《常考题》初中八年级数学下册第十九章《一次函数》习题(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,点O为平面直角坐标系的原点,点A在x轴正半轴上,四边形OABC是菱形.已知点B坐标为(3,3),则直线AC的函数解析式为()
A.y=
3
3
x+3B.y=3x+23C.y=﹣
3
3
x+3D.y=﹣3x+23
2.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()
A.2或5+1 B.3或5C.2或5D.3或5+1
3.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.
4.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度
是4
5
a
km/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了
5
3
h.正确的是( )
A .①②
B .①③
C .②③
D .①②③ 5.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点
E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )
A .C
B A E →→→
B .
C
D
E A →→→ C .A E C B →→→ D .A E D C →→→
6.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )
A .
B .
C .
D . 7.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )
A .12m <
B .12
m > C .m 1≥ D .1m < 8.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录: 蟋蟀每分钟鸣叫的次数 温度/°F
144 76
152 78
160 80
168 82
176
84 ) A .178 B .184 C .192 D .200
9.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A .①②③
B .①②④
C .③④
D .①③④ 10.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).
A .2,03⎛⎫ ⎪⎝⎭
B .2,02⎛⎫ ⎪ ⎪⎝⎭
C .1010⎛⎫ ⎪ ⎪⎝⎭
D .1,010⎛⎫ ⎪⎝⎭
11.函数2y x x
=+-()P x,y 一定在第( )象限 A .第一象限
B .第二象限
C .第三象限
D .第四象限 12.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( )
A .-6
B .6
C .6或3
D .6或-6 13.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )
A .经过第一、二、三象限
B .与x 轴交于()1,0-
C .与y 轴交于()0,1
D .y 随x 的增大而减小 14.一个一次函数的图象与直线112
y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个
C .6个
D .7个 15.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )
A .(0,1)
B .(0,2)
C .(43,0)
D .(43
,0)或(0,2) 二、填空题
16.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.
17.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.
①②③
18.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.
19.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.
20.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)
21.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12
x+3,则m =_____. 22.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.
23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.
24.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.
25.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.
26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(
3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题
27.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .
(1)求一次函数的表达式及点B 的坐标;
(2)画出函数3y kx =+的图象;
(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 28.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.
所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm 28 30 32 34 36 38
(1)本题反映的是弹簧的长度y 与所挂物体的质量x 这两个变量之间的关系,其中自变量是 ,因变量是 .
(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)
29.一次函数()0y kx b k =+≠满足,当112x -≤≤,121y -≤≤,求这条直线的函数解析式.
30.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:
(1)求1y ,2y 分别与x 之间的函数关系式;
(2)每月行驶的路程等于多少时,租两家的费用相同?
(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?。