数学八年级上册《三角形》单元测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上学期
《三角形》单元测试
(时间:120分钟满分:150分)
一、选择题(本大题共10小题,共30.0分)
1.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC 的大小是()
学,科,网...
A. 15°
B. 20°
C. 25°
D. 30°
2.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()
A. 38°
B. 39°
C. 42°
D. 48°
3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACB的度数是()
A. 80°
B. 85°
C. 100°
D. 110°
4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()
A. 70°
B. 44°
C. 34°
D. 24°
5.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()
A. 40°
B. 20°
C. 55°
D. 30
6.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;
②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )
A. 4个
B. 3个
C. 2个
D. 1个
7.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)•180°;④六边形的对角线有7条,正确的个数有()
A. 4个
B. 3个
C. 2个
D. 1个
8.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S 对两灯塔A,B的视角∠ASB必须()
A. 大于60°
B. 小于60°
C. 大于30°
D. 小于30°
9.若一个三角形三个内角度数的比为2:3:4,则这个三角形是()
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 等边三角形
10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()
A. 60°
B. 120°
C. 60°或120°
D. 60°或30°
二、填空题(本大题共5小题,共15.0分)
11.如图,已知∠1=75°,∠2=35°,∠3=40°,则直线a与b的位置关系是______.
12.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列______.
13.如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;
③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC,其中正确的结论有______(填序号)
14.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E 处,若DE∥AB,则∠ADC的度数为______.
15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.
三、计算题(本大题共5小题,共30.0分)
16.已知,如图,在△ABC,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.
17.如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.
18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.
19.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把”AE⊥BC”变成”点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(3)如图③,若把”AE⊥BC”变成”AE平分∠BEC”,其它条件不变,∠DAE的大小是否变化,并请说明理由.
20.如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.
四、解答题(本大题共3小题,共24.0分)
21.如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=75°,求∠DAC的度数?
22.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.
23.问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=______;若∠A=a°,则∠BEC=______.
【探究】
(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=______;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;
(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.
参考答案
一、选择题(本大题共10小题,共30.0分)
1.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC 的大小是()
学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...
A. 15°
B. 20°
C. 25°
D. 30°
【答案】B
【解析】
试题解析:∵BE平分∠ABC,
∴∠ABC=2∠ABE=2×25°=50°,
∵AD是BC边上的高,
∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,
∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
故选B.
2.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()
A. 38°
B. 39°
C. 42°
D. 48°
【答案】A
【解析】
分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答
即可.
详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,
∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故选A.
点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACB的度数是()
A. 80°
B. 85°
C. 100°
D. 110°
【答案】A
【解析】
试题分析:利用三角形的内角和外角之间的关系计算.
∵∠B=30°,∠DAE=55°,
∴∠D=∠DAE﹣∠B=55°﹣30°=25°,
∴∠ACD=180°﹣∠D﹣∠CAD=180°﹣25°﹣55°=100°.
故选C.
考点:三角形的内角和外角之间的关系
4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()
A. 70°
B. 44°
C. 34°
D. 24°
【答案】C
【解析】
试题解析:∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
考点:三角形内角和定理.
5.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()
A. 40°
B. 20°
C. 55°
D. 30
【答案】A
【解析】
【分析】
根据三角形的外角的性质可知∠DB′C=∠A+∠ADB′,只要求出∠DB′C即可.
【详解】∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,
∴∠B=60°,
根据翻折不变性可知:∠CB′D=∠B=60°,
∵∠DB′C=∠A+∠ADB′,
∴60°=20°+∠ADB′,
∴∠ADB′=40°,
故选:A.
【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是()
A. 4个
B. 3个
C. 2个
D. 1个
【答案】B
【解析】
解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;
②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;
③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,
③错误;
④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.
故答案为:①②④.
点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.
7.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)•180°;④六边形的对角线有7条,正确的个数有()
A. 4个
B. 3个
C. 2个
D. 1个
【答案】B
【解析】
①三角形的内角中最多有一个钝角;正确②三角形的中线将三角形分成面积相等的两部分;正确
③从n边形的一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)·1800,正确④六边形的对角线有7条,有18条,故错误
故选B
8.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S
对两灯塔A,B的视角∠ASB必须()
A. 大于60°
B. 小于60°
C. 大于30°
D. 小于30°
【答案】D
【解析】
试题解析:连接OA,OB,AB,BC,如图:
∵AB=OA=OB,即△AOB为等边三角形,
∴∠AOB=60°,
∵∠ACB与∠AOB所对的弧都为,
∴∠ACB=∠AOB=30°,
又∠ACB为△SCB的外角,
∴∠ACB>∠ASB,即∠ASB<30°.
故选D
9.若一个三角形三个内角度数的比为2:3:4,则这个三角形是()
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 等边三角形
【答案】B
【解析】
试题分析:根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.
解:∵三角形三个内角度数的比为2:3:4,
∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.
所以该三角形是锐角三角形.
故选B.
点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);
三角形按角分类:锐角三角形,钝角三角形,直角三角形.
10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()
A. 60°
B. 120°
C. 60°或120°
D. 60°或30°
【答案】D
【解析】
当高在三角形的内部时,如图一,因为∠BDC=90°,∠CBD=30°,所以∠C=60°;当高在三角形的外部时,如图二,因为∠BDC=90°,∠ABD=30°,所以∠DAB=60°,所以∠ABC+∠C=60°,所以∠C=30°,故选D.
图一图二
二、填空题(本大题共5小题,共15.0分)
11.如图,已知∠1=75°,∠2=35°,∠3=40°,则直线a与b的位置关系是______.
【答案】平行
【解析】
【分析】
先根据三角形外角性质,求得∠4=75°,再根据∠1=75°,即可得到∠1=∠4,进而判定a∥b.
【详解】如图:
∵∠4是∠2,∠3所在三角形的外角,
∴∠4=∠3+∠2=75°,
又∵∠1=75°,
∴∠1=∠4,
∴a∥b.
故答案为:平行.
【点睛】本题主要考查了平行线的判定以及三角形外角性质,解题时注意:内错角相等,两直线平行.12.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列______.
【答案】∠2>∠1>∠A
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】根据三角形的外角的性质得,∠2>∠1,∠1>∠A,
∴∠2>∠1>∠A,
故答案为:∠2>∠1>∠A.
【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
13.如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;
③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC,其中正确的结论有______(填序号)
【答案】①②③⑤
【解析】
【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.
【详解】∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵AD平分∠EAC,CD平分∠ACF,
∴∠DAC=∠EAC,∠DCA=∠ACF,
∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,
∴∠ADC=180°-(∠DAC+∠ACD)
=180°-(∠EAC+∠ACF)
=180°-(∠ABC+∠ACB+∠ABC+∠BAC)
=180°-(180°-∠ABC)
=90°-∠ABC,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正确;
即正确的有①②③⑤,
故答案为:①②③⑤.
【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察推理能力,有一定的难度.
14.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E 处,若DE∥AB,则∠ADC的度数为______.
【答案】110°
【解析】
【分析】
根据三角形的内角和得到∠BAC=110°,由折叠的性质得到∠E=∠C=30°,∠EAD=∠CAD,根据平行线的性质得到∠BAE=∠E=30°,根据三角形的内角和即可得到结论.
【详解】∵∠B=40°,∠C=30°,
∴∠BAC=110°,
由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,
∵DE∥AB,
∴∠BAE=∠E=30°,
∴∠CAD=40°,
∴∠ADC=180°−∠CAD−∠C=110°,
故答案为:110°.
【点睛】本题考查了三角形的内角和,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.
【答案】64°
【解析】
解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为:64°.
点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
三、计算题(本大题共5小题,共30.0分)
16.已知,如图,在△ABC,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.
【答案】∠DAE°=25°.
【解析】
【分析】
由AD⊥BC可得∠BDA=90°,由直角三角形两个锐角互余,得到∠BAD=30°,即可求得∠DAC=50°,再由AE平分∠DAC可得∠DAE=25°.
【详解】∵AD⊥BC,
∴∠BDA=90°,
∵∠B=60°,
∴∠BAD=90°-∠B=90°-60°=30°,
∵∠BAC=80°,
∴∠DAC=∠BAC-∠BAD=80°-30°=50°,
∵AE平分∠DAC,
∴∠DAE=∠DAC=×50°=25°.
【点睛】本题考查了直角三角形的定义,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.17.如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.
【答案】∠D=45°.
【解析】
试题分析:先利用三角形外角性质求出∠EAB+∠FBA=270°,DA,DB是角平分线,所以∠DAB+∠DBA=135°,易得∠D度数.
试题解析:
解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,
∵AD、BD分别是∠EAB,∠ABF的平分线,
∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,
∵∠C=90°,
∴∠ABC+∠BAC=180°﹣90°=90°,
∴∠DAB+∠DBA=×90°+90°=135°,
在△ABD中,∠D=180°﹣135°=45°.
18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.
【答案】∠A=40°,∠CDB=80°.
【解析】
试题分析:先根据已知条件∠A:∠B:∠C=2:3:4,可知把三角形内角和总共看成了9份,其中∠A,∠B,∠ACB分别占2份,3份,4份,然后根据三角形内角和等于180°,按比例分配方法可进行求解∠A,∠B,∠ACB,然后根据角平分线的定义可得∠ACD,再根据三角形外角性质计算出∠CDB.
试题解析:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,
∴∠A=×180°=40°,∠ACB=×180°=80°,
∵CD是∠ACB平分线,
∴∠ACD= ∠ACB=40°,
∴∠CDB=∠A+∠ACD=40°+40°=80°.
19.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把”AE⊥BC”变成”点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(3)如图③,若把”AE⊥BC”变成”AE平分∠BEC”,其它条件不变,∠DAE的大小是否变化,并请说明理由.
【答案】(1)∠DAE =15°;(2)∠DFE=15°;(3)∠DAE的度数大小不变.
【解析】
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°−∠ADE即可求出∠DAE的度数;
(2)求出∠ADE的度数,利用∠DFE=90°−∠ADE即可求出∠DFE的度数;
(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.
【详解】(1)∵∠B=40°,∠C=70°,
∴∠BAC=70°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=35°,
∴∠ADE=∠B+∠BAD=75°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°-∠ADE=15°.
(2)同(1),可得,∠ADE=75°,
∵FE⊥BC,
∴∠FEB=90°,
∴∠DFE=90°-∠ADE=15°.
(3)结论:∠DAE的度数大小不变.
证明:∵AE平分∠BEC,
∴∠AEB=∠AEC,
∴∠C+∠CAE=∠B+∠BAE,
∵∠CAE=∠CAD-∠DAE,∠BAE=∠BAD+∠DAE,
∴∠C+∠CAD-∠DAE=∠B+∠BAD+∠DAE,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴2∠DAE=∠C-∠B=30°,
∴∠DAE=15°.
【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.
20.如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.
【答案】∠DEC =58°.
【解析】
【分析】
先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB 得出∠BCE的度数,最后用三角形的外角即可得出结论.
【详解】在△ABC中,
∵∠A=55°,∠ACB=70°,
∴∠ABC=55°,
∵∠ABD=32°,
∴∠CBD=∠ABC-∠ABD=23°,
∵CE平分∠ACB,
∴∠BCE=∠ACB=35°,
∴在△BCE中,∠DEC=∠CBD+∠BCE=58°.
【点睛】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.
四、解答题(本大题共3小题,共24.0分)
21.如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=75°,求∠DAC的度数?
【答案】∠DAC=40°.
【解析】
【分析】
设∠1=∠2=x,再用x表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x的值,由此得出结论.
【详解】设∠1=∠2=x,则∠3=∠4=2x,
∵∠BAC=75°,
∴∠2+∠4=180°-75°=105°,即x+2x=105°,
∴x=35,
∴∠DAC=∠BAC-∠1=75°-35°=40°.
【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
22.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.
【答案】∠B=93°.
【解析】
试题分析:已知AD平分∠BAC,∠BAD=29°,根据角平分线的定义可得∠BAC=58°;再由DE垂直平分AC,根据线段垂直平分线的性质定理可得AD=DC,根据等腰三角形的性质可得∠DAE=∠DCA=29°,在△ABC中,根据三角形的内角和定理即可求得∠B=93°.
试题解析:
∵AD平分∠BAC
∴∠BAD=∠DAE,
∵∠BAD=29°,
∴∠DAE=29°,
∴∠BAC=58°,
∵DE垂直平分AC,
∴AD=DC,
∴∠DAE=∠DCA=29°,
∵∠BAC+∠C+∠B=180°,
∴∠B=93°.
23.问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=______;若∠A=a°,则∠BEC=______.
【探究】
(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=______;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;
(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.
【答案】问题:131°;90°+a°;(1)60°+a°;(2)∠BOC=∠A;(3)∠BOC=90°-∠A.
【解析】
试题分析:问题:利用三角形的内角和等于180°求出∠ABC+∠ACB,再利用角平分线的定义求出∠EBC+∠ECB,然后根据三角形的内角和等于180°列式计算即可得解;将∠A的度数换成n°,然后求解即可;
探究:(1)利用三角形的内角和等于180°求出∠ABC+∠ACB,再利用三等分角求出∠EBC+∠ECB,然后根据三角形的内角和等于180°列式计算即可得解;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACD和∠OCD,再根据角平分线的定义可得∠ABC=2∠OBC,∠ACD=2∠OCD,然后整理即可得解;
(3)根据平角的定义以及角平分线的定义表示出∠OBC和∠OCB,然后根据三角形的内角和定理列式表示出∠BOC,然后整理即可得解.
试题解析:【问题】解:∵∠A=80°,
∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,
∵BE平分∠ABC,CE平分∠ACB,
∴∠EBC=∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×100°=50°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-50°=130°;
由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A=180°-n°,
∵BE平分∠ABC,CE平分∠ACB,
∴∠EBC=∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°-n°)=90°-n°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-(90°-n°)=90°+n°;
探究:解:(1)由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A=180°-n°,
∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,
∴∠EBC=∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°-n°)=120°-n°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-(120°-n°)=60°+n°;
(2)∠BOC=∠A.
理由如下:由三角形的外角性质得,∠ACD=∠A+∠ABC,
∠OCD=∠BOC+∠OBC,
∵O是∠ABC与外角∠ACD的平分线BO和CO的交点,
∴∠ABC=2∠OBC,∠ACD=2∠OCD,
∴∠A+∠ABC=2(∠BOC+∠OBC),
∴∠A=2∠BOC,
∴∠BOC=∠A;
(3)∵O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,
∴∠OBC=(180°-∠ABC)=90°-∠ABC,∠OCB=(180°-∠ACB)=90°-∠ACB,
在△OBC中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-∠ABC)-(90°-∠ACB)=(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,
∴∠BOC=(180°-∠A)=90°-∠A.。

相关文档
最新文档