7、有趣的数阵图(一)

合集下载

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)
A2
4
6
B3
5
C1
2~9填入左下图的八个○中,使得每条边上的三个数之和都等 于18。
4 A
5
9 B
四条边数字总和: 4×18=72
2-9九数之和:
6
2 2+3+4+5+6+7+8+9=44
A+B+C+D=72-44=28
C
3
D 故只能选,
8
7
4+9+8+7=28
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
6 31 5 4 72
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
3
1
2
4
6
5
把2~7这六个数填入右上图的○里,使每个圆 圈上的四个数之和都等于18。
将1、2、3、4、5、6填在下图中,使每条边上三个数之和等于9。
A:(48-45)÷3=1
练 1-9一数练之:和将:11~+27+入3+下4图+5的+6○+7内=,28使得每条边上的三个数字之6和都等于12。 4
横行、竖行五数和:24+24=48
7
8
9
四条线数之和: 12×4=48 1-9数之和:
1+2+3+4+5+6+7+8+9=45 A:(48-45)÷3=1 剩下的数字平均分成四组, 每组数字之和12-1=11 所以应为: 2+9、3+8、4+7、5+6。
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.

有趣的数阵图

有趣的数阵图

有趣的数阵图有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。

不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。

有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。

其实这话不对。

填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。

例1:将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”,使图中横行三个数的和与竖行三个数据的和相等。

根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。

①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。

②中间填2,则余下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可以填?③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。

⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。

例1将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

因为表中有2行、3行,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。

根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。

你能想出其他11种填法吗?例2请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。

你能做到吗?这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。

1+2+3+4+5+6=21,用k表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。

小学三年级奥数--数阵图

小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1题。

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

人教版数学思维之有趣的数阵(一)

人教版数学思维之有趣的数阵(一)

有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。

2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。

教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。

它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。

二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相等。

解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。

再分别填入。

2、教学例2:把1~6这六个数填入○中,使三角形每边上的三个数和相等。

形式尝试,练习。

解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。

3、教学例3:把1~9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。

解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。

方法有多种。

4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。

解题思路:有2行3列,而1+2+3+5+6+7=24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。

每列和是24÷3=8,所以:(1、7);(2、6);(3、5)。

答案多种。

三、课堂练习:1、填上合适的数,使所以的边和等于18。

2、用1~5填空。

使每一边和为8。

3、填上数,使横、竖、斜和为21。

4、使横、竖、斜和相等。

教学体会:6 25151418。

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例 1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F 中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C 地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例 4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E 的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.习题九1.将1~9这九个数字分别填入右图中的九个圆圈中,使各条边上的四个圆圈内的数的和相等.2.将0.01、0.02、…、0.09这九个数分别填入右图九个圆圈内,使每条边上的四个圆圈内的数之和都等于0.2.(此题与题1共用一图)3.在右图的空白的区域内分别填上1、2、4、6四个数,使每个圆中的四个数的和都是15.。

(完整版)小学三年级奥数--数阵图

(完整版)小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1 题。

例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。

09 第九讲 有趣的数阵图(一)

09 第九讲 有趣的数阵图(一)

第7讲有趣的数阵图(一)【知识导航】1、认真分析数阵图中隐含的数量关系和数字的位置关系,以特殊的位置为突破口。

通常选择使用次数多的数作为关键数。

2、依据数阵图中的条件,建立所求的和与关键数的关系式,一般采用试验的方法,确定关键数的数值及相等的和。

3、数字比较复杂的图形,可采用化简数据,消去公共部分,设立未知量等方法。

基本训练1、把1—7这七个数分别填入下图中的七个圆圈内,使每条直线上的三个圆圈内各数之和都相等。

2、把1--11这11个数,分别填入下图的辐射型数阵图中,使每条线上三个○内数的和相等。

3、将1--9这9个数分别填入下图中,使每条线段上五个○内数的和相等。

4、把1—7这七个数分别填入圆圈内,使图中每个圆和每条直线上的三个数和都相等。

5、把1—9这九个数填入圆圈内,使每条对角线五数之和相等,大小正方形四角上四数之和也相等。

拓展提高6、下图中四个圆被相互分割成八个部分,在这八个部分中分别填入1或2,使得各圆内三个数字之和互不相同。

7、把1--10这10个数分别填入下图复合型数阵图中,使每条线上四个○内数的和相等,每个三角形三个顶点上○内的和边相等。

8、把4—9分别填入下图中的圈内,使每个圆周上四个数的和尽可能最大。

自然数(包括6在内),填入圈内,使每条线上各数的和都等于23。

10、把1-10这十个自然数填入图中的10个方格中,要求图中3个2×2的正方形中四数之和相等,那么这个和的最小值是几?想一想,算一算下图像十字路口的红绿灯吗?请你在每盏灯处分别填入1~9中的任何一个数字,让相连的每三个数相乘的得数都相同。

你能行吗?。

数阵图(一)(含详细解析)

数阵图(一)(含详细解析)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

219331857_有趣的数阵图

219331857_有趣的数阵图
当 a=1 时,每条线上的 3 个数之和是(28+1×2)÷3=10; 当 a=4 时,每条线上的 3 个数之和是(28+4×2)÷3=12; 当 a=7 时,每条线上的 3 个数之和是(28+7×2)÷3=14。 计算出了重叠数及相应的各条线上的数之和,再填数阵图就 非常容易了,如图 3、图 4、图 5 所示,是 3 种基本填法,通过调 换基本填法中数的位置(重叠数的位置不变),能得到多种填法。
7 2 631 4
5
图3
7 1 62
图5
像图 1 这样,从一个中心出发,向外作了一些线,这类的数 阵图是辐射型数阵图。解题时常用的关系式:已知各数之和+重 叠数×(线的条数-1)=一条线上各数之和×线的条数。
44
Copyright©博看网. All Rights Reserved.
图2
43
Copyright©博看网. All Rights Reserved.
极限挑战
中一种填法,通过调换数的位置(重叠数的位置不变),能得到多 种填法。
(2)确定重叠数是解题的突破口。根据题意,在计算图 1 中 3 条线上的各数之和时,重叠数被多加了 2 次。若重叠数是 a,要使 每条线上各数的和相等,那么 1+2+3+4+5+6+7+a+a(即 28+2a)一定是 3 的倍数。因为 a 是 1~7 中的某一个数,逐个尝试 可知,只有 1,4,7 符合要求。
要用到重叠数,确定重叠数是解题的突破口。
先算出所给 6 个数的和是 1+2+3+4+5+6=21,再思考 3
个重叠数是几。因为每条线上 3 个数的和是 9,所以 3 条线上各数
之和是 9×3=27,此时,3 个重叠数都被多加
了 1 次,可求出 3 个重叠数的和是 27-21=6。

小学数学数阵图

小学数学数阵图

解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4

有趣的数阵图

有趣的数阵图
顶点所标数字之和都等于18。
分析:每个面上4个数之和为18, 把这几个数前后配对(1,8)、 (2,7)、(3,6)、(4,5)。
小数学家们,接下来是你们大 展身手的时候咯!加油!
小朋友们,周六晚上见 ~~
三个顶点都被重复算了一次。所以三个顶点的 和为 6 ,在 1-----6中,只能选1、2、3 填入三 个顶点中,再将4、5、6填入另外的三个圈即可。
例2 把1~7填入下图中,使每条线段上三个 内的数的和相等.
ቤተ መጻሕፍቲ ባይዱ
分析: 中心圆填入的数是公共数,它参与3条线的连加, 这意味着每一条线的另外两数相加的和相等即可,将1-7 这7个自然数分组组合便可得到如下的结果: (1)1、(2,7)、(3,6)、(4,5)由此可得中心 圆是1。 (2)4、(1,7)、(2,6)、(3,5)由此可得中心 圆是4。 (3)7、(1,6)、(2,5)、(3,4)由此可得中心 圆是7。
例(3)在下图各圆空余部分填上1、2、4、 6,使每个圆中4个数的和都是15。
35 7
分析:由于每个圆中4个数的和为15, 求出上圆的和为15-3-5=7,易知1+6=7; 左圆另外两个圆的和为15-3-7=5,易知1+4=5; 右圆另外两个圆的和为15-5-7=3,易知1+2=3。 则中间数一定为1。
有趣的数阵图
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。
数阵图的种类繁多,绚丽多彩,这里只 向大家介绍三种数阵图:
封闭型数阵图 辐射型数阵图 复合型数阵图
例1 将1~6分别填在图中,使每条边上的三个 内的数的和都等于9.
分析: 因为 1+2+3+4+5+6 = 21 ,而 每条边上的三个数的和为9,则三条边上的和 为 9×3 = 27 , 27-21 = 6 , 这个 6 就是由于

有趣的数阵图教案

有趣的数阵图教案

《有趣的数阵图教案》一、教学目标1. 知识与技能目标- 学生能够理解数阵图的定义和基本特征。

- 学会运用不同的方法来分析和解决数阵图问题。

- 培养学生的观察能力、逻辑思维能力和创新思维能力。

2. 过程与方法目标- 通过观察、猜测、验证等活动,让学生经历探索数阵图规律的过程。

- 引导学生运用多种策略解决问题,培养学生的思维灵活性和解决问题的能力。

- 培养学生合作交流的意识和能力。

3. 情感态度与价值观目标- 激发学生对数学学习的兴趣,培养学生的数学思维和探索精神。

- 让学生体会数学与生活的紧密通联,感受数学的魅力和价值。

- 培养学生的自信心和成就感,增强学生学好数学的信心。

二、教学重难点1. 教学重点- 理解数阵图的定义和基本特征,掌握分析和解决数阵图问题的方法。

- 培养学生的观察能力、逻辑思维能力和创新思维能力。

2. 教学难点- 根据数阵图的特点,灵活运用各种方法解决问题。

- 引导学生发现数阵图中的隐藏规律,培养学生的数学思维能力。

三、教学方法讲授法、探究法、讨论法、实践法、多媒体辅助教学法。

四、教学准备多媒体课件、数阵图卡片、练习题等。

五、教学过程(一)导入新课1. 教师展示一个简单的数阵图(如九宫格数阵图),让学生观察并思考:这个数阵图有什么特点?它是如何构成的?2. 学生自由发言,共享自己的观察和思考结果。

3. 教师总结数阵图的定义:数阵图是把一些数按照一定的要求排列成一定的形状,使横行、竖行和对角线上的数的和相等的一种数学问题。

(二)探究新知1. 讲解数阵图的基本类型- 封闭型数阵图:数阵图的范围是封闭的,如正方形、圆形等。

- 不封闭型数阵图:数阵图的范围不是封闭的,如长方形、三角形等。

- 特殊型数阵图:根据数阵图的特点和要求,还有一些特殊类型的数阵图,如等差数列数阵图、等和数阵图等。

2. 探究分析数阵图的方法- 观察法:仔细观察数阵图,找出数与数之间的关系,以及数阵图的形状、位置等特点。

有趣的数阵图PPT课件

有趣的数阵图PPT课件

6
2
3 C
8
D 7
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
四条边数字总和: 4×15=60
1-8九数之和:1+2+3+4+5+6+7+8=36
A+B+C+D=60-36=24 故只能选, 8+6+3+7=24
8
1
6
4
2
不 会 做 , 就 等着受 死吧!
3
5
7
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
1
5
A
6
7
8
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
3 5
2
10 A
4 6
7
8
9
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
1 A
三条边数字总和: 3×9=27
1-6六数之和:1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
10-1=9 则2+7=3+6=4+5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通 关 小 诀 窍 :确定 中间值
三条数之和: 3×12=36 2-8数之和:1+2+3+4+5+6+7=28 中间值:(36-28)÷2=4 123567八个数分为两组,使每组中两 个数字 之和:
12-4=8 则3+5=2+6=1+7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7、有趣的数阵图(一)
学习目标:
1、学会探究辐射型数阵和封闭型数阵。

2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。

教学重点:
1、学分辨别辐射型数阵和封闭型数阵的特征。

2、学会探究辐射型数阵和封闭型数阵的规律。

教学难点:辐射型数阵和封闭型数阵的分情况讨论。

教学过程:
一、情景体验
相传,大禹治水时,洛水中出现了一个“神龟”,背上有美妙的图案,史称“洛书”。

这个图案用现在的数字翻译出来,就是三阶幻方,也就是将1-9这九个数字填在方格中,使每横行、每竖列、对角线的3个数的和都相等。

幻方经过演变就得到我们即将要学习的数阵图,他们的解题思路基本一样,接下来我们就一起看看数阵图吧!
二、思维探索(建立知识模型)
展示例1
例1:将1-5这五个数分别填入图中五个圆圈内,使相交成十字的两条直线上三个数之和都等于9。

师:两条直线上各有三个数,一共六个数相加,它们的和是多少?生:9+9=18。

师:图中总共只有五个圆圈,为什么会有六个数呢?
生:中间那个数既在横线上,也在竖线上,算了两次。

师:我们填进去的1-5相加得到的和是多少?
生:1+2+3+4+5=15。

师:是哪一个数被算了两次呢?
生:18-15=3,3被算了两次,它就是中间数。

师:那横线和竖线上剩下的两个数应该填几呢?
生:根据横线和竖线上的三个数之和都等于9,9-3=6,可以有1、5在一条直线上,2、4在一条直线上。

小结:辐射型数阵中被重复计算的是中间数,先求中间数,再求其他数。

展示例2
例2:把1-10这10个自然数,填入图中,使每条线上的数字和相等。

问如何填法?
师:图中有几条线?每条线上有几个数?
生:有三条线,每条线上有4个数。

师:这样总共就有3×4=12个数,可是我们只填了1-10这10个数呀。

生:中间的数在三条线上,被算了三次。

师:那中间数是几呢?
生:我们知道1-10这10个数相加的和是
1+2+3+4+5+6+7+8+9+10=55,中间的数重复计算两次,假设它是a,55+2a=3个和。

师:55+2a是3的倍数,那么a=1、4、7、10。

学生讨论①:当a=1时,每条线上的数字和=19,应该如何填出每条线上剩下的三个数。

学生讨论②:当a=4时,每条线上的数字和=21,应该如何填出每条线上剩下的三个数。

学生讨论③:当a=7时,每条线上的数字和=23,应该如何填出每条线上剩下的三个数。

学生讨论④:当a=10时,每条线上的数字和=25,应该如何填出每条线上剩下的三个数。

展示例3
例3:把1-9九个数分别填入图中九个圆圈内,使每条直线上三个圆圈内各数之和都相等。

师:图中有几条直线?每条线上有几个数?
生:有四条直线,每条线上有三个数。

师:那这样就会有4×3=12个数,可是题目只给了1-9这9个数啊。

生:中间的数出现在每条直线上,被算了四次。

师:那中间数是几呢?
生:我们知道1-9这9个数相加的和是1+2+3+4+5+6+7+8+9=45,中间的数重复计算三次,假设它是a,45+3a=4个和。

师:45+3a是4的倍数,那么a=1、5、9。

学生讨论①:当a=1时,每条线上的数字和=12,应该如何填出每条线上剩下的两个数。

学生讨论②:当a=5时,每条线上的数字和=15,应该如何填出每条线上剩下的两个数。

学生讨论③:当a=9时,每条线上的数字和=18,应该如何填出每条线上剩下的两个数。

三、思维拓展
展示例4
例4:把1、2、3、4、5、6这六个数分别填入下图圆圈中,使得三角形每边上的三个数的和都相等。

师:三角形每条边上的三个数的和是多少呢?
生:不知道。

师:那题目给的六个数的和是多少呢?
生:1+2+3+4+5+6=21。

师:三角形的三条边上都有三个数,这样就有九个数相加,可题目只给了六个数呀。

生:三条边顶点上的数被重复计算了。

师:假设顶点上的三个数分别是a、b、c,21+a+b+c=3个和,所以a+b+c是3的倍数。

学生讨论①:如果三个顶点分别是1、2、3,那么每条边上的和是9,如何填出另外三个数;
学生讨论②:如果三个顶点分别是1、3、5,那么每条边上的和是10,如何填出另外三个数;
学生讨论③:如果三个顶点分别是2、4、6,那么每条边上的和是11,如何填出另外三个数;
学生讨论④:如果三个顶点分别是4、5、6,那么每条边上的和是12,如何填出另外三个数。

四、融会贯通(知识模型的拓展)
展示例5
例5:把1、2、3、4、5、6、7、8这八个数分别填入下图圆圈中,使得四边形每边上的三个数的和都相等。

师:这一题能借用上一题的规律吗?
生:能,1+2+3+4+5+6+7+8=36,四条边顶点上的数被重复计算了,假设顶点上的四个数分别是a、b、c、d,36+a+b+c+d=4个和,所以a+b+c+d是4的倍数。

学生讨论①:如果四个顶点分别是1、2、3、6,那么每条边上的和是12,如何填出另外四个数;
学生讨论②:如果四个顶点分别是1、2、5、8,那么每条边上的和是13,如何填出另外四个数;
学生讨论③:如果四个顶点分别是3、4、5、8,那么每条边上的和是14,如何填出另外四个数。

展示例6
例6:将1~8八个数字,分别填入下图圆圈中,使每个小三角形顶点上三个数的和都为12。

师:图中有几个小三角形?
生:有4个。

师:有没有重复计算的数?
生:1+2+3+4+5+6+7+8=36,中间四个点上的数被重复计算了,假设中间四个点上的数分别是a、b、c、d,36+a+b+c+d=4个和,所以a+b+c+d是4的倍数。

学生讨论:如果中间四个点分别是1、2、3、6,那么每条边上的和是12,如何填出另外四个数。

五、小结:
1.通过这节课学习,你有哪些收获?。

相关文档
最新文档