七年级数学上册-第二章有理数及其运算练习题及答案

合集下载

2023-2024学年七年级数学上册《第二章 有理数及其运算》单元测试题附带答案-北师大版

2023-2024学年七年级数学上册《第二章 有理数及其运算》单元测试题附带答案-北师大版

2023-2024学年七年级数学上册《第二章有理数及其运算》单元测试题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、单选题的倒数是()1.﹣14D.以上都不对A.4 B.﹣4 C.142.下列各数中,是负整数的是())D.(−2)2A.−23B.−|−0.1|C.−(−133.已知|a|=5,b3=﹣27,且a>b,则a﹣b值为()A.2 B.﹣2或8 C.8 D.﹣24.下列计算结果为负数的是()A.B.C.D.5.下列运算中,正确的是()A.(﹣2)2=﹣4 B.(﹣3)3=﹣27C.32=6 D.﹣22=4、−|−4|、−(−100)、−32、(−1)2、−20%、0中正数的个数为()6.在−23A.1个B.2个C.3个D.4个7.在-(-1),(−1)2n+1,−12015,−(−1)2n+3,−|−1|,(−1)2n若n为正整数,则结果等于-1的有()个A.1 B.2 C.3 D.48.某公司员工分别住在A,B,C三个住宅区,A区有25人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应设在()A.A区B.B区C.A区或B区D.C区二、填空题9.绝对值不大于2005的非负整数的积是.10.若a 的相反数是﹣3,b 的绝对值是4,且|b|=﹣b ,则a ﹣b= .11.在数轴上,若点P 表示+1,则距P 点5个单位长度的点表示的数是 .12.在体育课的立定跳远测试中,以2.00m 为标准,若小明跳出了2.35m ,可记作+0.35m ,则小亮跳出了1.75m ,应记作 .13.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第 次后可拉出128根细面条.三、解答题14.计算:(1)|−7|−(−1.2)−|2−312|(2)−18+(−2)2×5+48÷(−4)3(3)−12×(−3)2+|−53|÷(34−13)15.在数轴上表示下列各数,并按照从小到大的顺序用“ < ”连接起来.+3, -1与 −(−412) ,0, -2 12 ,-22,|-0.5| 16.已知a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于5.求x 2+(a+b+cd )x ﹣(cd )2019的值.17.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位: km ): 第1批第2批 第3批 第4批 第5批 5km 2km −4km −3km 10km(1)接送完第5批客人时,该驾驶员在公司什么方向,距离公司多远?(2)若该出租车的收费标准为:行驶路程不超过 3km ,收费10元;超过 3km ,对超过部分另加收每千米1.8元.当送完第5批客人时,该驾驶员共收到车费多少元?18.银行的储蓄员小张在办理业务时,约定存入为正,取出为负,某天上午8:00-9:30,他先后办理了七笔业务:+20000元,-8000元,+4000元,-8000元,+14000元,-16000元,-2000元.(1)若他早上领取备用金40000元,那么9:30还有 元.(2)请判断在这七笔业务中,小张在第 笔业务办理后,手中的现金最多;第 笔业务办理后,手中的现金最少.(3)若每办一笔业务,银行发给业务员业务量的0.1%作为奖励,则办理这七笔业务小张应得奖金多少元?参考答案1.B2.A3.C4.B5.B6.B7.C8.C9.010.711.-4或612.−0.25m13.714.(1)解:|−7|−(−1.2)−|2−312| = 7+1.2−1.5=6.7(2)解:−18+(−2)2×5+48÷(−4)3 = −18+4×5−48÷64= −18+20−34= 114(3)解:−12×(−3)2+|−53|÷(34−13)= −12×9+53÷(912−412)= −12×9+53×125= −92+4= −1215.解:如图:根据数轴可得:−22<−212<−1<0<|−0.5|<+3<−(−412).16.解:根据题意得:a+b=0,cd=1,x=5或﹣5当x=5时,原式=25+5﹣1=29;当x=﹣5时,原式=25﹣5﹣1=19.17.(1)解:5+2+(−4)+(−3)+10=10(km) .答:该驾驶员在公司南边,距离公司10km .(2)解:第1批客人应付费:10+(5−3)×1.8=13.6(元);第2批客人应付费:10元;第3批客人应付费:10+(4−3)×1.8=11.8(元);第4批客人应付费:10元;第5批客人应付费:10+(10−3)×1.8=22.6(元).所以13.6+10+11.8+10+22.6=68(元).答:当送完第5批客人时,该驾驶员共收到车费68元.18.(1)44000(2)五;七(3)解:|+20 000|+|-8 000|+|+4 000|+|-8 000|+|+14 000|+|-16 000|+|-2 000|=72 000,办理这七笔业务小张应得奖金为72 000×0.1%=72(元)。

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)

一、选择题1.2020年是我国在航天方面收获满满的一年,12月19日,中国嫦娥五号任务月球样品正式交接.嫦娥五号任务是“探月工程”的第六次任务,也是中国航天迄今为止最复杂,难度最大的任务之一.其有着非常重要的意义,实现中国开展航天活动以来的四个“首次”:首次在月球表面自动采样;首次从月面起飞;首次在38万公里外的月球轨道上进行无人交会对接;首次带着月壤以接近第二宇宙速度返回地球.38万公里用科学记数法表示为( )A .3.8×103公里B .3.8×104公里C .3.8×105公里D .38×104公里 2.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .b a>0 3.有理数比较大小错误的是( )A .21-<B .1123-<-C .2|6|(2)->-D .1033->- 4.已知12320,,,x x x x ⋅⋅⋅都是不等于0的有理数,若111x y x =,则1y 等于1或1-;若12212x x y x x =+,则2y 等于2或2-或0;若320122012320x x x x y x x x x =+++⋅⋅⋅+,则20y 所有可能等于的值的绝对值之和等于( ) A .0B .110C .210D .220 5.若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定 6.国家统计局2020年10月19日发布数据,初步核算,前三季度国内生产总值约为72万亿元,按可比价格计算,同比增长0.7%,其中72万亿用科学记数法表示为( ) A .140.7210⨯ B .127.210⨯ C .137.210⨯ D .127210⨯ 7.如图,在数轴上,点A 表示数1,现将点A 沿数轴作如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律进行下去,第2021次移动到点2021A ,那么点2021A 所表示的数为( )A .3029-B .3032-C .3035-D .3038- 8.有理数a ,b 在数轴上对应点的位置如图所示,下列选项正确的是( )A .0a b +>B .0ab >C .a b <-D .0b a -> 9.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a >-B .a b >-C .0ab <D .a b < 10.在数轴上从左到右有,,A B C 三点,其中1AB =,2BC =,如图所示,设点,,A B C 所对应数的和是x ,则下列说法错误的是( )A .若以点A 为原点,则x 的值是4B .若以点B 为原点,则x 的值是1C .若以点C 为原点,则x 的值是4-D .若以BC 的中点为原点,则x 的值是2- 11.2020年新冠疫情的出现,加速推动了教育信息化进程.根据中国互联网络信息中心统计数据显示,截至2020年6月,我国在线教育用户规模达38000万人,同比增长63.7%.将38000用科学记数法表示应为( )A .38×103B .3.8×104C .3.8×105D .0.38×105 12.有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )①0a b <<;②a b <;③0ab >;④a b a b ->+A .①②B .①④C .②③D .③④二、填空题 13.已知()2210a b -++=,则()2003a b +=______.14.一个数的倒数为﹣2,则这个数的相反数是_____.15.如图,在3×3的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这个数表称为三阶幻方.若﹣2、﹣1、0、1、2、3、4、5、6这9个数也能构成三阶幻方,则此时每行、每列及每条对角线的3个数字之和都为_____.16.规定*是一种运算符号,且a*b=ab-2a ,例1*2=1×2-2×1=0,则4*(-2*3)=_.17.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________.18.若2302|()|y x ++-=,则x y +=________.19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.一百货大楼地上共有30层,地下共有3层,若某人乘电梯从地下2层升至地上16层,则电梯一共升了______________层.三、解答题21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 22.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 23.计算:(1)2151()()32624+-÷-; (2)(﹣2)3×(﹣2+6)﹣|﹣4|.24.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“六合数”.定义:对于一个自然数,如果这个数除以7余数为4,且除以5余数为2,则称这个数为“六合数”.例如:32744÷=⋅⋅⋅,32562÷=⋅⋅⋅,所以32是“六合数”;18724÷=⋅⋅⋅,但18533÷=⋅⋅⋅,所以18不是“六合数”.(1)判断39和67是否为“六合数”?请说明理由;(2)求大于200且小于300的所有“六合数”.25.计算:(1)711164348248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)()()2202143421524293⎛⎫-⨯-+-÷-÷⨯- ⎪⎝⎭ 26.元旦放假时,凡凡一家三口一起乘小轿车去探望爷爷,奶奶和姥爷,姥姥.早上从家里出发,向西走了4千米到超市买东西,然后又向西走了3.5千米到爷爷家,下午从爷爷家出发向东走了9千米到姥爷家,晚上返回家里.(1)若以凡凡家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家A B C表示出来﹔和姥爷家的位置在下面数轴上分别用点、、(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求凡凡一家从出发到返回家,小轿车的耗油量.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:38万公里=380000公里=3.8×105米,故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【分析】根据数轴上a、b的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b<0<a,|b|>|a|,∴﹣b>a,∴a+b<0,a﹣b>0,b<0,b<﹣a<0<a<﹣b.a故选:D.【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.3.D解析:D【分析】根据有理数的比较大小的法则可得答案.【详解】解:A 、21-<,不符合题意;B 、1123-<-,不符合题意; C 、2|6|=6(=42)->-,不符合题意;D 、1033-<-,原选项错误,故符合题意; 故选:D .【点睛】 此题主要考查了有理数的比较大小,关键是掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.4.D解析:D【分析】根据绝对值的意义,推理出y 20的所有可能的取值,从而计算绝对值之和即可.【详解】 解:若111x y x =,则1y 等于1或-1; 若12212x x y x x =+,则2y 等于2或2-或0; (320122012320)x x x x y x x x x =+++⋅⋅⋅+, 若y 20中有20项为1,0项为-1,则y 20=20,若y 20中有19项为1,1项为-1,则y 20=18,…以此类推,若y 20中有0项为1,20项为-1,则y 20=-20,∴y 20的所有可能的取值为-20,-18,…,0,…,18,20,则y 20的这些所有的不同的值的绝对值的和等于0+(2+4+…+20)×2=220,故选D .【点睛】本题考查了绝对值的意义,有理数的混合运算,发现规律是解题关键.5.A【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案.【详解】,,,a b c m 为不为零的有理数2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++∴ 0b c +=∴,b c 互为相反数故选:A .【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.6.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:72万亿=720000亿=72000000000000=7.2×1013.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C解析:C【分析】从A 的序号为奇数的情形中,寻找解题规律求解即可.【详解】∵A 表示的数为1,∴1A =1+(-3)×1=-2,∴2A =-2+(-3)×(-2)=4,∴3A =4+(-3)×3=-5= -2+(-3),∴4A =-5+(-3)×(-4)=7,∴5A =7+(-3)×(-5)=-8= -2+(-3)×2,∴2021A = -2+(-3)×1011=-3035,故选C.本题考查了数轴上动点运动规律,抓住序号为奇数时数的表示规律是解题的关键.8.C解析:C【分析】根据有理数a,b在数轴上的位置逐项进行判断即可.【详解】解:由有理数a,b在数轴上的位置可知,b<-1<0<a<1,且|a|<|b|,因此a+b<0,故A不符合题意;ab<0,故B不符合题意;a+b<0,即a<-b,故C符合题意;b<a,即b-a<0,故D不符合题意;故选:C.【点睛】本题考查数轴表示数的意义,有理数的加、减、乘法运算,掌握计算法则是正确判断的前提.9.C解析:C【分析】>.根据数轴可知a<-2<0<b<2,即可得到a<-b,ab<0,a b【详解】由数轴可知:a<-2<0<b<2,>,∴a<-b,ab<0,a b故选:C.【点睛】此题考查利用数轴比较数的大小,判断式子的符号,掌握数轴上数的大小比较法则是解题的关键.10.C解析:C【分析】利用数轴的意义将各选项进行分析判断即可.【详解】解:A.若以A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故选项A正确,不符合题意;B.若以B为原点,则A、C对应的数为-1,2,则x=0-1+2=1,故选项B正确,不符合题意;C.若以C为原点,则A、C对应的数为-3,-2,则x=0-2-3=-5≠-4,故选项C错误,符合题意;D. 若以BC的中点为原点,由于AB=1,BC=2,故B,C对应的数为-1,1,因为AB=1,所以A的对应数为-2,则x=-1+1-2=-2,故选项D正确,不符合题意.故选:C.【点睛】本题考查数轴表示数的意义和方法,理解有理数的意义,确定点A、B、C所表示的数是正确解答的关键.11.B解析:B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据38000用科学记数法表示应为3.8×104.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.A解析:A【分析】先由数轴可得a<0<b,且|a|<|b|,再判定即可.【详解】解:由图可得:a<0<b,且|a|<|b|,∴ab<0,a-b<a+b,∴正确的有:①②;故选:A.【点睛】本题主要考查了数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.二、填空题13.1【分析】首先利用非负数的性质得出a=2b=﹣1进一步代入按照混合运算的运算顺序计算得出答案即可【详解】解:∵|a﹣2|+(b+1)2=0∴a﹣2=0b+1=0解得a=2b=﹣1∴(a+b)2003解析:1【分析】首先利用非负数的性质得出a=2,b=﹣1,进一步代入按照混合运算的运算顺序计算得出答案即可.【详解】解:∵|a﹣2|+(b+1)2=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴(a+b)2003=12003=1故答案:1【点睛】此题考查代数式求值,非负数的性质,有理数的乘方,根据非负数的性质求得字母的数值是解决问题的前提.14.【分析】直接利用倒数以及相反数的定义得出答案【详解】解:∵一个数的倒数为﹣2∴这个数是:﹣∴这个数的相反数是:故答案为:【点睛】本题主要考查了倒数和相反数的性质准确计算是解题的关键解析:1 2【分析】直接利用倒数以及相反数的定义得出答案.【详解】解:∵一个数的倒数为﹣2,∴这个数是:﹣12,∴这个数的相反数是:12.故答案为:12.【点睛】本题主要考查了倒数和相反数的性质,准确计算是解题的关键.15.【分析】把﹣2﹣10123456这9个数相加除以3即可【详解】解:把﹣2﹣10123456这9个数相加除以3得:(﹣2﹣1+0+1+2+3+4+5+6)=6故答案为:6【点睛】本题考查了幻方的构造熟解析:【分析】把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3即可.【详解】解:把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3得:13(﹣2﹣1+0+1+2+3+4+5+6)=6,故答案为:6.【点睛】本题考查了幻方的构造,熟练掌握有理数的混合运算,准确理解幻方的意义是解题的关键.16.-16【分析】结合题意根据有理数混合运算的性质计算即可得到答案【详解】根据题意得:故答案为:-16【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质从而完成求解解析:-16【分析】结合题意,根据有理数混合运算的性质计算,即可得到答案.【详解】根据题意得:()-4*2*3()=⨯--⨯42*324()()=⨯-⨯-⨯--423228⎡⎤⎣⎦()4648=⨯----⎡⎤⎣⎦()=⨯--428=--88=-16故答案为:-16.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质,从而完成求解.17.4【分析】根据两个负数绝对值大的其值反而小比较被替换的数的绝对值的大小得到答案【详解】解:被替换的数是-30426-10326-10436-10423|-10326|<|-10423|<|-1043解析:4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案.【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423,|-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|,∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4,故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0;负数都小于0;正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键.18.【分析】根据绝对值与平方数的非负性求解【详解】解:由题意可得:x-2=0y+3=0∴x=2y=-3∴x+y=2-3=-1故答案为-1【点睛】本题考查绝对值与平方数的非负性由绝对值和平方数的非负性可得解析:1-【分析】根据绝对值与平方数的非负性求解.【详解】解:由题意可得:x-2=0,y+3=0,∴x=2,y=-3,∴x+y=2-3=-1,故答案 为-1.【点睛】本题考查绝对值与平方数的非负性,由绝对值和平方数的非负性可得绝对值和平方数的和为0时,绝对值与平方数均为0是解题关键.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简 解析:8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.【详解】解:∵2OA OC OB ==,∴2c a b =-=-,∵24a b c ++=-,∴4a c c -+=-,即4a =-,∴4c =, ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.17【分析】地下为负地上为正所以可以看做从-2层上升到+16层由于没有0层所以应该再减去1计算即可求得【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层故答案为:17【点睛】本题主解析:17【分析】地下为负,地上为正,所以可以看做从-2层上升到+16层,由于没有0层,所以应该再减去1,计算即可求得.【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层.故答案为:17【点睛】本题主要考查正负数的应用及有理数的运算,先根据数的意义确定出正负再进行计算,易错点是从地下1层到地上1层只上升了1层.三、解答题21.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24) 326+-⨯-=﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算.24.(1)39不是“六合数”, 67是“六合数”;理由见解析;(2)207,242,277【分析】(1)根据“六合数”的定义即可求解;(2)根据“六合数”的定义即可求解;【详解】解:(1)39÷7=5…4,但39÷5=7…4,所以39不是“六合数”;67÷7=9…4,67÷5=13…2,所以67是“六合数”.(2)大于200且小于300的数除以7余数为4的有:200,207,214,221,228,235,242,249,256,263,270,277,284,291,298,其中除以5余数为2的有:207,242,277.故大于200且小于300的所有“六合数”有207,242,277.【点睛】考查了整数问题的综合运用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.25.(1)394-;(2)-9 【分析】(1)原式根据有理数的加减法可以解答本题;(2)原式先计算有理数的乘方和化简绝对值,再进行乘除法运算,最后进行加减法运算即可得到答案.【详解】解:(1)711164348248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 711164348248=-+-- 711164438824⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭ 11114=-+ 394=- (2)()()2202143421524293⎛⎫-⨯-+-÷-÷⨯- ⎪⎝⎭ =4415164899-⨯+÷-÷⨯ 945164849=-+÷-⨯⨯ 548=-+-9=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(1)见解析;(2)5.5千米;(3)1.44升【分析】(1)先计算超市、爷爷家和姥爷家在数轴上表示的数,再根据有理数与数轴上点的关系解答即可;(2)数轴上右边点表示的数减去左边点表示的数就是两点间的距离;(3)先计算凡凡一家从出发到返回家共走了多少路,再计算耗油量.【详解】解:(1)由题意得,点A 表示的数是-4;点B 表示的数是-5-3.5=-7.5;点C 表示的数是-7.5+9=1.5;点,,A B C 即为如图所示.(2)1.5-(-4)=5.5千米.答:超市和姥爷家相距5.5千米;(3)4 3.59 1.50.08() 1.44+++⨯=(升).答:小轿车的耗油1.44升.【点睛】本题主要考查了数轴和有理数的混合运算,题目难度不大,理解题意并利用数轴是解决本题的关键.。

七年级数学上册第二章有理数及其运算单元测试题含答案

七年级数学上册第二章有理数及其运算单元测试题含答案

七年级数学上册有理数及其运算单元测试题一、选择题(每小题3分,共30分) 1.若规定向东走为正,则-8 m 表示( ) A .向东走8 m B .向西走8 m C .向西走-8 m D .向北走8 m2.数轴上点A ,B 表示的数分别为5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5| 3.下面与-3互为倒数的数是( ) A .-13 B .-3 C.13D .34.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()图15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A .213×106B .21.3×107C .2.13×108D .2.13×1096.下列说法错误的有( ) ①-a 一定是负数; ②若|a |=|b |,则a =b ; ③一个有理数不是整数就是分数; ④一个有理数不是正数就是负数. A .1个 B .2个 C .3个 D .4个7.如图2所示,数轴上两点A ,B 分别表示有理数a ,b ,则下列四个数中最大的是()图2A.a B .b C.1a D.1b8.已知x -2的相反数是3,则x 2的值为( )A .25B .1C .-1D .-259.把一张厚度为0.1 mm 的纸对折8次后的厚度接近于( ) A .0.8 mm B .2.6 cm C .2.6 mm D .0.18mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是()图3A.-54 B .54 C .-558 D .558 请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.-2的相反数是________,-0.5的倒数是________. 12.绝对值小于2018的所有整数之和为________.13.如图4所示,有理数a ,b 在数轴上对应的点分别为A ,B ,则a ,-a ,b ,-b 按由小到大的顺序排列是________________.图414.若两个数的积为-20,其中一个数比-15的倒数大3,则另一个数是________.15.若数轴上的点A 表示的有理数是-3.5,则与点A 相距4个单位长度的点表示的有理数是__________.16.若|x|=5,y 2=4,且xy<0,则x +y =________. 三、解答题(共72分)17.(6分)把下列各数填入相应的集合中:-3.1,3.1415,-13,+31,0.618,-227,0,-1,-(-3).正数集合:{ …}; 整数集合:{ …}; 负数集合:{ …}; 负分数集合:{ …}.18.(6分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来.-5,2.5,-52,0,312.19.(8分)计算: (1)-24×⎝ ⎛⎭⎪⎫-56+38-112;(2)-9+5×(-6)-(-4)2÷(-8);(3)0.25×(-2)2-⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-232+1+(-1)2018;(4)-42÷⎝ ⎛⎭⎪⎫-135-⎣⎢⎡⎦⎥⎤56×⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫-123.20.(8分)规定一种新的运算:a ☆b =a ×b -a -b 2+1,例如:3☆(-4)=3×(-4)-3-(-4)2+1.请你计算下列各式的值:(1)2☆5; (2)(-2)☆(-5).21.(10分)某食品厂从生产的袋装食品中抽出20袋样品,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数表示,数据记录如下表:(1)样品的平均质量比标准质量多还是少?多或少多少克? (2)若标准质量为每袋450克,则抽检的总质量是多少克?22.(10分)在数轴上有三个点A ,B ,C ,回答下列问题:图523.(12分)一名足球守门员练习折返跑,从球门线出发,向前记为正,返回记为负,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少? (3)守门员全部练习结束后,他共跑了多少米?24.(12分)在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,c 满足|a +2|+(c -7)2=0.(1)填空:a =________,b =________,c =________; (2)画出数轴,并把A ,B ,C 三点表示在数轴上;(3)P 是数轴上任意一点,点P 表示的数是x ,当PA +PB +PC =10时,x 的值为多少?七年级数学上册有理数及其运算单元测试题答案1.B 2.D 3.A 4.C 5.C 6.C 7.D 8.B 9.B 10.C 11.2 -2 12.0 13.-a <b <-b <a 14.10 15.-712或1216.3或-317.解:正数集合:{3.1415,+31,0.618,-(-3),…}; 整数集合:{+31,0,-1,-(-3),…}; 负数集合:{-3.1,-13,-227,-1,…};负分数集合:{-3.1,-13,-227,…}.18.图略 -5<-52<0<2.5<31219.(1)13 (2)-37 (3)-8 (4)101220.解:(1)2☆5=2×5-2-52+1=-16.(2)(-2)☆(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12. 21.解:(1)[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]÷20=1.2(克).答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]=9024(克).答:若标准质量为每袋450克,则抽检的总质量是9024克. 22.(1)-1 (2)0.5 (3)-323或-923.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,所以守门员最后回到了球门线的位置. (2)因为5+(-3)=2, 2+10=12,12+(-8)=4,4+(-6)=-2,-2+12=10,10+(-10)=0, 所以守门员离开球门线的最远距离为12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:他共跑了54米.24.解:(1)由题意可知a +2=0,c -7=0, 解得a =-2,c =7.因为b 是最小的正整数,所以b =1. 故答案为-2,1,7. (2)画出数轴如图所示:(3)因为PA +PB +PC =10,所以|x +2|+|x -1|+|x -7|=10. 当x ≤-2时,-x -2+1-x +7-x =10, 解得x =-43(舍去).当-2<x ≤1时,x +2+1-x +7-x =10, 解得x =0.当1<x ≤7时,x +2+x -1+7-x =10, 解得x =2.当x >7时,x +2+x -1+x -7=10, 解得x =163(舍去).综上所述,当PA +PB +PC =10时,x 的值是0或2.。

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)

一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。

北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)

北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)

北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。

满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。

每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。

A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。

若收入500元记作+500元,则支出237元记作()。

A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。

9A.3B.-7C.0D.194.近似数5.0×102精确到()。

A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。

其中数据29.47万用科学记数法表示为()。

A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。

A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。

则(-2)⊗(-1)的运算结果为()。

A.-5B.-3C.5D.3<0。

则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。

A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。

10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (28)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (28)

一、选择题1.在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中最先进行的是()A.求两个有理数的绝对值,并比较大小B.确定和的符号C.观察两个有理数的符号,并作出一些判断D.用较大的绝对值减去较小的绝对值2.如图,在2020个“▫”中依次填入一列数字m1,m2,m3,⋯⋯,m2020,使得其中任意四个相邻的“▫”中所填的数字之和都等于13.已知m3=0,m6=−7,则m1+m2020的值为( ) 0 −7 ⋯ A.0B.−7C.6D.203.若∣x+1∣+(y−13)2=0,则x3+y2的值是( )A.19B.89C.−89D.−194.若a,b,c均为正数,则a+b−c,b+c−a,c+a−b这三个数中出现负数的情况是( )A.不可能有负数B.必有一个负数C.至多有一个负数D.可能有两个负数5.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()\(\begin{array}{|c|c|c|c|c|}\hline 星期&一&二&三&四\\\hline 最高气温&10^{\circ} C&12^{\circ} C&11^{\circ} C&9^{\circ} C\\\hline 最低气温&3^{\circ} C&0^{\circ} C&-2^{\circ} C&-3^{\circ} C\\\hline\end{array}\)A.星期一B.星期二C.星期三D.星期四6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数为( )3a b c−12⋯A.3B.2C.0D.−17.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”把(−3)÷(−3)÷(−3)÷(−3)记作−3④,读作“−3的圈4次方”,一般地,把a÷a÷…a÷a(a≠0)记作a c,读作“a的圈c次方”,关于除方下列说法错误的是( )A.任何非零数的圈2次方都等于1B .对于任何正整数 a ,a④=(1a)2C . 3④=4④D .负数的圈奇数次方结果是负数,负数的圈偶次方结果是正数8. 如果 a +b +∣c∣<0,a ×b ×∣c∣>0,那么 a ,b 这两个数是 ( )A .都为正数B .都为负数C .一正一负D .不一定9. 古希腊著名的毕达哥拉斯学派把 1,3,6,10⋯ 这样的数称为“三角形数”,而把 1,4,9,16⋯ 这样的数称为“正方形数”.从图中可以发现,任何一个大于 1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3110. 求 1+2+22+23+⋯+22019 的值,可令 S =1+2+22+23+⋯+22019,则 2S =2+22+23+⋯+22019+22020 因此 2S -S =22020-1.仿照以上推理,计算出 1+5+52+53+⋯+52019 的值为 ( ) A . 52019−1 B . 52020−1 C .52020−14D .52019−14二、填空题11. 已知 ∣x 1−1∣∣+(x 2−2)2+∣x 3−3∣+(x 4−4)4+⋯⋯+∣x 2017−2017∣+(x 2018−2018)2018=0,则 2x 1−2x 2−2x 3−⋯−2x 2017+2x 2018= .12. 对于正整数 n ,定义 F (n )={n 2,n <10f (n ),n ≥10,其中 f (n ) 表示 n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=12+32=10.规定 F 1(n )=F (n ),F k+1(n )=F(F (n ))(k 为正整数),例如,F 1(123)=F (123)=10,F 2(123)=F(F 1(123))=F (10)=1.按此定义,则由 F 1(4)= ,F 2019(4)= .13. 一只小球落在数轴上的某点 P 0,第一次从 P 0 向左跳 1 个单位到 P 1,第二次从 P 1 向右跳 2个单位到 P 2,第三次从 P 2 向左跳 3 个单位到 P 3,第四次从 P 3 向右跳 4 个单位到 P 4⋯,若小球从原点出发,按以上规律跳了 6 次时,它落在数轴上的点 P 6 所表示的数是 ;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.14.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.15.如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A,B两点之间恰好有三个表示正整数的(不包括点A,B),则该圆的周长a的取值范围为.16.长方形ABCD在数轴上的位置如图所示,点B,C对应的数分别为−2和−1,CD=2.若长方形ABCD绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D 翻转第2次;继续翻转,则翻转2019次后,落在数轴上的两点所对应的数中较大的是.17.已知∣a∣=1,∣b∣=2,∣c∣=3,且a>b>c,则a−b+c=.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.同学们都知道,∣5−(−2)∣表示5与−2之差的绝对值,实际上也可理解为5与−2两数在数轴上所对的两点之间的距离,试探索:(1) ∣5−(−2)∣=.(2) 找出所有符合条件的整数x,使得∣x+5∣+∣x−2∣=7,这样的整数有.(3) 由以上探索猜想:对于任何有理数x,∣x−3∣+∣x−6∣是否有最小值?如果有,写出最小值;如果没有,说明理由.20.计算题:(1) ∣−12∣−(−18)+(−7)+6.(2) −12−(−32)×(34−212+158).(3) 16×[1−(−3)2]÷(−13).21.已知A,B在数轴上对应的数分别用a,b表示,且(12ab+10)2+∣a−2∣=0,点P是数轴上的一个动点.(1) 求出A,B之间的距离.(2) 若P到点A和点B的距离相等,求出此时点P所对应的数.(3) 数轴上一点C距A点3√6个单位长度,其对应的数c满足∣ac∣=−ac.当P点满足PB=2PC时,求P点对应的数.22.退休的钱老师去年用12000元购买了某种基金14775份.该基金上周末的价格是每份0.63元,本周内与前一天相比的涨跌情况如下表(单位:元):星期一二三四五每份涨跌+0.15−0.10+0.13−0.09+0.08(1) 本周内哪一天把该基金赎回比较合算?为什么?(2) 赎回时须交纳当时总市值0.5%的费用,如果钱老师在本周星期五收盘前将全部基金赎回,他的收益情况如何?23.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制中的数6,110101=1×25+ 1×24+0×23+1×22+0×21+1×20等于十进制中的数53.那么二进制中的数101011等于十进制中的哪个数?24.数轴上两点A,B,其中A,B对应的数分别是a,b(b>0).(1) 若A点表示数−4,点B表示数7,求线段AB的长;(2) 若A点表示数−4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3) 若P,Q点分别同时从点A,B向右运动,点P速度为x个单位秒,点Q速度为b个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a,b取何值,才使得P,Q两点对应的数m,n始终满足m3−n6=1.25.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,−3,+10,−8,−6,+12,−10.(1) 守门员最后是否回到了球门线的位置?(2) 在练习过程中,守门员离开球门线最远距离是多少米?(3) 守门员全部练习结束后,他共跑了多少米?答案一、选择题 1. 【答案】C【解析】【分析】本题主要考查有理数的加法,熟练掌握加法法则是解题的关键.【解析】解:在运用有理数加法法则求两个有理数的和时,思考步骤中最先进行的是:观察两个有理数的符号,属于同号还是异号; 其次是确定和的符号;然后求两个有理数的绝对值,并比较大小, 最后是用较大的绝对值减去较小的绝对值, 故选:C .【点评】本题主要考查有理数的加法运算,熟练掌握运算的法则是解题的关键. 【知识点】有理数的加法法则及计算2. 【答案】D【解析】 ∵ 任意四个相邻“▫”中,所填数字之和都等于 13, ∴m 1+m 2+m 3+m 4=m 2+m 3+m 4+m 5, m 2+m 3+m 4+m 5=m 3+m 4+m 5+m 6, m 3+m 4+m 5+m 6=m 4+m 5+m 6+m 7, m 4+m 5+m 6+m 7=m 5+m 6+m 7+m 8, ∴m 1=m 5,m 2=m 6,m 3=m 7,m 4=m 8, 同理可得,m 1=m 5=m 9=⋯,m 2=m 6=m 10=⋯, m 3=m 7=m 11=⋯,m 4=m 8=m 12=⋯, ∵2020÷4=505, ∴m 2020=m 4, ∵m 3=0,m 6=−7, ∴m 2=−7,∴m 1+m 4=13−m 2−m 3=13−(−7)−0=20, ∴m 1+m 2020=20.【知识点】有理数的加法法则及计算3. 【答案】C【解析】 ∵∣x +1∣+(y −13)2=0, ∴x =−1,y =13,∴x 3+y 2=(−1)3+(13)2=−1+19=−89.4. 【答案】C【解析】显然当a=1,b=1,c=3时有(1+1)−3<0,1+3−1>0,∴排除A,B.对于D,若假设有两个负数,则不防设:{a+b<c, ⋯⋯①b+c<a, ⋯⋯②由① +②可得:b<0,矛盾于已知条件,∴假设错误,不可能有两个负数,同理a+b−c,a+c−b,b+c−a中不可能有3个负数.【知识点】有理数的加法法则及计算5. 【答案】C【解析】【分析】用最高温度减去最低温度,结果最大的即为所求;【解析】解:星期一温差10−3=7℃;星期二温差12−0=12℃;星期三温差11−(−2)=13℃;星期四温差9−(−3)=12℃;故选:C.【点评】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.【知识点】有理数的减法法则及计算6. 【答案】A【知识点】有理数的加法法则及计算7. 【答案】C【知识点】有理数的乘方8. 【答案】B【解析】∵∣c∣≥0,∴由a×b×∣c∣>0知a,b同号,根据a+b+∣c∣<0知a+b<0,则a,b同为负数.【知识点】有理数的乘法9. 【答案】C【解析】显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.【知识点】有理数的加减乘除乘方混合运算10. 【答案】C二、填空题11. 【答案】6【解析】∵任意数的绝对值都大于等于零,任意数的偶数都大于等于零,∴x1=1,x2=2,⋯,x2017=2017,x2018=2018,原式=22018−22017−⋯−22−21=22017(2−1)−22016−⋯−21=23−22+21=6.【知识点】有理数的乘方12. 【答案】16;58【解析】F1(4)=16,F2(4)=F(16)=12+62=37,F3(4)=F(37)=32+72=58,F4(4)=F(58)=52+82=89,F5(4)=F(89)=82+92=145,F6(4)=F(145)=12+52=26,F7(4)=F(26)=22+62=40,F8(4)=F(40)=42+0=16,⋯通过计算发现,F1(4)=F8(4),∵2019÷7=288⋯3,∴F2019(4)=F3(4)=58.【知识点】有理数的乘方13. 【答案】3;2【解析】由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2−(2n÷2)=2.【知识点】数轴的概念14. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8;第二次输出结果为:4;第三次输出结果为:2;第四次输出结果为:1;第五次输出结果为:4;第六次输出结果为:2;第7次输出结果为:1;第8次输出结果为:4;由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的乘法、有理数的加法法则及计算15. 【答案】1.5<a≤2【解析】圆的周长为a,点A表示的数为1,该圆沿着数轴向右滚动两周后对应的点为B,∴B到原点的距离为2a+1,∵滚动点恰好经过3个整数点(不包括A,B两点),∴4<2a+1≤5,1.5<a≤2.【知识点】数轴的概念16. 【答案】3028【解析】如图,翻转4次,为一个周期,右边的点移动6个单位,∵2019÷4=504⋯⋯3,因此右边的点移动504×6+5=3029,∴−1+3029=3028.【知识点】数轴的概念17. 【答案】0或−2【解析】由∣a∣=1知,a=±1,又∵a>b>c,故b=−2,c=−3,则:①当a=1时,a−b+c=1−(−2)+(−3)=0;②当a=−1时,a−b+c=−1−(−2)+(−3)=−2.【知识点】绝对值的性质、有理数加减混合运算三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 7(2) −5,−4,−3,−2,−1,0,1,2(3) 由(2)的探索猜想,对于任何有理数 x ,∣x −3∣+∣x −6∣ 有最小值为 3. 【解析】(2) 由绝对值的几何意义可得:当 −5≤x ≤2 时,x +5∣+∣x −2∣=7 总成立, ∴ 整数 x 为:−5,−4,−3,−2,−1,0,1,2. 【知识点】绝对值的几何意义20. 【答案】(1) 原式=12+18−7+6=29.(2) 原式=−1−(−24+80−52)=−5.(3) 原式=16×(1−9)×(−3)=4.【知识点】有理数的加减乘除乘方混合运算、有理数加减混合运算21. 【答案】(1) ∵(12ab +10)2≥0,∣a −2∣≥0,又 (12ab +10)2+∣a −2∣=0, ∴{12ab +10=0,a −2=0,∴{a =2,b =−10,∴A 点代表的数为 2,B 点对应的数为 −10, ∴AB 的距离 =2−(−10)=12.(2) ∵P 到 A ,B 的距离相等. ∴P 为 AB 中点, ∴P 点对应的数为:2+(−10)2=−4.(3) ∵c 距离 A3√6 个单位长度, ∴c 代表的数为:2±3√6, 又 ∵∣ac∣=−ac , ∴ac <0,即 a ⋅c 异号,∴c对应的数为:2−3√6,设P点对应的数为m,则PB=∣m−(−10)∣=∣m+10∣,PC=∣∣m−(2−3√6)∣∣=∣∣m−2+3√6∣∣,∵PB=2PC,∴∣m+10∣=2∣∣m−2+3√6∣∣,①当点P在c点右侧时,即m>2−3√6时,∣(m+10)∣=m+10,∣∣m−2+3√6∣∣=m−2+3√6,∴m+10=2(m−2+3√6),m=14−6√6(满足题意).②当点P在c点左侧,B点右侧时,即−10<m<2−3√6时∣m+10∣=m+10,∣∣m−2+3√6∣∣=−m+2−3√6,∴m+10=2(−m+2−3√6),m=−2−2√6(满足题意).③当点P在B点左侧时,即m<−10时,∣m+10∣=−m−10,∣∣m−2+3√6∣∣=−m+2−3√6,∣∣m−2+3√6∣∣=m−2+3√6,∴−(m+10)=(−m+2−3√6)×2,m=14−6√6(舍去).∴综上P点对应的数为:14−6√6或−2−2√6.【知识点】数轴的概念、一元一次方程的应用、线段中点的概念及计算、有理数的乘方、绝对值的几何意义22. 【答案】(1) 星期一:0.63+0.15=0.78元/份,星期二:0.78−0.10=0.68元/份,星期三:0.68+0.13=0.81元/份,星期四:0.81−0.09=0.72元/份,星期五:0.72+0.08=0.80元/份,综上所述,星期三基金价格最高,此时赎回比较合算.(2) ∵星期五的价格是0.80元/份,基金总价值是14775×0.80=11820元,交纳的费用是11820×0.5%=59.1元,∴他的收益是11820−59.1−12000=−239.1元.答:他亏损了239.1元.【知识点】有理数乘法的应用、有理数减法的应用、有理数加法的应用23. 【答案】根据题目中给出的方法,通过类比得到:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.所以二进制中的数101011等于十进制中的43.【知识点】有理数的乘方24. 【答案】(1) AB =∣−4−7∣=11.(2) 设出发 t 秒后,P 与 Q 第二次相遇,根据题意得 8t −t =AB ,即 8t −t =31−(−4),解得 t =5. ∴ 第二次相遇点表示的数为:31−5=26.(3) 设运动时间为 t 秒,由题意得 m =a +4t ,n =b +bt , ∵ 数 m ,n 始终满足m 3−n 6=1, ∴ 数 m ,n 始终满足 a+4t 3−b+bt 6=1,即 2a −b +(8−b )t =6 对于任意的 t 值都成立,∴{8−b =0,2a −b =6, 解得 {a =7,b =8.【知识点】二元一次方程的应用、相遇问题、绝对值的几何意义25. 【答案】(1) (+5)+(−3)+(+10)+(−8)+(−6)+(+12)+(−10)=(5+10+12)−(3+8+6+10)=27−27=0.答:守门员最后回到了球门线的位置.(2) 第一次运动后,距离球门 5 米;第二次运动后,距离球门 5−3=2(米);第三次运动后,距离球门 2+10=12(米);第四次运动后,距离球门 12−8=4(米);第五次运动后,距离球门 ∣4−6∣=∣−2∣=2(米);第六次运动后,距离球门 ∣12−2∣=10(米);第七次运动后,距离球门 ∣10−10∣=0(米);综上,小明离开球门的位置最远是 12 米.(3) ∣+5∣+∣−3∣+∣+10∣+∣−8∣+∣−6∣+∣+12∣+∣−10∣=5+3+10+8+6+12+10=54(米).答:守门员全部练习结束后,他共跑了 54 米.【知识点】有理数加法的应用。

初一数学试题-七年级数学上册第二章有理数及其运算训练题(附答案)

初一数学试题-七年级数学上册第二章有理数及其运算训练题(附答案)

初一数学试题-七年级数学上册第二章有理数及其运算训练题(附答案)一、选一选(每小题3分,共24分)(有理数的混合运算)1.在-(-5),-(-5)2,-|-5|,(-5)3中负数有()A、0个B、1个C、2个D、3个(相反数)2.下列各数中互为相反数的是()A.与0.2 B.与-0.33 C.-2.25与D.5与-(-5)(乘方中幂的意义)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等(有理数大小的比较)4.若b<0,则a+b,a,a-b的大小关系为()A、a+b>a>a-bB、a-b>a>a+bC、a>a-b>a+bD、a-b>a+b>a(平方的性质)5.若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.不大于1(两点之间的距离)6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A、a-b B、a+b C、b-a D、-a-b(有理数的;有理数的加法)7.两个有理数的积是负数,和也是负数,那么这两个数()A. 都是负数 B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数(有理数的;有理数的加法)8.四个互不相等整数的积为9,则和为()A.9 B.6 C.0 D.二、填一填(每小题3分,共24分)(有理数的混合运算)1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.(有理数的运算)2.若a<0,b<0,则a-(-b)一定是(填负数,0或正数)(有理数的运算)3.计算:;.(有理数的减法)4.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点。

(相反数和绝对值)5.如果a的相反数是最大的负整数,b是绝对值最小的数,那么a+b=______。

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。

(典型题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)(1)

(典型题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)(1)

一、选择题1.已知12320,,,x x x x ⋅⋅⋅都是不等于0的有理数,若111x y x =,则1y 等于1或1-;若12212x x y x x =+,则2y 等于2或2-或0;若320122012320x x x x y x x x x =+++⋅⋅⋅+,则20y 所有可能等于的值的绝对值之和等于( ) A .0B .110C .210 D .220 2.若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定 3.截止2020年12月30日,全球新冠肺炎确诊病例累计超8000万例,其中“8000万”用科学记数法表示为( )A .3810⨯B .7810⨯C .40.810⨯D .80.810⨯ 4.下列计算结果正确的是( )A .()111--=B .()010-=C .2142-⎛⎫-=- ⎪⎝⎭D .()211--=- 5.南海是我国最大的领海,总面积有35000002km ,3500000用科学记数法可表示为( )A .3.5×104B .3.5×105C .3.5×106D .0.35×107 6.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为( )A .-6B .-2C .2D .47.在以A 为原点的数轴上,存在点B ,C ,满足2AB BC =,若点B 表示的数为8,则点C 表示的( )A .4B .12C .4或12D .4-或12- 8.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,……则第2021次输出的结果为( )A .6B .3C .24D .12 9.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +->10.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作( )A .C 13︒-B .10C ︒- C .7C ︒-D .C 7︒+11.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为2-、1,若点B 与点C 之间的距离是1,则点A 与点C 之间的距离是( )A .5B .2C .2或4D .2或6 12.数M 精确到0.01时,近似数是2.90,那么数M 的范围是( )A .2.8≤M<3B .2.80≤M≤3.00C .2.85≤M<2.95D .2.895≤M<2.905 二、填空题13.求23201312222++++⋅⋅⋅+的值,可令23201312222S =++++⋅⋅⋅+,则23201422222S =+++⋅⋅⋅+,因此2014221S S -=-.仿照以上推理,计算出23201415555++++⋅⋅⋅+=______. 14.计算﹣23+[(﹣4)2﹣(1﹣32)×3]=_____.15.比较大小:13-________12-(填入“>”“=”“<”) 16.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________.17.根据世卫组织最新实时统计数据,截至北京时间12月25日16时57分,全球累计新冠肺炎确诊病例约7792万例,用科学记数法表示7792万例为_________例.18.如果2(2)|1|0a b -++=,那么2a b =_______19.||8a =,4b =-,则-a b 的值为__________.20.0.47249≈_________(精确到千分位).三、解答题21.已知3x =,2y =,且x y y x -=-,则x y +=______.22.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题. 姓名王芳 刘兵 张昕 李聪 江文 成绩 89 8423.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:32+,32-,18-,35+,36-,22-.(1)经过这6天,仓库里的货品增加或减少多少吨?(2)如果进出的装卸费都是每吨12元,那么这6天要付多少元装卸费?24.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 25.某公司去年1~3月平均每月亏损3.8万元,4~6月平均每月盈利3.6万元,7~10月平均每月盈利2.5万元,11~12月平均每月亏损3.5万元.(1)如果把7~10月平均每月的盈利额记为 2.5+万元,那么,11~12月平均每月的盈利额可记为______万元;(2)请通过计算说明这个公司去年的盈亏情况; (3)这个公司去年下半年平均每月盈利比上半年平均每月盈利多多少万元?26.计算:(1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷ (3)1125100466()46311-⨯-⨯-⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据绝对值的意义,推理出y 20的所有可能的取值,从而计算绝对值之和即可.【详解】解:若111x y x =,则1y 等于1或-1; 若12212x x y x x =+,则2y 等于2或2-或0;…320122012320x x x x y x x x x =+++⋅⋅⋅+, 若y 20中有20项为1,0项为-1,则y 20=20,若y 20中有19项为1,1项为-1,则y 20=18,…以此类推,若y 20中有0项为1,20项为-1,则y 20=-20,∴y 20的所有可能的取值为-20,-18,…,0,…,18,20,则y 20的这些所有的不同的值的绝对值的和等于0+(2+4+…+20)×2=220,故选D .【点睛】本题考查了绝对值的意义,有理数的混合运算,发现规律是解题关键.2.A解析:A【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案.【详解】,,,a b c m 为不为零的有理数2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++∴ 0b c +=∴,b c 互为相反数故选:A .【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.3.B解析:B【分析】先将8000万化成80000000,再用科学记数法表示即可.【详解】解:8000万=80000000=7810⨯,故选:B .【点睛】本题主要考察了用科学记数法表示一个大于10的数,解题的关键是熟练掌握科学记数法的表示方法.4.D解析:D【分析】结合负整数指数幂和零指数幂的概念和运算法则进行求解即可.【详解】解:A 、(-1)-1=-1≠1,本选项错误;B 、(-1)0=1≠0,本选项错误;C 、212-⎛⎫- ⎪⎝⎭=4≠-4,本选项错误; D 、-(-1)2=-1,本选项正确.故选:D .【点睛】本题考查了负整数指数幂,解答本题的关键在于熟练掌握该知识点的概念和运算法则. 5.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3500000=3.5×106,故选:C .【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B【分析】利用空间想象能力得出相对面的对应关系,从而求出a 、b 、c 的值,即可求出结果.【详解】解:根据正方体的展开图,可知:3和b 是相对面,4-和c 是相对面,5-和a 是相对面,∵该正方体相对面上的两个数和为0,∴5a =,3b =-,4c =,∴()5342a b c +-=+--=-.故选:B .【点睛】本题考查正方体的展开图,解题的关键是掌握正方体展开图中对应面的关系.7.C解析:C【分析】由于点B表示的数是8,点A表示的数是0,则线段AB的长度为8;又AB=2BC,分两种情况,①点B在C的右边;②B在C的左边.【详解】解:∵点A表示的数是0,点B表示的数是8,∴AB=8-0=8;又∵AB=2BC,∴①点B在C的右边,点C坐标应为8-8×12=4;②B在C的左边,点C坐标应为8+8×12=8+4=12.故点B在数轴上表示的数是4或12.故选:C.【点睛】本题考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.8.B解析:B【分析】根据数字的变化类规律,比较输入与输出结果的规律即可得结论.【详解】解:根据运算程序,得第1次输出的结果为12,第2次输出的结果为6,第3次输出的结果为3,第4次输出的结果为6,第5次输出的结果为3,……∴(2021-1)÷2=1010∴第2021次输出的结果为3.故选:B.【点睛】本题考查了数字的变化规律、有理数的混合运算、代数式求值,解决本题的关键是输入数字后准确计算输出的结果.9.D解析:D【分析】根据数轴上点的位置确定出a,b,c的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a<0<b<c,且|b|<|a|<|c|,∴a+b<0,故选项A错误,不符合题意;a c+>,故选项B错误,不符合题意;+-<,故选项C错误,不符合题意;a b c+->,故选项D正确,符合题意;b c a故选:D.【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果温度升高3℃记作+3℃,那么温度下降10℃记作-10℃.故选:B.【点睛】本题考查了正数和负数的知识,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.C解析:C【分析】分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:由题可知:点C在线段AB内或在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为-2、1,∴AB=3第一种情况:点C在点B右侧,AC=3+1=4;第二种情况:点C在点B左侧,AC=3-1=2故选C.【点睛】本题考查了数轴上点之间的距离,关键是要学会分类讨论的思想,要防止漏解. 12.D解析:D【分析】精确到0.01求近似数要看千分位上的数进行四舍五入,近似值为2. 90,有两种情况,千分位上的数舍去,和千分位上的数要进一,找出舍去的和进一的数字即可解答.【详解】干分位舍去的数有,1、2、3、4,即数M 可能是2.901 、2.902 、2.903 、2.904;千分位进一的数有5、6、7、8、9,因为千分位进一,得到近似数是2.90,所以原来的小数的百分位上是10-1=9,百分位9+1=10又向十分位进一,即原数的十分位原来是9-1=8 ,即数M 可能是2.895、2.896 、 2.897、2.898 、2.899;∴数M 精确到0.01时,近似数是2.90,那么数M 的范围是2.895≤M<2.905,故选:D.【点睛】此题考查近似数及其求法,正确理解近似数的精确方法“四舍五入法”,从所精确的数位的后一位舍去或进一两种方法解决问题是解题的关键.二、填空题13.【分析】根据题意设表示利用错位相减法解题即可【详解】解:设则因此所以故答案为:【点睛】本题考查有理数的乘方是重要考点难度一般掌握相关知识是解题关键 解析:2015514- 【分析】根据题意,设23201415555S =+++++,表示23201555555S =++++,利用错位相减法解题即可.【详解】解:设23201415555S =+++++, 则23201555555S =++++,因此()()2320152320142015555551555551S S -=++++-+++++=-, 所以2015514S =- 故答案为:2015514-. 【点睛】本题考查有理数的乘方,是重要考点,难度一般,掌握相关知识是解题关键.14.32【分析】首先计算乘方和括号里面的运算然后计算括号外面的加法即可【详解】解:﹣23+(﹣4)2﹣(1﹣32)×3=﹣8+16﹣(1﹣9)×3=﹣8+16﹣(﹣8)×3=﹣8+16﹣(﹣24)=﹣8解析:32【分析】首先计算乘方和括号里面的运算,然后计算括号外面的加法即可.【详解】解:﹣23+[(﹣4)2﹣(1﹣32)×3]=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+[16﹣(﹣24)]=﹣8+40=32.故答案为:32.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则及运算顺序是解题的关键.15.>【分析】两个负数绝对值大的其值反而小【详解】解:∵||=||=而<∴>故答案为:>【点睛】本题主要考查了有理数的大小比较解题时注意:正数都大于0负数都小于0正数大于一切负数两个负数比较大小绝对值大 解析:>【分析】两个负数,绝对值大的其值反而小.【详解】解:∵|13-|=13,|12-|=12,而13<12, ∴13->12-. 故答案为:>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.16.-4【分析】数轴上点的移动规律是左减右加所以此蚂蚁所在的位置表示的数是-2+3-5=-4【详解】解:蚂蚁所在的位置为:-2+3-5=-4故答案为:-4【点睛】主要考查了数轴要注意数轴上点的移动规律是解析:-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.792×107【分析】用科学记数法表示较大的数时一般形式为a×10n 其中1≤|a|<10n 为整数据此判断即可【详解】解:7792万=77920000=7792×107【点睛】此题考查科学记数法的表示解析:792×107【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:7792万=77920000=7.792×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.-4【分析】根据非负数的性质列式方程求解即可得到ab 的值再代入求值即可【详解】解:∵∴∴a-2=0b+1=0解得a=2b=-1∴故答案为:-4【点睛】本题考查了非负数的性质:几个非负数的和为0时这几解析:-4.【分析】根据非负数的性质列式方程求解即可得到a 、b 的值,再代入求值即可.【详解】解:∵2(2)|1|0a b -++=∴2(2)0a -=,|1|0b +=∴a-2=0,b+1=0,解得a=2,b=-1,∴22=2(1)4a b ⨯-=-.故答案为:-4.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时还考查了有理数的乘方运算.19.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a =±8当a =8b =﹣4时a ﹣b =8+4=12当a =﹣8b =﹣4时a ﹣b =﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4【分析】根据绝对值的定义即可求出答案.【详解】解:由题意可知:a =±8,4b =-,当a =8,b =﹣4时,a ﹣b =8+4=12,当a =﹣8,b =﹣4时,a ﹣b =﹣8+4=﹣4,故答案:12或-4.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型. 20.472【分析】由四舍五入法进行计算即可得到答案【详解】解:0472490472;故答案为:0472【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止所有的数字都是这个解析:472.【分析】由四舍五入法进行计算,即可得到答案.【详解】解:0.47249≈0.472;故答案为:0.472.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.三、解答题21.-1或-5【分析】根据题意,利用绝对值的代数意义求出x 与y 的值,即可确定出x+y 的值.【详解】解:∵=()x y y x x y -=---∴x-y <0,即x <y∵|x|=3,|y|=2,∴x=-3,y=2;x=-3,y=-2,则x+y=-1或-5.故答案为:-1或-5【点睛】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【分析】由表格中数据可得出,平均分为90分,把表格完成,可以得出分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【详解】解:全班平均分为:84-(-6)=90(分)王芳的测试成绩与全班平均分之差为:89-90=-1(分);刘兵的数学测试成绩为:90+(+2)=92(分);张昕的数学成绩为:90+0=90(分);江文的数学成绩为:90+(-2)=88分;完成表格得【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解答此题的关键.23.(1)减少41吨;(2)2100元【分析】(1)结合题意,根据有理数加减运算、正负数的性质分析,即可得到答案;(2)根据绝对值、有理数加法性质计算,即可得到装卸的总吨数;结合题意,再通过有理数乘法计算,即可得到答案.【详解】(1)根据题意,得:323218353622+--+--41=-∴经过这6天,仓库里的货品减少41吨;(2)|32||32||18||35||36||22|175++-+-+++-+-=,即装卸的总吨数为175吨 结合题意,6天装卸费总共为:121752100⨯=元.【点睛】本题考查了正负数、有理数加减运算、绝对值、有理数乘法的知识;解题的关键是熟练掌握正负数、有理数加减运算、绝对值的性质,从而完成求解.24.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+ =-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.25.(1)-3.5;(2)盈利2.4万元;(3)0.6万元【分析】(1)根据盈利为正,亏损为负可得结果;(2)根据题意列式求出一年的盈利与亏损的和,进一步根据计算结果判定即可;(3)用下半年平均每月盈利额减去上半年平均每月盈利额.【详解】解:(1)根据盈利为正,亏损为负可得:11~12月平均每月的盈利额可记为-3.5万元;(2)-3.8×3+3.6×3+2.5×4-3.5×2=2.4万元,这个公司去年盈利2.4万元;(3)由题意可得:(2.5×4-3.5×2)÷6-(-3.8×3+3.6×3)÷6=0.6万元,∴这个公司去年下半年平均每月盈利比上半年平均每月盈利多0.6万元.【点睛】此题主要考查正负数在实际生活中的意义,以及有理数的混合运算,熟练掌握运算法则是解题的关键.26.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)311 13+(0.25)(4)3 444 ---+--=3111 13+434444-+=3111 (13+4)(3) 4444+-=183+=21(2)31(2)93--÷=893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

七年级数学上册-第二章有理数及其运算练习题及答案

七年级数学上册-第二章有理数及其运算练习题及答案

七年级数学上册-第二章有理数及其运算练习题及答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2七年级上册第二章有理数及其运算练习题及答案。

一.填空题1.如果向东运动5米记作+5米,那么向西运动3米记作____ ; 2._____既不是正数,也不是负数; 3.分数可以分为_____ ,_____ ;4.珠穆朗玛峰高出海平面8848米,表示为+8848米,吐鲁番盆地低于海平面155米,表示为____ ;5.请写出3个大于1-的负分数_____ ;6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作____ ;7.某县外贸局一年出口总额人民币1300万元,表示为+1300万元;进口某种原料350万元应表示为_____ ;8.在“学雷锋活动月”活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了____ _米,应记作_____ 米;9.某摊主购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作____ _; 二.选择题10.下列各数中,大于21-小于21的负数是 ( )(A ) 32- (B ) 31- (C ) 31(D ) 011.负数是指 ( ) (A ) 把某个数的前边加上“-”号 (B ) 不大于0的数 (C ) 除去正数的其他数 (D ) 小于0的数12.关于零的叙述错误的是 ( ) (A )零大于所有的负数 (B )零小于所有的正数 (C )零是整数(D )零既是正数,也是负数13.非负数是 ( ) (A ) 正数 (B ) 零(C ) 正数和零(D ) 自然数14.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米3处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( )(A ) 文具店 (B ) 玩具店 (C ) 文具店西40米处 (D ) 玩具店西60米处 三.解答题15.下面是具有相反意义的量,请用箭头标出其对应关系16.如右上图,某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温; 17.某人向东走了4千米记作+4千米,那么-2千米表示什么?18.某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示科目 语文 数学 外语 成绩+15-3-6请回答,该生成绩最好和最差的科目分别是什么?19.某公司今年第一季度收入与支出情况如表所示(单位:万元)月份 一月 二月 三月 收入 32 48 50 支出121310请问:(1)该公司今年第一季度总收入与总支出各多少万元?(2)如果收入用正数表示,则总收入与总支出应如何表示?4(3)该公司第一季度利润为多少万元?参考答案一.1.-3;2. 0 ;3.正分数 负分数 ;4.-155米 ;5.21-,32-,43- ; 6.-600元7.-350万 -700米 9.-6元 二、10.B ;11.D ;12.D ;13.C ;14.A ; 三、15.略 16.略 17.向西走了2千米 ; 18.分别是语文和外语;19.(1)总收入130万,总支出35万 (2)总收入+130万,总支出-35万 (3)95万。

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (11)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (11)

一、选择题1.有理数a,b在数轴上的位置如图所示,则a,b,−b,−a的大小关系是( )A.b<−a<a<−b B.b<a<−b<−aC.b<−b<−a<a D.b<a<−a<−b2.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成12,12=10−2,189写成229=200−20+9,7683写成12323=10000−2320+3,按这个方法请计算5231−3241=( )A.2408B.1990C.2410D.30243.若a,b,c均为正数,则a+b−c,b+c−a,c+a−b这三个数中出现负数的情况是( )A.不可能有负数B.必有一个负数C.至多有一个负数D.可能有两个负数4.如果a+b>0,且b<0,那么a,b,−a,−b的大小关系为( )A.a<−b<−a<b B.−b<a<−a<bC.a<b<−b<−a D.−a<b<−b<a5.A,B是数轴上位于原点O异侧的两点(点A在点B的左侧),若点A,B分别对应的实数为a,b,且∣a∣>∣b∣,则a,−a,b,−b中最大的数是( )A.a B.−a C.b D.−b6.如果a+b+∣c∣<0,a×b×∣c∣>0,那么a,b这两个数是( )A.都为正数B.都为负数C.一正一负D.不一定7.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.p B.q C.m D.n8.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定9.如果a+b+c=0,且∣a∣>∣b∣>∣c∣,则下列式子可能成立的是( )A.c>0,a<0B.c<0,b>0C.c>0,b<0D.b=010.−13的绝对值是( )A.−3B.−13C.3D.13二、填空题11.有理数a,b,c在数轴上的位置如图所示,化简:−∣c−a∣−∣b−a∣+∣c∣=.12.数轴上顺次有不重合的A,B,C三点,若A,B,C三点对应的数分别为a,−1,b,试比较大小:(a+1)(b+1)0.(填“>”或“<”或“=”)13.计算:−4.2÷134=.14.计算−22−3=.15.数轴是规定了、和的直线.16.已知a与b互为相反数,c与d互为倒数,x的绝对值等于2,则a+b−cdx的值为.17.已知点A在数轴上对应的数为a,点B对应的数为b,且∣a+2∣+(b−1)2=0,A,B之间的距离记作∣AB∣,定义:∣AB∣=∣a−b∣.①线段AB的长∣AB∣=3;②设点P在数轴上对应的数为x,当∣PA∣−∣PB∣=2时,x=0.5;③若点P在A的左侧,M,N分别是PA,PB的中点,当P在A的左侧移动时∣PM∣+∣PN∣的值不变;④在③的条件下,∣PN∣−∣PM∣的值不变;以上①②③④结论中正确的是(填上所有正确结论的序号).三、解答题18. 已知抛物线 G:y =x 2−2tx +3 ( t 为常数)的顶点为 P .(1) 求点 P 的坐标;(用含 t 的式子表示)(2) 在同一平面直角坐标系中,存在函数图象 H ,点 A (m,n 1) 在图象 H 上,点 B (m,n 2) 在抛物线 G 上,对于任意的实数 m ,都有点 A ,B 关于点 (m,m ) 对称. ①当 t =1 时,求图象 H 对应函数的解析式;②当 1≤m ≤t +1 时,都有 n 1>n 2 成立,结合图象,求 t 的取值范围.19. 计算:(1) ∣−2∣+∣−3∣.(2) ∣∣34∣∣×∣∣−49∣∣.20. 计算下列各式:(1) 1−122= ;(2) (1−122)(1−132)= ; (3) (1−122)(1−132)(1−142)= ; (4) 你能根据所学知识找到计算上面算式的简便方法吗?请你利用你找到的简便方法判断(1−122)(1−132)(1−142)…(1−192)(1−1102)…(1−1n 2) 的值与 12 的大小关系,并说明理由.21. 对任意一个三位数 n ,如果 n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”n 的各个数位上的数字之和记为 F (n ) .例如 n =135 时,F (135)=1+3+5=9.(1) 对于“相异数”n ,若 F (n )=6 ,请你写出一个 n 的值;(2) 若 a ,b 都是“相异数”,其中 a =100x +12,b =350+y ( 1≤x ≤9,1≤y ≤9,x ,y都是正整数) ,规定:k =F (a )F (b ),当 F (a )+F (b )=18 时,求 k 的最小值.22. 计算:−22+√−83+√2cos45∘.23. 某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:袋数2132•合计与标准质量的差值+0.5+0.8+0.6−0.4−0.7+1.4(1) 若表中的一个数据不小心被墨水涂污了,请求出这个数据.(2) 若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.24.计算:(1) (−2)3×[−7+(3−1.2×56)];(2) 24÷[(−2)3+4]−3×(−11).25.计算.(1) 2−(−3)2−5×(−1)3.(2) (−48)×(1−16+34).(3) −12÷4−27÷(−3)×13.答案一、选择题1. 【答案】A【知识点】利用数轴比较大小2. 【答案】A【解析】根据题意可知5231=5200−31=5169,3241=3000−240+1=2761,∴5231−3241=5169−2761=2408.【知识点】有理数加减混合运算3. 【答案】C【解析】显然当a=1,b=1,c=3时有(1+1)−3<0,1+3−1>0,∴排除A,B.对于D,若假设有两个负数,则不防设:{a+b<c, ⋯⋯①b+c<a, ⋯⋯②由① +②可得:b<0,矛盾于已知条件,∴假设错误,不可能有两个负数,同理a+b−c,a+c−b,b+c−a中不可能有3个负数.【知识点】有理数的加法法则及计算4. 【答案】D【解析】∵a+b>0,b<0,∴a>0,∣a∣>∣b∣,∴−a<b<−b<a,故选:D.【知识点】有理数的加法法则及计算、利用绝对值比较数的大小5. 【答案】B【解析】因为A,B是数轴上位于原点O异侧的两点(点A在点B的左侧);所以点A在原点左侧,点B在原点右侧,所以a<0,b>0,即b>a,又因为∣a∣>∣b∣,所以−a>b,即−b>a,所以−a>b>a,又因为b>0,所以−b<0,所以−a>b>−b>a.【知识点】利用数轴比较大小、绝对值的几何意义6. 【答案】B【解析】∵∣c∣≥0,∴由a×b×∣c∣>0知a,b同号,根据a+b+∣c∣<0知a+b<0,则a,b同为负数.【知识点】有理数的乘法7. 【答案】A【解析】∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p.【知识点】利用绝对值比较数的大小、相反数8. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简9. 【答案】A【解析】由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,则必是b<0,c<0,a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立.于是应在两正一负的答案中寻找正确答案.若a,b为正数,c为负数时,则:∣a∣+∣b∣>∣c∣,∴a+b+c≠0,若a,c为正数,b为负数时,则:∣a∣+∣c∣>∣b∣,∴a+b+c≠0,只有A符合题意.【知识点】绝对值的几何意义10. 【答案】D【知识点】绝对值的定义二、填空题11. 【答案】−b【解析】由数轴可知c<0<a<b,∴c−a<0,b−a>0,∴−∣c−a∣−∣b−a∣+∣c∣=c−a−(b−a)+(−c)=c−a−b+a−c=−b.【知识点】绝对值的几何意义12. 【答案】<【解析】数轴上顺次有不重合的A,B,C三点,(1)数轴上从左到右依次为A,B,C,则a<−1,b>−1,即:a+1<0,b+1>0,所以(a+1)(b+1)<0,(2)数轴上从右到左依次为A,B,C,则a>−1,b<−1,即:a+1>0,b+1<0,所以(a+1)(b+1)<0,故答案为:<.【知识点】利用数轴比较大小13. 【答案】−125【知识点】有理数的除法14. 【答案】−7【解析】−22−3=−4−3=−7.【知识点】有理数的加减乘除乘方混合运算15. 【答案】原点;正方向;单位长度【知识点】数轴的概念16. 【答案】±2【解析】因为a与b互为相反数,c与d互为倒数,x的绝对值等于2,所以a+b=0,cd=1,x=±2.(1)x=2时,a+b−cdx=0−2=−2;(2)x=−2时,a+b−cdx=0−(−2)=2.综上,a+b−cdx的值为±2.故答案为±2.【知识点】倒数17. 【答案】①②④【解析】① ∵∣a+2∣+(b−1)2=0,∴a+2=0,b−1=0,∴a=−2,b=1,∴点A在数轴上对应的数为−2,点B对应的数为1,且AB=1−(−2)=3,故①正确;②设点P在数轴上对应的数为x,当∣PA∣−∣PB∣=2时,P在A,B之间,∴x−(−2)−(1−x)=2,x=0.5,故②正确;③设点P在数轴上对应的数为x,∵∣PM∣+∣PN∣=12∣PB∣+12∣PA∣=12(∣PB∣+∣PA∣)=12(1−x−x−2)=−2x+12,∴③不正确,④ ∣PN∣−∣PM∣的值不变,值为32,∵∣PN∣−∣PM∣=12∣PB∣−12∣PA∣=12(∣PB∣−∣PA∣)=12∣AB∣=32,∴∣PN∣−∣PM∣=32,∴④正确.故答案为:①②④.【知识点】绝对值的几何意义三、解答题18. 【答案】(1) y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3.∴顶点P的坐标为(t,−t2+3).(2) ①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3,∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1,整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;②关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3,由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3.∴图象H的解析式为:y H=−x2+2tx+2x−3.配方,得y H=−[x−(t+1)]2+(t2+2t−2)∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c的图象19. 【答案】(1) 5.(2) 13.【知识点】有理数的加法法则及计算、绝对值的性质、有理数的乘法20. 【答案】(1) 34 (2) 23 (3) 58(4) (1−122)(1−132)(1−142)…(1−192)(1−1102)…(1−1n 2) 的值 >12,理由:原式=12⋅32⋅23⋅43…n−1n⋅n+1n=n+12n,因为n+1n >1,所以 12<n+12n.【知识点】有理数的加减乘除乘方混合运算、有理数加减乘方混合运算、实数的简单运算21. 【答案】(1) 因为 F (n )=6, 所以 n =123.(2) 因为 F (a )=x +1+2=x +3,F (b )=3+5+y =8+y 且 F (a )+F (b )=18, 所以 x +3+8+y =18, 所以 x +y =7, 因为 x ,y 是正整数,所以 {x =1,y =6, {x =2,y =5, {x =3,y =4, {x =4,y =3, {x =5,y =2, {x =6,y =1,因为 a ,b 是相异数,所以 a ≠1,a ≠2,b ≠3,b ≠5, 所以 {x =3,y =4, {x =5,y =2, {x =6,y =1,所以 k =F (a )F (b )=12或45或1, 所以 k 的最小值为 12 .【知识点】二元一次方程整数解、有理数的加法法则及计算22. 【答案】原式=−4−2+√2×√22=−4−2+1=−5.【知识点】特殊角的余弦值、有理数的乘方、立方根的运算23. 【答案】(1) 设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(−0.4)×2+(−0.7)x=1.4,解得:x=2,故这个数据为2.(2) [50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元.【知识点】有理数加法的应用、一元一次方程的应用24. 【答案】(1) 原式=(−8)×[−7+(3−1.2×56)] =(−8)×[−7+(3−1)]=(−8)×(−5)=40;(2) 原式=24÷(−8+4)+33 =24÷(−4)+33=−6+33=27.【知识点】有理数的加减乘除乘方混合运算25. 【答案】(1)2−(−3)2−5×(−1)3 =2−9+5=−2.(2)(−48)×(1−16+34)=−48×(56+34)=−40−36=−76.(3)−12÷4−27÷(−3)×13 =−3+9×13=−3+3=0.【知识点】有理数的加减乘除乘方混合运算、乘法分配律、有理数加减乘除混合运算11。

七年级数学上第2章有理数及其运算全章练习含答案

七年级数学上第2章有理数及其运算全章练习含答案

七年级数学上册 第2章 有理数及其运算 同步练习题一、选择题1.陆地上最高处是珠穆朗玛峰顶,高出海平面8844 m ,记为+8844 m ;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m ,记为( )A .+415 mB .-415 mC .±415 mD .-8848 m 2.在-4,0,-1,3这四个数中,最大的数是( ) A .-4 B .0 C .-1 D .33.如图,已知数轴上的点A ,B ,C ,D 分别表示数-2,1,2,3,则表示数3-2.5的点P 应落在( )A .AO 之间B .OB 之间C .BC 之间D .CD 之间 4. -12的绝对值是( )A.12 B .-12 C .2 D .-2 5.-12的倒数的相反数等于( )A .-2 B.12 C .-12D .26.判断下列各式的值,何者最大?( )A .25×132-152B .16×172-182C .9×212-132D .4×312-1227. 下列运算结果,错误的是( )A .-(-12)=12B .(-1)4=1 C .(-1)+(-3)=4 D .(-2)×(-3)=68.下列运算结果正确的是( )A .-87×(-83)=7221B .-2.68-7.42=-10C .3.44-7.11=-4.66 D.-101102<-1021039.今年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为( )A .0.6×1013元B .60×1011元C .6×1012元D .6×1013元10.有理数a ,b 在数轴上的位置如图所示,在-a ,b -a ,a +b ,0中,最大的是( )A .-aB .0C .a +bD .b -a11.用科学记数法表示的数1.20×108的原数是( )A .120 000 000B .1 200 000 000C .12 000 000D .12 000 000 000 二、填空题12.数轴上点A 表示的数为1,则与点A 相距3个单位长度的点B 表示的数是___________________.13.在3.5,-312,0,-8这四个数中,最小的数是____,最大的数是____,绝对值最大的数是____,互为相反数的两个数是____和____.14.如图,长方形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为____.15.冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80 ℃,以后每小时下降4 ℃.第二天,冰冰早晨起来后测得水箱内水的温度为32 ℃,请你猜一猜她起床的时间是_________.三、解答题 16.计算:(1)-3-[-5-(1-0.2÷35)÷(-2)];(2)(12-16+19)÷(-136)+36÷(12-16+19);(3)-32×(-13)2+(34-16+38)×(-24).17.有20筐白菜,以每筐25 kg 为标准,超过或不足的千克数分别用正、负数来表示,记(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)18.有一张厚度为0.1毫米的纸片,对折1次后的厚度是2×0.1毫米. (1)对折2次的厚度是多少毫米? (2)假设这张纸能无限地折叠下去,那么对折20次后相当于每层高度为3米的楼房多少层? 19.某登山队5名队员以二号高地为基地开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,-32,-43,+205,-30,+25,-20,-5,+30,+75,-25,+90.(1)此时他们有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在行进全程中都使用了氧气,且每人每米要消耗氧气0.04升,他们共使用了氧气多少升?20.(1)已知a 是非零有理数,试求a|a|的值;(2)已知a ,b 是非零有理数,试求a |a|+b|b|的值;(3)已知a ,b ,c 是非零有理数,请直接写出a |a|+b |b|+c|c|的值.答案1---5 BDBAB 6---11 BCACDA 12. 4或-213. -8 3.5 -8 3.5 -31214. 5 15. 6:0016. (1) 解:原式=-3-(-5+13)=123(2) 解:原式=(12-16+19)×(-36)+36÷49=65(3) 解:原式=-9×19+(-18)+4+(-9)=-2417. 解:(1)2.5-(-3)=5.5(千克) (2)1×(-3)+4×(-2)+2×(-1.5)+3×0+1×2+8×2.5=-3-8-3+2+20=8(千克),总计超过8千克 (3)2.6×(25×20+8)=1320.8≈1321元18. 解:(1)2×2×0.1=0.4毫米 (2)对折20次的厚度为220×0.1=104857.6毫米≈104.9 m ,104.9÷3≈35层19. 解:(1)150-32-43+205-30+25-20-5+30+75-25+90=420米,500-420=80米,离顶峰还差80米 (2)150+32+43+205+30+25+20+5+30+75+25+90=730米,730×0.04×5=146升,他们共使用氧气146升20. 解:(1)当a 为正数时,a |a|=1;当a 为负数时,a|a|=-1 (2)当a ,b 同为正数时,a |a|+b |b|=2;当a ,b 同为负数时,a |a|+b |b|=-2;当a ,b 异号时,a |a|+b |b|=0 (3)±1,±3。

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(有答案解析)

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(有答案解析)
(1)若数轴上一点P(异于点B),且PA=AB,则P点表示的数为;
(2)若数轴上有一点Q,使QA=3QB,求Q点表示的数;
(3)若将此纸条沿两条折痕处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折(n≥2)次后,再将其展开,请直接写出最左端的折痕和最右端的折痕之间的距离(用含n的式子表示,可以不用化简).
【详解】
解:由数轴可得a<0,c>b>0,|c|>|a|>|b|,
∴① ,故①错误;
②∵c>b,∴b-c<0,∵a<0,∴ ,故②错误;
③∵a<0,∴ ,∵c>b>0,∴ , ,∴ ,故③正确;
④∵a<0,b>0,∴a-b<0,∴|a-b|=b-a,∵a<0,c>0,且|c|>|a|,∴c+a>0,∴|c+a|=c+a,∵c>b>0,∴b-c<0,∴|b-c|=c-b,∴ ,故④正确.
A. B. C. D.
6.国家统计局2020年10月19日发布数据,初步核算,前三季度国内生产总值约为72万亿元,按可比价格计算,同比增长 ,其中72万亿用科学记数法表示为()
A. B. C. D.
7.已知数 的大小关系如图所示,下列选项中正确的有()个
① ② ③ ④
A.0B.1
C.2D.3
8.在以 为原点的数轴上,存在点 , ,满足 ,若点 表示的数为 ,则点 表示的( )
【点睛】
考查了考查了用数字表示事件和有理数的运算.本题是以古代“结绳计数”为背景,按满六进一计算读书的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(含答案解析)

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(含答案解析)

一、选择题1.计算232223333m n ⨯⨯⨯=+++个个( )A .23n mB .23m nC .32m nD .23m n2.中央电视台新闻报道:国家财政部设立专项基金20亿(人民币),用于“新冠肺炎”的防治工作,20亿用科学记数法可表示为( ) A .100.210⨯B .9210⨯C .8210⨯D .72010⨯3.定义☆运算:观察下列运算:☆[0☆(–12)]等于( ) A .132 B .0C .-132D .-234.若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c的关系是( ) A .互为相反数 B .互为倒数 C .相等 D .无法确定 5.光明科学城的规划总面积达9900000平方米,其中9900000用科学记数法表示为( ) A .9.9×107B .99×107C .9.9×106D .0.99×1086.截至2020年10月末,全国核酸日检测能力是65.7610⨯人份,实现了“应检尽检”、“愿检尽检”.数据65.7610⨯原来的数是( ) A .576000B .576万C .57600000D .57.6万7.为了求22201113333++++⋯+的值,可令23201113333S =++++⋯+,则22201233333S =+++⋯+,因此2012331S S -=-,所以20l2312S -=,仿照以上推理计算出23201517777++++⋯+的值是( )A .2015712-B .2016712-C .2016716-D .2015716-8.下列各式一定成立的是( )A .()22=a a -B .()33a a =- C .22a a -=- D .33a a =9.有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )①0a b <<;②a b <;③0ab >;④a b a b ->+ A .①② B .①④ C .②③D .③④10.水池,,A B C 都是长方体,深为1.6m ,底部尺寸为3m 4m ⨯.1号阀门24min 可将无水A 池注满;2号阀门用来从A 池向B 池放水,30min 可将A 池中满池水放入B 池;3号阀门用来从B 池向C 池放水,48min 可将B 池中满池水放入C 池.若开始、、A B C 三池无水,同时打开1号、2号和3号阀门,那么当B 池水深0.4m 时,A 池有( )3m 的水. A .1.2B .3.2C .6D .1611.据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学计数法表示为( )元 A .4.057×109B .0.4057×1010C .40.57×1011D .4.057×101212.下列说法:①若|x|+x =0,则x 为负数;②若-a 不是负数,则a 为非正数;③|-a 2|=(-a )2;④若0a b a b +=,则abab=-1;⑤若|a|=-b ,|b|=b ,则a≥b . 其中正确的结论有( ) A .2个B .3个C .4个D .5个二、填空题13.2020年眉山市东坡区以东坡文化为内涵,宋代古韵建筑为载体,苏州园林景观为原型,体验式旅游商业为核心打造的“东坡印象·水街”成为了网红打卡点.据悉从9月至今已迎来游客超过102万人次,其中102万用科学计数法表示为_______. 14.12021-的倒数的相反数是________. 15.用四舍五入法将3.1415精确到百分位约等于_____.16.定义一种新运算()()22a b a b a b b a b ⎧-≥⎪⊗=⎨-<⎪⎩,则3432⊗-⊗=_______(填计算后结果).17.规定*是一种运算符号,且*2a b ab a =-,则计算()4*2*3-=_______. 18.在数轴上,与原点相距4个单位的点所对应的数是____________.19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题21.计算:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭. 22.计算(1)42212()(2)3-+⨯÷-; (2)1211()7821336---⨯ 23.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6 (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.24.计算:()2411236⎡⎤--⨯--⎣⎦25.计算: (1)4(2)3--⨯ (2)221(9)33-⨯-+26.某市出租车司机小李星期天下午的营运全是在南北走向的朝阳大道上进行的,如果规定向北为正,向南为负,这天下午的行驶情况如下(单位:千米):20,3,15,12,10,20,5,15,18,16+-+-+-+-+-.(1)当将最后一名乘客送到目的地时,他距下午出车地点的距离为多少千米? (2)若每千米的营运额为2.5元,则这天下午他的营运额为多少元? (3)若成本为1.5元/千米,则这天下午他盈利多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据幂的运算进行计算即可; 【详解】23222233333个个⨯⨯⨯=+++m mn n,故答案选B . 【点睛】本题主要考查了幂的定义,准确计算是解题的关键.2.B解析:B 【分析】根据科学记数法的表示解答即可; 【详解】20亿=92000000000210=⨯; 故答案选B . 【点睛】本题主要考查了科学记数法的表示,准确计算是解题的关键.3.D解析:D 【分析】根据两数进行☆运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,0和任何数进行☆运算,或任何数和0进行☆运算,等于这个数的绝对值,解答即可. 【详解】解:(-11)☆[0☆(–12)]=(-11)☆(+12)=-(11+12)=-23, 故选D . 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.A解析:A 【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案. 【详解】,,,a b c m 为不为零的有理数2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++ ∴ 0b c += ∴,b c 互为相反数故选:A . 【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.5.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:将数9900000用科学记数法表示为9.9×106. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B 【分析】将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数. 【详解】解:65.7610⨯=5760000=576万. 故选:B . 【点睛】本题考查写出用科学记数法表示的原数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.7.C解析:C 【分析】令23201517777S =++++⋯+,两边同乘以7,再作差,除以6即可; 【详解】解:23201517777S =++++⋯+①, 则23201677777S =+++⋯+②, ②-①得:2016167S =-,∴2016761S -=,故选:C . 【点睛】本题考查有理数的运算,解题的关键是模仿题目中给出的计算方法进行计算.8.A解析:A 【分析】根据乘方的运算和绝对值的意义来进行判断即可. 【详解】A 、()22a a -= ,故该选项正确; B 、()33a a -=- ,故该选项错误; C 、22a a -= ,故该选项错误;D 、当a <0时,3a <0,3a >0,故该选项错误; 故选:A . 【点睛】此题考查的知识点是绝对值,有理数的乘方,注意乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行,注意任何数的绝对值为非负数.9.A解析:A 【分析】先由数轴可得a <0<b ,且|a|<|b|,再判定即可. 【详解】解:由图可得:a <0<b ,且|a|<|b|, ∴ab <0,a-b <a+b , ∴正确的有:①②; 故选:A . 【点睛】本题主要考查了数轴,解题的关键是利用数轴确定a ,b 的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.10.B解析:B 【分析】先求出长方体的体积,再分别求出三个阀门的进水效率,然后求出B 池水深0.4m 时所用的时间,最后根据时间即可求出A 池的水深. 【详解】解:长方形的体积=()334 1.619.2m⨯⨯=,1号阀门的进水效率=()319.2240.8m ÷=2号阀门的进水效率=()319.2300.64m÷=3号阀门的进水效率=()319.2480.4m ÷=当同时打开1号、2号和3号阀门, B 池水深0.4m 时, 用时为:()()340.40.640.4⨯⨯÷-4.80.24=÷20=(分钟)A 池水深为:()0.80.6420-⨯0.1620=⨯()33.2m =故选B . 【点睛】本题考查了有理数混合运算的应用,关键是根据工作量=工作效率⨯工作时间,求同时打开1号、2号和3号阀门,B 池水深0.4m 所用时间.11.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:40570亿=4.057×1012. 故选:D . 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.B解析:B 【分析】根据相反数的定义、绝对值的性质、有理数的乘方运算逐个判断即可得. 【详解】①项,|x|+x =0,由绝对值的概念可知0x ≥,所以0x ≤,即x 为负数或零,故①项错误;②项,-a 不是负数,即为正数或零,由相反数的概念可知a 为负数或零,即为非正数,故②项正确;③项,()2222a a a a -=-=,,所以()22a a -=-,故③项正确;④项,a 为正时,a a 的值为1;a 为负时,aa的值为-1,对b ab b ab 、有相同结论,又因为0a b a b +=,可知a 、b 异号,0ab <,则abab=-1,故④项正确; ⑤项,由|b|=b 可知0b ≥;又因为|a|=-b ,0a ≥,所以可得a=0,b=0,所以a=b ,故⑤项错误;综上所述,正确的说法有②③④三个, 故选:B . 【点睛】本题主要考查了绝对值、相反数、有理数的乘方等知识点,属于综合题,熟练掌握绝对值和相反数的概念是解题的关键.二、填空题13.【分析】根据科学计数法的意义求解【详解】解:102万=1020000=102×1000000=102故答案为【点睛】本题考查科学计数法的应用熟练掌握是解题关键 解析:61.0210⨯【分析】根据科学计数法的意义求解. 【详解】解:102万=1020000=1.02×1000000=1.02610⨯, 故答案为61.0210⨯ . 【点睛】本题考查科学计数法的应用,熟练掌握10?··010nn=是解题关键.14.2021【分析】直接利用倒数互为相反数的定义分析得出答案【详解】解:的倒数为:-2021则-2021的相反数是:2021故答案为:2021【点睛】此题主要考查了倒数相反数正确把握相关定义是解题关键解析:2021 【分析】直接利用倒数、互为相反数的定义分析得出答案. 【详解】解:12021-的倒数为:-2021,则-2021的相反数是:2021. 故答案为:2021. 【点睛】此题主要考查了倒数、相反数,正确把握相关定义是解题关键.15.14【分析】把千分位上的数字1进行四舍五入即可【详解】解:31415(精确到百分位)是314故答案为:314【点睛】本题考查了近似数和有效数字:精确到第几位和有几个有效数字是精确度的两种常用的表示形解析:14 【分析】把千分位上的数字1进行四舍五入即可. 【详解】解:3.1415(精确到百分位)是3.14. 故答案为:3.14. 【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.16.-15【分析】根据新定义选择对应的计算方式综合计算即可【详解】∵3<43>2∴=-8-9+2=-15【点睛】本题考查了有理数的运算准确理解新定义选择对应的计算方式是解题的关键解析:-15. 【分析】根据新定义,选择对应的计算方式,综合计算即可. 【详解】∵()()22a b a b a b b a b ⎧-≥⎪⊗=⎨-<⎪⎩,3<4,3>2 ∴3432⊗-⊗=224(32)-⨯-- = -8-9+2 =-15. 【点睛】本题考查了有理数的运算,准确理解新定义,选择对应的计算方式是解题的关键.17.-16【分析】按照新定义转化算式然后计算即可【详解】根据题意==-2==-16故答案为:-16【点睛】本题考查了新定义运算解题关键是把新定义运算转化为有理数计算并准确计算解析:-16. 【分析】按照新定义转化算式,然后计算即可. 【详解】根据题意,2*3232(2)-=-⨯-⨯- =64-+ =-2,()4*2*3-=()4*24(2)24-=⨯--⨯=88-- =-16故答案为:-16. 【点睛】本题考查了新定义运算,解题关键是把新定义运算转化为有理数计算,并准确计算.18.4或-4【分析】分点在原点左边和右边两种情况讨论求解【详解】解:点在原点左边时为-4点在原点右边时为4所以在数轴上与原点相距4个单位长度的点对应的数是4或-4故答案为:4或-4【点睛】本题考查了数轴解析:4或-4 【分析】分点在原点左边和右边两种情况讨论求解. 【详解】解:点在原点左边时,为-4, 点在原点右边时,为4,所以,在数轴上与原点相距4个单位长度的点对应的数是4或-4. 故答案为:4或-4. 【点睛】本题考查了数轴上表示的数到原点的距离,要注意分情况讨论.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简解析:8 【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果. 【详解】解:∵2OA OC OB ==, ∴2c a b =-=-, ∵24a b c ++=-,∴4a c c -+=-,即4a =-, ∴4c =,∴()448a b b c b a c b c a -+-=-+-=-=--=. 故答案是:8. 【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.【分析】根据甲乙丙丁四人购票所购票数量分别为1356可得若丙第一购票要使其他三人都能购买到第一排座位的票那么丙选座要尽可能得小因此丙先选择:12345丁所购票数最多即可得出丁应该为681012141解析:【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】 解:甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题21.1102-. 【分析】 原式利用乘法分配律以及乘方的意义计算即可得到结果.【详解】 解:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ =3131212121468-⨯+⨯-⨯+ =99212-+-+ =1102-. 【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.22.(1)139-;(2)1272. 【分析】(1)原式先计算乘方,再进行乘除运算,最后计算加减即可得到答案;(2)原式无根据乘法分配律把括号展开,再计算乘法,最后计算加减即可得到答案.【详解】解:(1)42212()(2)3-+⨯÷- =411292--⨯⨯=419--=139-; (2)1211()7821336---⨯ =121178+78+7821336-⨯⨯⨯ =112+26+132- =1+272=1272. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则解答此题的关键.23.(1)8;(2)见解析;MN 的长度不会发生改变,线段MN =4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB =|﹣2﹣6|=8,答:AB 的长为8;(2)MN 的长度不会发生改变,线段MN =4,理由如下:如图,因为M 为PA 的中点,N 为PB 的中点,所以MA =MP =12PA ,NP =NB =12PB , 所以MN =NP ﹣MP=12PB ﹣12PA =12(PB ﹣PA )=12AB =12×8 =4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.24.16【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】 解:原式()11711291716666=--⨯-=-+⨯=-+=. 【点睛】此题要注意正确掌握运算顺序以及符号的处理.25.(1)10;(2)-18【分析】(1)先计算乘法,再计算加法即可;(2)先计算乘方,再计算乘法,最后计算加法.【详解】解:(1)原式46=+ 10=;(2)原式18193=-⨯+ 279=-+18=-.【点睛】此题考查有理数的混合运算,掌握有理数的乘方运算,乘法运算及加法计算法则啊解题的关键.26.(1)这天下午小李距出车地点的距离为2千米;(2)这天下午小李的营运额为335元;(3)这天下午小李盈利134元.【分析】(1)根据有理数的加法,可得答案;(2)根据单价乘以总路程,可得答案;(3)根据每千米的盈利乘以总路程,可得盈利.【详解】解:(1)(20)(3)(15)(12)(10)(20)(5)(15)++-+++-+++-+++-(18)(16)+++-2=(千米)答:这天下午小李距出车地点的距离为2千米.+-++-++-++-++-∣(2)|20||3||15||12||10||20||5||15||18||16134=(千米).⨯=(元).2.5134335答:这天下午小李的营运额为335元.-⨯=(元).(3)(2.5 1.5)134134答:这天下午小李盈利134元.【点睛】本题考查了正数和负数,利用有理数的加法是解题关键,注意每千米的盈利乘以总路程等于总盈利.。

七年级数学上册《第二章 有理数及其运算》单元测试题及答案-北师大版

七年级数学上册《第二章 有理数及其运算》单元测试题及答案-北师大版

七年级数学上册《第二章 有理数及其运算》单元测试题及答案-北师大版一、单选题(本大题共12小题,每小题3分,共36分)1.小明竟然不知道(|﹣1|﹣1)的相反数是什么,他上课一定没有听课,你认为(|﹣2013|﹣2013)的相反数是( ).A .4026B .-4026C .0D .20132.“中国政治协商会议第十三届委员会第三次会议”和“中华人民共和国第十三届全国代表大会第三次会议”分别于2020年5月21日、5月22日在北京胜利召开。

在百度上搜索关键词“两会”显示,截止到2020年5月26日,搜索结果显示为75 900 000条.将75 900 000用科学记数法表示为()A .70.75910⨯B .77.510⨯C .77.5910⨯D .675.910⨯3.端午节小长假期间,沈阳某景区接待游客约为 85000人,将数据85000用科学记数法表示为( ) A .38510⨯ B .48.510⨯ C .50.8510⨯ D .58.510⨯4.下列各数中,比0大的数是( )A .1B .0C .﹣1D .﹣25.如果收入100元记作100+元,那么20-元表示( )A .支出20元B .支出80元C .收入20元D .收入80元7.和圆周率“π”一样,自然常数“e ”也是自然界中经常用到的常数之一, 2.71828e ≈精确到千分位为( ) A .2.7 B .2.71 C .2.718 D .2.71828.下列说法中正确的是( )A .在有理数中,0的意义仅表示没有B .非正有理数即为负有理数C .正有理数和负有理数组成有理数集合D .0是自然数9.在各数中,正有理数的个数有( ) A .2个 B .3个 C .4个 D .5个10.钓鱼岛是中国固有领土,位于东海,面积为4400000平方米,用科学记数法表示为( )平方米A .4 4×105B .4. 4×106C .4. 4×107D .0.44×10811.如果规定收入为正,支出为负,收入375元记作375+元,那么支出235元应记作( )A .-375元B .-235元C .235元D .375元12.“天文单位”是天文学中测量距离的基本单位,1天文单位约等于149600000千米,149600000这个数用科学记数法表示为( )A .5149610⨯B .8149610⨯C .51.49610⨯D .81.49610⨯二、填空题(本大题共8小题,每小题3分,共24分)13.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,三、解答题(本大题共5小题,每小题8分,共40分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册-第二章有理数及其运算练习
题及答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2
七年级上册第二章有理数及其运算练习题及答案。

一.填空题
1.如果向东运动5米记作+5米,那么向西运动3米记作____ ; 2._____既不是正数,也不是负数; 3.分数可以分为_____ ,_____ ;
4.珠穆朗玛峰高出海平面8848米,表示为+8848米,吐鲁番盆地低于海平面155米,表示为____ ;
5.请写出3个大于1-的负分数_____ ;
6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作____ ;
7.某县外贸局一年出口总额人民币1300万元,表示为+1300万元;进口某种原料350万元应表示为_____ ;
8.在“学雷锋活动月”活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了____ _米,应记作_____ 米;
9.某摊主购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作____ _; 二.选择题
10.下列各数中,大于2
1-
小于21
的负数是 ( )
(A ) 32- (B ) 3
1- (C ) 31
(D ) 0
11.负数是指 ( ) (A ) 把某个数的前边加上“-”号 (B ) 不大于0的数 (C ) 除去正数的其他数 (D ) 小于0的数
12.关于零的叙述错误的是 ( ) (A )零大于所有的负数 (B )零小于所有的正数 (C )零是整数
(D )零既是正数,也是负

13.非负数是 ( ) (A ) 正数 (B ) 零
(C ) 正数和零
(D ) 自然数
14.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米
3
处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( )
(A ) 文具店 (B ) 玩具店 (C ) 文具店西40米处 (D ) 玩具店西60米处 三.解答题
15.下面是具有相反意义的量,请用箭头标出其对应关系
16.如右上图,某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温; 17.某人向东走了4千米记作+4千米,那么-2千米表示什么?
18.某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示
科目 语文 数学 外语 成绩
+15
-3
-6
请回答,该生成绩最好和最差的科目分别是什么?
19月份 一月 二月 三月 收入 32 48 50 支出
12
13
10
请问:(1)该公司今年第一季度总收入与总支出各多少万元?
(2)如果收入用正数表示,则总收入与总支出应如何表示?
(3)该公司第一季度利润为多少万元?
4
参考答案
一.
1.-3;2. 0 ;3.正分数 负分数 ;4.-155米 ;5.21-,32-,4
3- ; 6.-600元7.-350万 8.700 -700米 9.-6元 二、
10.B ;11.D ;12.D ;13.C ;14.A ; 三、15.略 16.略 17.向西走了2千米 ; 18.分别是语文和外语;
19.(1)总收入130万,总支出35万 (2)总收入+130万,总支出-35万 (3)95万。

相关文档
最新文档