2020-2021九年级数学二模试题分类汇编——锐角三角函数综合附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021九年级数学二模试题分类汇编——锐角三角函数综合附详细答案
一、锐角三角函数
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截.
【解析】
【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.
【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=.
在Rt ABC V 中,sin AC B AB =,所以3sin 3725155
AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4sin 15125
CM AC CAM =⋅∠=⨯=,3cos 1595
AM AC CAM =⋅∠=⨯=. 在Rt ADM △中,tan MD DAM AM
∠=, 所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =+=+==-=,.
设缉私艇的速度为v海里/小时,则有24917
16
=,解得617
v=.
经检验,617
v=是原方程的解.
答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.
(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;
(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时
tan∠DBF'的值,如果不能,请说明理由.
【答案】(1)证明见解析;(2)①证明见解析;②1
2
3
【解析】
【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;
(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;
②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.
【详解】(1)由翻折可知:∠DFP=∠DFQ ,
∵PF ∥BC ,
∴∠DFP=∠ADF ,
∴∠DFQ=∠ADF ,
∴△DEF 是等腰三角形;
(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,
∵∠P′DF′=∠PDF ,
∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC ,
∴∠P′DC=∠F′DB ,
由旋转的性质可知:△DP′F′≌△DPF ,
∵PF ∥BC ,
∴△DPF ∽△DCB ,
∴△DP′F′∽△DCB ∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;
②当∠F′DB=90°时,如图所示,
∵DF′=DF=
12BD , ∴'12
DF BD =, ∴tan ∠DBF′=
'12DF BD =;
当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;
当∠DF′B=90°时,如图所示,
∵DF′=DF=
12
BD , ∴∠DBF′=30°, ∴tan ∠3
【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.
3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(2)
15
2
-+
;(3)
58
16

【解析】
试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;
(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;
(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.
试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,
∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD ,
∵BD=BC ,
∴AD=BD=CD=1,
设CD=x ,则有AB=AC=x+1,
∵△ABC ∽△BCD , ∴AB BC BD CD =
,即111x x
+=, 整理得:x 2+x-1=0, 解得:x 1=
15-+,x 2=15--(负值,舍去), 则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,
∵BD=CD ,
∴E 为CD 中点,即DE=CE=154
-+, 在Rt △ABE 中,cosA=cos36°=15
1514151AE AB -++
+==-++ 在Rt △BCE 中,cosC=cos72°=15
1541EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.
4.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .
(1)判断DE 与⊙O 的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若
314
cos,
53
BAD BE
∠==,求OE的长.
【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35
6

【解析】
试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;
(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;
(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.
试题解析:(1)DE为⊙O的切线,理由如下:
连接OD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,
∴∠C+∠A=90°,
∴∠ADO+∠CDE=90°,
∴∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为⊙O的切线;
(2)∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC=,
又∵BE=,E是BC的中点,即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数
5.问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
【答案】解:(1)22.
(2)如图,在斜边AC上截取AB′=AB,连接BB′.
∵AD平分∠BAC,∴点B与点B′关于直线AD对称.
过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.
则线段B′F的长即为所求 (点到直线的距离最短) .
在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,
∴.
∴BE+EF的最小值为
【解析】
试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:
如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,
根据垂径定理得弧BD=弧DE.
∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.
∴∠C′AE=45°.
又AC为圆的直径,∴∠A EC′=90°.
∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=2.
∴AP+BP的最小值是22
(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.
6.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上
且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形
的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中
的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).
试题解析:
(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
当x=3时,y=﹣32+3×3+4=4,
∴D(3,4).
如图,连接CD,过点D作DE⊥BC于点E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC=;
(2)过点P作PF⊥x轴于点F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
设P(x,﹣x2+3x+4),则=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
考点:1、二次函数;2、勾股定理;3、三角函数
7.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.
(1)求证:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
3
【答案】(1)证明见解析; (2) tan∠
【解析】
试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.
试题解析:证明:连接OD
∵DE 为⊙O 的切线, ∴OD ⊥DE
∵O 为AB 中点, D 为BC 的中点
∴OD‖AC
∴DE ⊥AC
(2)过O 作OF ⊥BD,则BF=FD
在Rt △BFO 中,∠ABC=30°
∴OF=12OB
, BF=3OB ∵BD=DC, BF=FD , ∴
FC=3BF=33OB 在Rt △OFC 中,tan ∠BCO=132332
OB OF FC OB ==. 点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=
12OB ,BF=3OB ,FC=3BF=33OB 是解题关键.
8.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD
=. (1)求证:AB CD =;
(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;
(3)如图,在(2)的条件下,点P 在»CG
上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.
【答案】(1)见解析;(2)见解析;(3)O e 的半径的长为10. 【解析】 【分析】 (1) 利用相等的弧所对的弦相等进行证明;
(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;
(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =,设HM n =,则有2LK KG n ==,222FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,
KG HF FK HM
=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10.
【详解】 解:(1)证明:∵»»AC BD =,∴»»»»AC CB
BD CB +=+, ∴»»AB CD =,
∴AB CD =.
(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,
∴90AJO DQO ∠=∠=︒,1122
AJ AB CD DQ =
==, 又∵AO DO =,
∴AOJ DOQ ∆≅∆,
∴OJ OQ =,
又∵OJ AB ⊥,OQ CD ⊥,
∴EO 平分AED ∠.
(3)解:∵CD AB ⊥,∴90AED ∠=︒,
由(2)知,1452
AEF AED ∠=
∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,
∵FG 为直径,∴90H ∠=︒,122
MFG S MG FH ∆=
⨯⋅=, ∵2MG =,∴2FH =, 在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,
∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒,
∵FG 为直径,∴90K ∠=︒,
∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =,
在Rt FHL ∆中,222FL FH HL =+,22FL =
设HM n =,2HL MG ==,
∴GL LM MG HL LM HM n =+=+==,
在Rt LGK ∆中,222LG LK KG =+,2LK KG ==,2222
FK FL LK n =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠,
∵1452
AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒,
∴KFG EMG HMF ∠=∠=∠,
∴tan tan KFG HMF ∠=∠,
∴KG HF FK HM =,
∴2222222n n
n =+,4n =, ∴6HG HM MG =+=,
在Rt HFG ∆中,222FG FH HG =+,210FG =,10FO =.
即O e 的半径的长为10.
【点睛】
考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.
9.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)
【答案】该停车库限高约为2.2米.
【解析】
【分析】
据题意得出3tan B =,即可得出tan A ,在Rt △ADE 中,根据勾股定理可求得DE ,即可得出∠1的正切值,再在Rt △CEF 中,设EF =x ,即可求出x ,从而得出CF 3的长.
【详解】
解:由题意得,3tan 3B =
∵MN ∥AD ,
∴∠A =∠B ,
∴tan A =33
, ∵DE ⊥AD ,
∴在Rt△ADE中,tan A=DE
AD

∵DE=3,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE
在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,
代入得(5
2
)2=x2+3x2,
解得x=1.25,
∴CF
x≈2.2,
∴该停车库限高约为2.2米.
【点睛】
本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.
10.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,
40),直线AB:y=1
3
x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作
EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.
(1)求边EF的长;
(2)将正方形EFGH沿射线FB个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).
①当点F1移动到点B时,求t的值;
②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.
【答案】(1)EF=15;(2)①10;②120;【解析】
【分析】
(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4
3
x+40,可
求出P点坐标,进而求出F点坐标即可;
(2)①易求B(0,5),当点F1移动到点B时,1010=10;
②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE
上时,在Rt△F'NF中,NF
NF'
=
1
3
,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,
4
3
MH
EM
'
=,
t=4,S=1
2
×(12+
45
4
)×11=
1023
8
;当点G运动到直线DE上时,在Rt△F'PK中,
PK
F K'
=
1
3

PK=t-3,F'K=3t-9,在Rt△PKG'中,PK
KG'

3
1539
t
t
-
-+

4
3
,t=7,S=15×(15-7)=120.
【详解】
(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),

300
40
k b
b
+=


=



4
3
40
k
b

=-


⎪=


∴y=﹣4
3
x+40,
直线AB与直线DE的交点P(21,12),
由题意知F(30,15),
∴EF=15;
(2)①易求B(0,5),
∴BF=10,
∴当点F1移动到点B时,t=1010=10;
②当点H 运动到直线DE 上时,
F 点移动到F'的距离是10t , 在Rt △F'NF 中,NF NF '=13
, ∴FN =t ,F'N =3t ,
∵MH'=FN =t ,
EM =NG'=15﹣F'N =15﹣3t ,
在Rt △DMH'中,
43
MH EM '=, ∴
41533
t t =-, ∴t =4, ∴EM =3,MH'=4,
∴S =
1451023(12)11248
⨯+⨯=; 当点G 运动到直线DE 上时,
F 点移动到F'10,
∵PF =10
∴PF'10t ﹣10,
在Rt △F'PK 中,
13
PK F K =',
∴PK=t﹣3,F'K=3t﹣9,
在Rt△PKG'中,PK
KG'

3
1539
t
t
-
-+

4
3

∴t=7,
∴S=15×(15﹣7)=120.
【点睛】
本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.
11.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=3,tan∠PDA=3
4
,求OE的长.
【答案】(1)见解析;(2
5.【解析】
【分析】
(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=3
4
,可求出CD=2,进而求得
OC=3
2
,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.
【详解】
(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,
∵DE⊥PO,
∴∠PAO=∠E=90°,
∵∠AOP=∠EOD,
∴∠APO=∠EDO,
∴∠EPD=∠EDO.
(2)连接OC,
∴PA=PC=3,
∵tan∠PDA=3
4

∴在Rt △PAD 中,
AD=4,PD=22PA AD +=5, ∴CD=PD-PC=5-3=2,
∵tan ∠PDA=34
, ∴在Rt △OCD 中,
OC=32
, OD=22OC CD +=52
, ∵∠EPD=∠ODE ,∠OCP=∠E=90°,
∴△OED ∽△DEP ,

PD DO =PE DE =DE OE
=2, ∴DE=2OE, 在Rt △OED 中,OE 2+DE 2=OD 2,即5OE 2=2
52⎛⎫ ⎪⎝⎭
=254, ∴OE=5.
【点睛】
本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=34
,得线段的长是解题关键.
12.如图,已知二次函数212
y x bx c =
++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P .
(1)求这个二次函数解析式;
(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标; (3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.
【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-
7 5,
14
5
).
【解析】【分析】
(1)将点A、
B坐标代入二次函数表达式,即可求解;
(2)利用S△ABC= 1
2
×AC×BH=
1
2
×BC×y A,求出sinα=
22
2105
BH
AB
==,则tanα=
1
2
,在
△PMD中,tanα= MD
PM
=
1
2
22
x
=
+
,即可求解;
(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.
【详解】
(1)将点A、B坐标代入二次函数表达式得:
9
633
2
1
2
b
b c

=-+
⎪⎪

⎪=--+
⎪⎩
,解得:
1
3
2
b
c
=-



=-
⎪⎩

故:抛物线的表达式为:y=1
2
x2-x-
3
2

令y=0,则x=-1或3,令x=0,则y=-3
2

故点C坐标为(3,0),点P(1,-2);
(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,
由题意得:AB=210,AC=62,BC=4,PC=22,
S△ABC=1
2
×AC×BH=
1
2
×BC×y A,
解得:BH=22,
sinα=BH
AB
=
22
210
=
5
,则tanα=
1
2

由题意得:GC=2=PG,故∠PCB=45°,
延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,
在△PMD中,tanα=MD
PM
=
22
x+
=
1
2

解得:x=22,则CD=2x=4,
故点P(7,0);
(3)作点A关于对称轴的对称点A′(5,6),
过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,
直线AP表达式中的k值为:8
4-
=-2,则直线A′N表达式中的k值为
1
2

设直线A′N的表达式为:y=1
2
x+b,
将点A′坐标代入上式并求解得:b=7
2

故直线A′N的表达式为:y=1
2
x+
7
2
…①,
当x=1时,y=4,
故点M(1,4),
同理直线AP的表达式为:y=-2x…②,
联立①②两个方程并求解得:x=-7
5

故点N(-7
5

14
5
).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.
13.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =
3
5
,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;
(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =3
20
ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =
24(04)220
(410)3
3t t t t t ⎧⎪
⎨-+<⎪⎩剟
…,S 的最大值为503.(3)3或7. 【解析】 【分析】
(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,2220
1233t t -+= 【详解】
解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =
35
, 10cos OB
BC B
∴=
= 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,
∴点D 的坐标为(10,8).
(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,
∴S =
1
2PQ •OQ =4t , ∵4>0,
∴当t =4时,S 取得最大值,最大值为16;
②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:
4k b 010k b 8+=⎧⎨
+=⎩,解得:4k 3
16
b 3⎧=⎪⎪⎨⎪=-⎪⎩
, ∴直线AD 的解析式为416
33
y x =-. 当x =t 时,416
33
y t =
-, 4164
8(10)3
33PQ t t ⎛⎫∴=--=- ⎪⎝⎭
21220
233
S PQ OP t t ∴=
⋅=-+ 22202502
(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为
503
. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)3
3t t t t t ⎧⎪
⎨-+<⎪⎩剟
…,S 的最大值为503.
(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,2220
33
t t -
+=12, 解得:t 1=5
(舍去),t 2=
. 综上所述:在直线l 移动过程中,存在t 值,使S =
3
20
ABCD S 菱形,t 的值为3或

【点睛】
考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.
14.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为,抛物线的解析式为;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
【答案】(1),;
(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.
【解析】
【分析】
(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;
(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;
(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.
【详解】
解:(1)把点坐标代入直线表达式,
解得:,则:直线表达式为:,令,则:,
则点坐标为,
将点的坐标代入二次函数表达式得:,
把点的坐标代入二次函数表达式得:,
解得:,
故:抛物线的解析式为:,
故:答案为:,;
(2)①∵在线段上,且轴,
∴点,,
∴,
∵,
∴抛物线开口向下,
∴当时,有最大值是3,
②当时,点的纵坐标为-3,
把代入抛物线的表达式得:,解得:或0(舍去),∴;
当时,∵,两直线垂直,其值相乘为-1,
设:直线的表达式为:,
把点的坐标代入上式,解得:,则:直线的表达式为:,
将上式与抛物线的表达式联立并解得:或0(舍去),
当时,不合题意舍去,
故:使为直角三角形时的值为3或;
(3)∵,,
在中,,则:,,
∵轴,
∴,
若抛物线上有且只有三个点到直线的距离是,
则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.
当过点的直线与抛物线有一个交点,
点的坐标为,设:点坐标为:,
则:,过点作的平行线,
则点所在的直线表达式为:,将点坐标代入,
解得:过点直线表达式为:,
将拋物线的表达式与上式联立并整理得:,

将代入上式并整理得:,
解得:,则点的坐标为,
则:点坐标为,则:,
∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,
即:过点与平行的直线与抛物线的交点为另外两个点,即:、,
直线的表达式为:,将该表达式与二次函数表达式联立并整理得:
,解得:,
则点、的横坐标分别为,,
作交直线于点,
则,
作轴,交轴于点,则:,,

则:,
同理:,
故:点,,,构成的四边形的面积为:6或或.
【点睛】
本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.
15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).
【答案】1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出
在Rt△ACD中,米,CD=2AD=3
米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是,


在Rt△ACD中, (米),∴CD=2AD=3米,

∴△BOD是等边三角形,
∴(米),
∴BC=BD−CD=4.5−3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.。

相关文档
最新文档