考研数学:求函数渐近线的方法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学:求函数渐近线的方法
求函数渐近线是指求出函数在无穷大时的行为,是高等数学中一个比较重要的概念,
函数渐近线分为两种情况:一种是渐近不变线,另一种是渐近无穷大线。
求渐近不变线的方法很简单,只需要构造函数的分母和分子,然后在各自取x趋于无
穷大的情况下,分母分子相等即可求出该函数的渐近不变线值。
求渐近无穷大线的方法比较复杂,首先应该把函数分解为有理函数和无理函数,然后
依次对有理函数和无理函数进行求解:
对于有理函数,如果分母正次数比分子大,则当x趋于正无穷大时,函数渐近不变线
为零,如果分母正次数比分子小,则当x趋于无穷大时,渐近线等于分子和分母分别除以(x的正次数减分子正次数)的极限。
对于无理函数,如果分母当极限为无穷的时候,分母不可分解,则待分母分解成可数
的多项式,再将无穷小值约为0,最后求出渐近线。
求函数渐近线共有两种情况,其求解方法也有所不同,如果判断错误,其结果就会出
现偏差。
因此要想准确求出函数的渐近线,应加以先行判断,对不同的情况分别进行求解,才能得出正确的函数渐近线值。