高中数学北师大版必修1 3.5 教学设计 《对数函数y=log2x的图像和性质》(北师大)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《对数函数y =log 2x 的图像和性质》
《对数函数y =log
2x 的图像和性质》是北师大版高中数学必修一第三章第5节的内容。
本节是第二课时对数函数x y 2log =的图像和性质。
通过图形、实例进行具体分析、观察、归纳,由具体到抽象,得出指数函数的图像和性质,并能进行简单的应用。
【知识与能力目标】
(1) 由前面学习指数函数的基础上,根据函数的定义引入对数函数。
(2) 能够理解指数函数与对数函数的关系,理解反函数的定义。
(3) 会求指数函数与对数函数的反函数。
【过程与方法目标】
(1)让学生掌握指数函数与对数函数之间的关系。
(2)学会问题的转化,常规思维的迁移。
【情感态度价值观目标】
使学生通过学习对数函数,了解指数函数与对数函数之间的关系。
在学习的过程中体会研究函数要紧扣函数的定义去理解对应关系。
增强学习对数函数的积极性和自信心。
对数函数的定义的理解以及对数函数与指数函数的关系。
【教学难点】
x y a =
对数函数与指数函数之间的关系。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、导入部分
复习:1.对数函数是怎么定义的?对数函数与指数函数之间的关系是什么?
2.指数函数的图像和性质是什么?
二、研探新知,建构概念
[互动过程1]
你能画出对数函数x
y
2
log
=的图像吗?采用什么方法?传统的作图方法有哪些?
描点法:先列出的对应值表:
再用描点法画出图像
对数函数x
y
2
log
=的性质:观察对数函数x
y
2
log
=的图像
(1)过点(1,0),即x1
=时,y0
=;
(2)函数图像都在轴右边,表示了零和负数没有对数;
(3)当时, x
y
2
log
=的图像位于轴上方,即时, y>0;
x,y
y
x1
>x x1
>
当0<x <1时,
x y 2log =的图像位于轴下方,即0<x <1,y <0; (4)函数x y 2log =在上是增函数。
三、质疑答辩,发展思维 例1.观察在同一坐标系内函数
x y 2log =与函数x y 2=的图像,分析它们之间的关系。
解:从图3-16(1)上可以看出,点()b a P ,与点()a b Q ,关于直线x y =对称。
函数x y 2log =与函数x y 2=互为反函数,对应于函数x y 2log =图像上的任意一点()b a P ,,P 点关于x y =的对称点()a b Q ,总在函数x y 2=的图像上,所以,函数x y 2log =的图像与函数x y 2=的图像关于关于直线x y =对称。
(如图3.16(2))
图3-16(1)
图3.16(2)
x (0,)
+∞
课堂练习:
请同学们在同一个坐标系里画出下列函数的图像: ()()()()()2351132
1log ;2log ;3log ;4log ;5log x x x x x y y y y y =====
四、课堂小结
1、本节课你都学习了那些知识?
2、通过本节课的学习,你都掌握了那些做题技巧?
五、作业布置
作业:请你在同一坐标系中画出下列几组函数的图像. ()212;log x x y y == ()22;3x x y y ==
()323log ;log x x y y == ()114;23x x
y y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭; ()1132
5log ;log x x y y ==
略。