高中数学人教A版必修5《基本不等式》PPT

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,此时 x 6 。
2
下面几道题的解答可能有错,如果错了, 那么错在哪里?
1.已知函数 f (x) x 1 ,求函数的 最小值和此时x的取值. x
运用均值不等式的过程中,忽略了“正数” 这个条件.
2.已知函数 f (x) x 3 (x 2) , x2
求函数的最小值.
用均值不等式求最值,必须满足“定值”这 个条件.
3.4.1《基本不等式 -均值不等式》
教学目标
• 推导并掌握两个正数的算术平均数不小于它们
的几何平均数这个重要定理;利用均值定理求极 值。了解均值不等式在证明不等式中的简单应用。 • 教学重点: • 推导并掌握两个正数的算术平均数不小于它们的 几何平均数这个重要定理;利用均值定理求极值。 了解均值不等式在证明不等式中的简单应用。
定理:如果a,b∈R,那么a2+b2≥2ab
(当且仅当a=b 时取“=”)
证明: a2 b2 2ab (a b)2
当a b时,(a b)2 0
当a
b时,(a
b)2
0
a2 b2 2ab
1.指出定理适用范围: a,b R
2.强调取“=”的条件: a b
均值定理: 如果a, b∈R+,那么 a b ab
3 求函数y sin 4 其中 (0, ]
sin
2
的最小值。
解:y sin 4 2 sin • 4
sin
sin
4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件.
如果取等的条件不成立,则不能取到该最值.
练习题: 1.已知x>0, y>0, xy=24, 求4x+6y的最小值,
3.我们把不等式 a b ab (a≥0,b≥0)
2
称为基本不等式

a
b 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明上面 的基本不等式呢?
例1.求函数 f (x) 2x2 x 3 (x 0) 的最大
并说明此时x,y的值. 当x=6,y=4时,最小值为48
2 已知a+b=4,求y=2a+2b的最小值最.小值为8
3.已知x<0,求函数 f (x) x 2 的最大值.
x
4
2 2
已知x>0,y>0,且x+2y=1,求
u
1 x,及此时x的值。
解: f (x) 1 (2x 3) ,因为x>0,
x
所以 2x 3 ≥ 2 2x 3 2 6
x
x
得 (2x 3)≤ -2 6
x
因此f(x)≤ 1 2 6
当且仅当 2x 3 ,即 x2 3 时,式中等
x
2
号成立。
由于x>0,所以 x
6 2
,式中等号成立,
因此 f (x)max 1 2 6
2
(当且仅当a=b 时,式中等号成立) 证明:∵ ( a )2 ( b)2 2 a b
∴a b 2 ab 即:a b ab
2
当且仅当a=b时 a b ab
2
称 a b为a,b 的算术平均数,
2
称 ab 为a,b 的几何平均数。
注意:1.适用的范围:a, b 为非负数. 2.语言表述:两个非负数的算术平 均数不小于它们的几何平均数。
相关文档
最新文档