模板
一、实验目的
本实验旨在通过混凝土成型实验,探究在不同配合比条件下混凝土的强度和工作性能表现,为混凝土配合比设计提供依据。

二、实验原理
混凝土由水泥、骨料、砂和水按一定配合比混合而成。

水泥在水的作用下水化反应,形成水化硅胶凝体,使混凝土凝固硬化。

影响混凝土性能的关键因素包括配合比、水灰比、养护条件等。

三、实验步骤
1.准备材料:水泥、骨料、砂、水;
2.按照设计配合比将水泥、骨料、砂混合均匀;
3.慢慢加入适量水,同时搅拌混合,直至混凝土达到设计要求的工作性;
4.将混凝土倒入模具中,用捣实棒捣实;
5.养护混凝土,待其凝结硬化。

四、实验数据记录与分析
根据实验记录,不同配合比条件下混凝土的抗压强度和抗折强度均有所差异。

在水灰比相同时,增大水泥用量可以提高混凝土的强度,但会降低其工作性。

五、实验结论
1.混凝土的强度与配合比、水灰比密切相关,设计合理的配合比对混凝土性能至关
重要;
2.在实际工程中,应根据具体工程要求和材料特性选择合适的混凝土配合比,以确
保工程质量。

六、实验总结
通过本次混凝土成型实验,我们不仅加深了对混凝土材料性能的认识,还锻炼了实验操作技能。

在未来的工程实践中,将能更好地设计和应用混凝土配合比,为工程建设提供可靠支撑。

以上为混凝土成型实验报告模板,希望对您有所帮助。

材料成型专业综合实验报告

材料成型专业综合实验报告

材料成型专业综合实验报告一、引言材料成型是材料科学与工程的重要分支之一,涉及到材料的加工与制造过程。

本次实验旨在通过材料成型方法的实际操作,探讨材料成型技术在工程实践中的应用。

二、实验目的1.熟悉常见的材料成型方法,如挤压、注塑、拉伸等;2.学习掌握各种材料成型方法的工艺参数设置方法;3.分析与比较不同材料成型方法的优缺点。

三、实验内容与步骤1.实验材料准备:准备实验所需的材料,包括金属坯料、塑料颗粒等;2.挤压实验:将金属坯料放入挤压机中,调整挤压机的工艺参数,如温度、压力等,进行挤压成型;3.注塑实验:将塑料颗粒放入注塑机中,设定注塑机的工艺参数,如温度、压力等,进行注塑成型;4.拉伸实验:将金属试样放入拉伸机中,设定拉伸机的工艺参数,如应力、变形速度等,进行拉伸测试。

四、实验结果与分析1.挤压实验:经过调整挤压机的工艺参数,成功将金属坯料挤压成所需形状。

挤压成型具有高生产效率、成型连续性好、产品尺寸稳定等优点。

2.注塑实验:经过设定合适的注塑机工艺参数,成功将塑料颗粒注塑成所需形状。

注塑成型可以加工一些复杂形状的产品,具有生产周期短、产品密度均匀等优点。

3.拉伸实验:通过拉伸机的测试,获得金属试样的力学性能参数,如抗拉强度、延伸率等。

拉伸测试可以评估材料的机械性能。

五、实验总结与心得体会材料成型是工程实践中必不可少的环节,通过本次实验,我更加深入地了解到材料成型方法的具体操作和工艺参数的重要性。

不同的材料成型方法具有各自的优缺点,根据不同的产品需求和工艺要求,选择合适的成型方法很关键。

同时,了解和掌握材料的力学性能参数对于材料成型过程中的工艺优化和产品设计也非常重要。

[1]XX.材料成型实验教程[M].XX出版社,20XX.[2]XX.材料成型工艺原理[M].XX出版社,20XX.。

材料成型综合实验报告

材料成型综合实验报告

材料成型综合实验报告引言:材料成型是现代工业中非常重要的工艺流程之一、在材料成型过程中,通过加热或施加力量,使固体材料变形成所需形状,以获得具有特定性能的零件或产品。

本次实验旨在通过研究材料成型过程中的参数对成型件质量的影响,进一步理解材料成型的基本原理。

实验目的:1.研究成型温度对材料成型性能的影响;2.了解成型压力对材料成型性能的影响;3.掌握材料成型过程中的参数控制方法。

实验步骤:1.准备工作:将热塑性聚合物料片切割成相同大小的试样,并将试样放入模具中。

2.参数设定:控制成型温度和成型压力,分为三组实验。

2.1温度对比实验:分别设置高温组(200°C)、中温组(180°C)、低温组(160°C)。

2.2压力对比实验:分别设置高压组(10MPa)、中压组(8MPa)、低压组(6MPa)。

2.3常规实验组:成型温度和成型压力为180°C和8MPa。

3.进行成型:将设定好参数的试样放入成型机,按照设定的温度和压力进行成型。

4.观察记录:观察不同组实验的成型品质量情况,并记录下来。

5.数据分析:比较不同组实验的成型质量,分析温度和压力对成型件质量的影响。

结果与讨论:通过对实验数据的分析,得出以下结论:1.成型温度对于材料的成型性能有重要影响。

在较低温度下,材料的流动性降低,导致成型件表面光滑度较差,有明显的气孔和瑕疵;而在过高温度下,材料易变形,成型件容易变形失真。

合适的成型温度可以获得较好的成型质量。

2.成型压力对成型件的密实度和尺寸精度有影响。

较低的成型压力可能导致成型件内部存在空隙和缺陷,密实度较低;而较高的成型压力则会使成型件的尺寸精度变差。

适当的成型压力可以得到理想的成型质量。

3.温度和压力是相互关联的参数,需要在实际操作中综合考虑。

热塑性聚合物的成型温度区间较窄,过高或过低温度均会影响成型品质量。

在实际生产中,应根据材料的特性、成型工艺与设备的匹配情况,综合考虑温度和压力的控制。

材料成型实验报告

材料成型实验报告

材料成型实验报告材料成型实验报告引言:材料成型是一项重要的工程技术,通过对材料进行加工和塑造,使其具备所需的形状和性能。

本实验旨在研究不同成型方法对材料性能的影响,并探讨其在工程实践中的应用。

实验一:压力成型压力成型是一种常见的成型方法,通过施加压力使材料变形,从而获得所需的形状。

本实验采用了热压法和冷压法两种不同的压力成型方式。

实验结果显示,热压法能够使材料更容易塑性变形,且成型后的材料具有更高的密度和更好的机械性能。

而冷压法则在成型过程中需要更大的压力,并且材料的塑性变形能力较差,但成型后的材料具有更好的尺寸精度和表面质量。

实验二:注塑成型注塑成型是一种常用的塑料成型方法,通过将熔融状态的塑料注入模具中,然后冷却固化,得到所需的形状。

本实验选择了不同温度和压力条件下的注塑成型实验。

实验结果显示,温度和压力对注塑成型的影响较大。

当温度过高时,塑料容易烧结和变形,而温度过低则会导致成型不完整或者产生内部缺陷。

适当的压力能够保证塑料充分填充模具,并确保成型件的尺寸精度和表面质量。

实验三:挤压成型挤压成型是一种常见的金属成型方法,通过将金属材料推入模具中,使其通过模具的孔口而得到所需的形状。

本实验选择了不同挤压速度和温度条件下的挤压成型实验。

实验结果显示,挤压速度和温度对挤压成型的影响较大。

较高的挤压速度能够使金属材料更好地填充模具,并减少成型过程中的缺陷。

而适当的温度能够提高金属材料的塑性变形能力,使其更容易形成所需的形状。

应用:材料成型技术在工程实践中有着广泛的应用。

例如,压力成型常用于金属加工、塑料制品和陶瓷制品的生产中。

注塑成型常用于塑料制品的生产,如塑料零件、塑料容器等。

挤压成型则常用于金属管材、铝型材等的生产。

结论:通过本实验的研究,我们可以得出以下结论:不同的成型方法对材料性能有着不同的影响;温度和压力是影响成型质量的重要因素;材料成型技术在工程实践中具有广泛的应用前景。

总结:材料成型是一项重要的工程技术,通过不同的成型方法可以获得所需的形状和性能。

材料成型设备实验报告

材料成型设备实验报告

材料成型设备实验报告仿真注塑成型机与冲压拉伸机操作实习报告一.实习目的及意义通过对材料成形设备专业基础课程的学习,认识到了当今工业生产中成形设备的发展趋势。

经过百余年的发展,常规成形设备的品种已基本发展成为规格齐全,结构成熟,辅机完整的系列产品。

正朝着精密,高品质,高校,节能,低噪音及可持续发展的方向迈进。

本课程是建立在机械原理,机械设计基础,液压传动,金属工艺学。

高分子材料学的等技术课程上。

通过学习,对各种成形设备的原理与特点,典型结构,设备性能,有一定的了解和掌握。

为以后学好专业课打好基础。

二.实习内容塑料成型加工设备是在橡胶机械和金属压铸机的基础上发展起来的。

自19世纪70年代出现聚合物注射成型工艺和简单的成型设备以来,作为一个产业,直至20世纪30年代才获得较快发展,塑料成型加工设备逐渐商品化,注射成型和挤出成型已成为工业化的加工方法。

吹塑成型是仅次于注塑与挤出的第三大塑料成型方法,也是发展最快的一种塑料成型方法。

2.1塑料注射成型机塑料注射成型是一种注射兼模塑的成型方法,其设备称塑料注射成型机,简称注塑机。

塑料注射成型机是将热塑性塑料和热固性塑料制成各种塑料制品的主要成型设备。

普通塑料注射成型机是指目前应用最广泛的,加工热塑性塑料的单螺杆或柱塞的卧式、立式或角式的单工位注塑机。

其他类注射成型机如热固性塑料、结构发泡、多组分、反应式、排气式等注塑机,是指被加工物料和机器结构特征都与普通塑料注射成型机有较大差别的一些注射成型机。

全世界约有30%的塑料原料用于注塑成型,而注塑机约占塑料机械总产量的40%,并已成为塑料加工业和塑料机械行业中的一个重要组成部分,是塑料机械产品中增长最快、品种规格、生产数量最多的机种之一。

2.11设备规格及主要技术参数本仿真注塑成型机,工作台规格尺寸1370X450mm,安装模具的最大尺寸200x200x300mm,模具顶出最大行程25mm,注塑行程120mm,机器外形尺寸1370X450X1300mm,气动机械手,三轴驱动,锁模力500kg,注塑原料PE,PP,ABS.,开模行程100—300mm.注塑筒的温控温度180度—350度。

材料成型实验报告

材料成型实验报告

材料成型实验报告实验目的本实验旨在通过材料成型实验,了解材料成型的基本原理和操作步骤,掌握常见的材料成型方法。

实验材料和设备•材料:塑料颗粒•设备:注塑机、模具、温度计实验步骤1. 准备工作1.检查注塑机和模具的工作状态,确保设备正常运行。

2.清洁和准备模具,确保模具表面干净,并喷洒模具释模剂。

2. 调整注塑机参数1.打开注塑机电源,启动机器。

2.根据所使用的材料类型和厚度,调整注塑机的注射压力、注射速度、保压时间和保压压力。

这些参数会影响注塑成型的质量和效率。

3. 加热注塑机和模具1.打开注塑机的加热系统,将注塑机和模具加热到适当的温度。

温度的设定值应根据材料的熔点和热性能来确定。

4. 加入塑料颗粒1.将塑料颗粒倒入注塑机的料斗中。

2.启动注塑机的螺杆旋转,将塑料颗粒从料斗中输送到注射缸中。

5. 开始注射成型1.将注塑机的模具装配到机器上,并确保模具的正确定位。

2.调整注塑机的注射速度和注射压力,开始注射塑料到模具中。

3.等待一段时间,直到塑料充分填充模具腔体。

4.注射完成后,保持一定的压力,以确保塑料在模具中冷却和固化。

6. 模具开合和释模1.关闭注塑机的注射系统,开始模具开合。

2.根据模具的设计和注塑机的操作方式,通过手动或自动控制,打开模具并取出注塑制品。

7. 冷却和处理注塑制品1.将注塑制品放置在通风良好的地方,让其自然冷却,以减少变形的可能性。

2.根据注塑制品的要求,进行后续处理,如修整、研磨、组装等。

实验结果和讨论本次实验成功实现了塑料的注射成型,获得了良好的注塑制品。

通过调整注塑机参数和控制模具操作,得到了理想的注射速度、注射压力和保压时间,保证了注塑制品的质量和外观。

在模具开合和释模过程中,没有出现卡模和破损等问题,提高了生产效率。

然而,也存在一些问题需要改进。

首先,由于材料的选择和模具设计的限制,注塑制品存在一定的收缩和变形。

因此,在后续处理中需要对注塑制品进行修整和研磨,以达到设计要求。

模压成型实验报告

模压成型实验报告

模压成型实验报告1. 引言模压成型是一种常用的塑料加工方法,通过在高温和高压条件下将塑料原料加工成所需形状的制品。

本实验旨在探究模压成型过程中对材料性能的影响,以及优化成型工艺参数对成品质量的改善效果。

2. 实验材料与方法2.1 实验材料实验所用塑料原料为聚丙烯(PP),具有良好的加工性能和机械性能,是一种常见的工程塑料材料。

2.2 实验方法1.准备模具:设计并加工好与实验要求相符的模具。

2.预热模具:将模具放入模压机中,在设定的温度下进行预热处理。

3.原料准备:将聚丙烯切割成适当大小的颗粒,装入模具中。

4.开始成型:启动模压机,施加高温和高压条件进行成型。

5.冷却处理:待成型完成后,将产品冷却至室温,取出模具。

3. 实验结果与分析经过模压成型实验,我们观察到以下现象和结果:1.成型温度对成品质量具有重要影响:当温度过高时,可能导致产品表面出现熔融痕迹或不均匀的现象;当温度过低时,产品可能无法完全填充模具,导致成品缺陷。

2.压力大小对产品密度和强度有显著影响:通过调节成型压力,可以改变产品的密度和结晶度,进而影响其力学性能。

3.成型时间对产品外观质量影响较大:适当延长成型时间可以有利于塑料颗粒充分融化和填充模具,从而获得外观更加完整的成品。

4. 结论与展望通过模压成型实验,我们得出以下结论:1.成型温度、压力和时间是影响模压成型产品质量的重要参数,需要进行合理调节以获得理想的成品。

2.模具设计和加工精度也对产品质量有重要影响,需要在实际生产中进行精益求精。

通过进一步研究和实践,我们可以优化模压成型工艺,提高产品质量和生产效率,为塑料制品生产领域的发展贡献更多的经验和技术。

材料成型的实验报告

材料成型的实验报告

材料成型的实验报告实验目的本实验旨在探究不同材料的成型性能,通过观察和比较不同材料在加热和压力作用下的变化,寻找最适合材料成型的工艺参数。

实验原理材料成型是将原材料通过加热和外加压力使其变形,使得材料能够达到所需的形状和性能的工艺过程。

加热可以使材料软化和流动性增强,而外加压力则可以使其塑性变形,并进一步改变材料的形状。

在本实验中,我们将利用不同材料的热塑性特点,通过热压成型的方式将材料变形成所需的形状。

实验步骤1. 材料准备我们选取了三种不同材料:塑料、金属和橡胶。

这三种材料在热塑性特性上有较大差异,可以体现出不同的成型性能。

2. 加热处理首先,我们将三种材料分别放置在加热炉中进行预热处理。

需要预热的目的是为了降低材料的硬度,增加其塑性,提供更好的成型条件。

每种材料的预热温度和时间不同,需根据材料的具体特性进行调整。

3. 成型实验在材料完成预热后,我们将它们放置在成型模具中,然后施加适当的压力进行加压成型。

通过调整模具的形状和尺寸,我们可以获得不同形状的成型件。

同时,我们还可以调整压力和成型温度,以观察不同参数对成型结果的影响。

4. 观察和分析成型完成后,我们将取出成型件进行观察和分析。

我们将重点关注以下几个方面:- 成型件的形状和尺寸是否符合要求;- 成型件的表面质量和光洁度;- 成型件的强度和可靠性。

实验结果与讨论经过实验,我们获得了各种材料在不同条件下的成型件。

通过观察和比较,我们得出以下结论:1. 塑料具有较好的热塑性特性,易于加热和塑性变形,成型件的表面质量较好;2. 金属虽然在加热后具有较好的塑性,但由于其高熔点和导热性能,加热和冷却过程需要较长时间,且成型件表面易出现氧化现象;3. 橡胶具有较好的弹性和变形性,易于成型,但成型件的尺寸稳定性较差。

实验结论根据实验结果,我们可以得出以下结论:- 塑料是最适合进行热压成型的材料,其具有较好的变形性和表面质量;- 金属虽然可以进行热压成型,但需要较长的加热和冷却时间,需要做好氧化防护措施;- 橡胶适合进行柔性成型,但对于尺寸稳定性要求较高的成型件不适用。

材料成型设计及实验报告

材料成型设计及实验报告

材料成型设计及实验报告1.引言文章1.1 概述:在工程设计和制造过程中,材料成型是一个非常重要的环节。

本报告旨在探讨材料成型设计及实验,通过对原理、方法和结果的研究分析,以期为工程领域的材料成型提供一定的参考和指导。

材料成型设计是指在工程制造过程中,通过对材料的加工成型,实现产品的设计要求和功能性能。

通过实验方法对材料成型进行研究,可以得出一些结论和分析,为未来的研究和工程应用提供一定的参考意义。

本报告将分为引言、正文和结论三个部分,分别介绍材料成型设计的原理、实验方法和实验结果,对实验结果进行分析总结,最后展望未来的研究方向。

1.2文章结构文章结构部分应该包括对整篇文章的组织结构进行说明,以帮助读者更好地理解整个文章的内容和脉络。

在这里,我们可以简要介绍整篇文章的各个部分,指明每个部分的主要内容和目的。

同时,也可以提及文章的逻辑和内在联系,以及每个部分之间的衔接和关联。

例如,我们可以介绍引言部分的作用是引出文章的主题和背景,概述了材料成型设计及实验的重要性和意义;而正文部分则详细介绍了材料成型设计原理、实验方法和实验结果;最后的结论部分则总结了整篇文章的观点和重点,对实验结果进行了分析和展望未来的研究方向。

通过这样的介绍,读者可以对整篇文章的内容有一个清晰的认识,更便于阅读和理解。

1.3 目的本报告的目的是通过对材料成型设计及实验的研究,探讨材料成型的原理和方法,并分析实验结果。

通过本次实验,我们旨在深入了解材料成型的原理和实验方法,验证相关理论,并对未来的研究提出展望。

同时,通过实验结果的分析,我们将总结出对材料成型设计的一些指导性结论,为相关领域的研究和应用提供参考和借鉴。

希望本次研究能够为材料成型设计领域的进一步发展和应用提供有益的启示和贡献。

2.正文2.1 材料成型设计原理材料成型设计是指根据需要对原材料进行加工,以获得符合特定要求的成型产品的工艺过程。

材料成型设计的原理主要包括材料选择、工艺选型、成型模具设计等方面。

工程材料及材料成型基础实验报告

工程材料及材料成型基础实验报告

实验一金属材料硬度的测定实验一、实验目的1、了解布氏硬度和洛氏硬度的测定方法。

2、掌握布氏、洛氏硬度试验计的基本构造和操作方法。

二、实验内容及步骤1、布氏硬度的测定布氏硬度的测定在HB-3000型布氏硬度机上进行。

(1)实验原理布氏硬度数值通过布氏硬度试验测定。

布氏硬度试验是指用一定直径的球体(钢球或硬质合金球)以相应的试验力压入被测材料或零件表面,经规定保持时间后卸除试验力,通过测量表面压痕直径来计算硬度的一种压痕硬度试验方法。

布氏硬度值是试验力除以压痕球形表面积所得的商。

使用淬火钢球压头时用符号HBS,使用硬质合金球压头时用符号HBW,计算公式如下:HBS(HBW)=0.102式中:F—试验力(N);D—球体直径(mm);d—压痕平均直径(mm)。

由上式可以看出,当F、D一定时,布氏硬度值仅与压痕直径d的大小有关。

所以在测定布氏硬度时,只要先测得压痕直径d,即可根据d值查有关表格得出HB值,并不需要进行上述计算。

国家标准GB231-1984规定,在进行布氏硬度试验时,首先应选择压头材料,布氏硬度值在450以下(如灰铸铁、有色金属及经退火、正火和调质处理的钢材等)时,应选用钢球作压头;当材料的布氏硬度值在450~650时,则应选用硬质合金球作压头。

其次是根据被测材料种类和试样厚度,按照表1—1所示的布氏硬度试验规范正确地选择压头直径D、试验力F和保持时间t。

布氏硬度习惯上只写出硬度值而不必注明单位,其标注方法是,符号HBS或HBW之前为硬度值,符号后面按以下顺序用数值表示试验条件:球体直径、试验力,试验力保持时间(10~15s不标注)例如:120HBS10/1000/30,表示直径10mm钢球在9.80KN(1000kgf)的试验力作用下,保持30s测得的布氏硬度值为120。

500HBW5/750,表示用直径5mm的硬质合金球在7.35KN(750kgf)试验力作用下,保持10~15s测得的布氏硬度值为500。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础实验设计报告学生专业:材料成型及控制工程学生班级: 1306091学生学号:学生姓名:指导老师报告日期: 2015年12月目录一、综述————————————————— 3- 6 页二、选题依据——————————————— 6- 7页三、材料及仪器—————————————— 7- 8 页四、实验过程——————————————— 9-11 页五、结果及分析——————————————11-17页六、结论—————————————————17 页参考文献——————————————— 18 页一、综述1、碳钢的认知:对于被试验的材料的选取对象为铁碳合金,根据含碳量不同,可以分为碳钢和铸铁两类。

而在几种典型合金中有亚共析钢、共析钢、过共析钢。

.亚共析钢:亚共析钢含碳量为0.0218%~0.77%,从液态结晶结束时得到的单相奥氏体,奥氏体冷却至A3线温度时,开始析出铁素体,称先共析铁素体。

随着温度的降低,析出过程持续进行,但温度降到Ar1温度时,具有共析成分的奥氏体转变为珠光体,最终得到由铁素体和珠光体构相组成的两相组织。

共析钢:共析钢即T8钢,室温下组织全部为珠光体,在较大的放大倍数下,可一分辨出珠光体中的铁素体与渗碳体。

过共析钢:含碳量超过0.77%的钢称为过共析钢,过共析钢从液态结晶结束得到单相奥氏体,在以后的冷却过程中,因奥氏体中的碳的溶解度变化,而沿着奥氏体晶界析出二次渗碳体,在过共析钢中二次渗碳体呈网状,过共析钢中的含碳量越高则二次渗碳体的网络就越粗越趋于完整。

由于渗碳体是硬而脆的相,当钢中有完整的二次渗碳体网络形成时常使钢的塑形韧性大大降低。

在实验室中,根据实验条件,我们集中对两种钢型进行热处理、组织观察及硬度测定。

其中45号钢属于典型的亚共析钢,而T8钢属于共析钢。

通过对这两型号钢的实验研究,我们能够初步了解铁碳合金的热处理的组织变化后的各项指标及材料改性。

2、碳钢的热处理原理与工艺:.钢的热处理原理与工艺:热处理是对固态金属或合金采用适当方式加热、保温和冷却,以获得所需要的组织结构与性能的加工方法。

金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。

(1)碳钢热处理加热温度范围①退火温度:一般将亚共析钢加热至A c3+(30~50)℃(完全退火);共析钢和过共析钢加热至Ac1+(10~20)度(球化退火),目的之得到球状渗碳体、降低硬度、改善高碳钢的切削性能。

②正火温度:一般将亚共析钢加热至Ac3(30~50)℃;过共析钢加热至Acm+(30~50)℃,即加热到奥氏体单相区。

退货和正火的加热温度范围选择。

③淬火温度:一般亚共析钢加热至A c3+(30~50)℃;共析钢和过共析钢加热至A c1+(30~50)℃.钢的成分,原始组织及加热速度等都影响临界点A c1、A c2、及A cm的位置。

在碳钢热处理手册或材料手册中可以查到各种钢的热处理温度,热处理时不能人为随意提高加热温度,因为加热温度过高时,晶粒容易长大,氧化、脱碳和变性严重,也不能任意降低温度,会影响钢的强度和硬度。

(2)碳钢热处理加热温度的选择回火温度的选择:钢淬火后都要回火,回火温度决定于最终要求的组织和性能。

按加热温度高低,回火可分为3类。

a低温回火:工件在150~250℃进行的回火。

目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性.回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。

力学性能:58~64HRC,高的硬度和耐磨性。

应用范围:主要应用于各类高碳钢的工具、刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。

b中温回火:工件在350~500 ℃之间进行的回火。

目的是得到较高的弹性和屈服点,适当的韧性。

回火后得到回火屈氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。

力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。

应用范围:主要用于弹簧、发条、锻模、冲击工具等。

c高温回火:工件在500~650℃以上进行的回火。

目的是得到强度、塑性和韧性都较好的综合力学性能。

回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。

力学性能:25~35HRC,较好的综合力学性能。

应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。

3、碳钢的组织观察由于选择的材料为T8钢和45号钢,低碳钢的含碳量较低,故经热处理后的结晶组织除铁素体和珠光体,还有不同形态的马氏体和索氏体。

(1)铁素体的组织铁素体晶界圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。

钢中铁素体以片状、块状、针状和网状存在。

一般情况下,成细条状分布在奥氏体晶界,有时也呈块状类型的铁素体称为先共析铁素体或组织上自由的铁素体。

随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。

铁素体还是珠光体组织的基体。

在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。

(2)珠光体的组织珠光体是由奥氏体发生共析转变同时析出的,铁素体与渗碳体片层相间的组织,是铁碳合金中最基本的五种组织之一。

得名具有珍珠般的光泽。

其形态为铁素体薄层和渗碳体薄层交替叠压的层状复相物,也称片状珠光体。

在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为粒状珠光体。

(3)马氏体的组织马氏体是将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。

马氏体通常有片状、板条状,但金相观察中通常表现为针状(如图2)。

一般当Wc<0.3%时,钢在马氏体形态同乎全为板条马氏体;当Wc>1.0%时,则几乎全为片状马氏体;当Wc=0.3%-1.0%时,为板条马氏体和片状马氏体的混合物,随含碳量的升高,淬火钢中板条马氏体的量下降,片状马氏体的量上升.高碳钢在正常温度淬火时,细小的奥氏体晶粒和碳化物都能使其获得细针状马氏体组织,这种组织在光学显微镜下无法分辨称为隐针马氏体.(4)索氏体的组织索氏体是钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。

索氏体组织属于珠光体类型的组织,在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体(GB/T7232标准)。

其实质是一种珠光体,但其组织比珠光体组织细,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(250~350nm),碳在铁素体中已无过饱和度,是一种平衡组织。

索氏体具有良好的综合机械性能。

4、碳钢的硬度测定实验采用洛氏硬度仪测定,洛氏硬度是以顶角为120°的金刚石圆锥体(或直径为Φ1.588㎜的淬火钢球)作压头,以规定的试验力使其压入试样表面。

试验时,先加初试验力,然后加主试验力。

压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。

洛氏硬度值由h的大小确定,压入深度h越大,硬度越低;反之,则硬度越高。

一般说来,按照人们习惯上的概念,数值越大,硬度越高。

因此采用一个常数c减去h来表示硬度的高低。

并用每0.002mm的压痕深度为一个硬度单位。

由此获得的硬度值称为洛氏硬度值,用符号HR表示。

由此获得的洛氏硬度值HR 为一无名数,试验时一般由试验机指示器上直接读出。

洛氏硬度的三种标尺中,以HRC应用最多,一般经淬火处理的钢或工具都采用HRC测量。

在中等硬度情况下,洛氏硬度HRC 与布氏硬度HBS之间关系约为1:10,如40HRC 相当于400HBS 。

如50HRC,表示用HRC标尺测定的洛氏硬度值为50。

硬度值应在有效测量范围内(HRC为20-70)为有效。

二、选题依据1、碳钢的用途:碳素钢炉炼钢﹑炉外喷吹﹑连续铸钢和连续轧制等新技术是指通常含碳量小于1.35%的铁碳合金﹐其中还含有限量以内的硅﹑锰和磷﹑硫等杂质及其它微量的残余元素。

碳素钢是近代工业中使用最早﹑用量最大的基本材料﹐世界各工业国家﹐在努力增加低合金高强度钢和合金钢产量的同时﹐也非常注意改进碳素钢质量﹐扩大品种和使用范围。

特别是20世纪50年代以来﹐氧气转被普遍采用﹐进一步改善了碳素钢的质量﹐扩大了使用范围。

目前碳素钢的产量在各国钢总产量中的比重﹐约保持在80%左右﹐它不仅广泛应用于建筑﹑桥梁﹑铁道﹑车辆﹑船舶和各种机械制造工业﹐而且在近代的石油化学工业﹑海洋开发等方面﹐也得到大量使用。

2、T8钢性能:T8模具钢属于抗冲击碳素工具钢、冷作模具钢、淬硬型塑料模具用钢,该钢无网状碳化物析出倾向,塑性、韧性优于T10A钢,淬透性与T10A钢相近或稍高,适用于制作较大截面的模具。

重载模具采用T8A模具钢,进行预先调质球化处理,效果较好。

调质处理硬度22-26HRC;火焰淬火硬度55-60HRC。

该钢可加工性好,价格低廉,来源容易,但缺点是淬透性低,耐磨性差,淬火变形大。

该钢完全球化的最低加热温度为740℃,加热到780℃退火,即出现大量带棱角的长条状碳化物。

45号钢用途:45号钢广泛用于机械制造,这种钢的机械性能很好。

但是这是一种中碳钢,淬火性能45号钢广泛用于机械制造,这种钢的机械性能很好。

但是这是一种中碳钢,淬火性能并不好,45号钢可以淬硬至HRC42~46。

所以如果需要表面硬度,又希望发挥45#钢优越的机械性能,常将45#钢表面渗碳淬火,这样就能得到需要的表面硬度并不好,45号钢可以淬硬至HRC42~46。

所以如果需要表面硬度,又希望发挥45#钢优越的机械性能,常将45#钢表面渗碳淬火,这样就能得到需要的表面硬度三、材料及仪器(1)实验仪器及材料仪器:洛氏硬度仪、台式金相显微镜、预磨机、砂纸、抛光机、吹风机等。

材料;待磨试样每人一块;各号金相砂纸一套;腐蚀剂;无水乙醇; 4 %硝酸酒精;制备好的工业纯铁试样,棉球、镊子等。

(2)内容在利用金相显微镜观察、分析和研究金属材料的金相显微组织时,需要在该材料的典型部位截取样块,然后通过一系列的制备过程,制成符合要求的金相显微试样。

即在金相显微镜下可以观察到很清晰的金相显微组织,其整个过程即为磨片。

磨片的方法与步骤如下:①取样:试样尺寸通常采用直径为12~15㎜,高12~15㎜的圆柱体或边长为12~15㎜的方形式样。

相关文档
最新文档